Review of EM Theory

(1)Maxwell's Equations

$$
\begin{array}{ll}
\vec{e}(\vec{r}, t)=\operatorname{Re}\left[\vec{E}(\vec{r}) e^{j \omega t}\right] & \vec{h}(\vec{r}, t)=\operatorname{Re}\left[\vec{H}(\vec{r}) e^{j \omega t}\right] \\
j(\vec{r}, t)=\operatorname{Re}\left[\vec{J}(\vec{r}) e^{j \omega t}\right] & \vec{p}(\vec{r}, t)=\operatorname{Re}\left[\vec{P}(\vec{r}) e^{j \omega t}\right]
\end{array}
$$

(1) $\vec{\nabla} \cdot\left(\varepsilon_{0} \vec{e}+\vec{p}\right)=\rho \quad$-Gauss'

$$
\begin{aligned}
& \vec{d}=\varepsilon_{0} \vec{e}+\vec{p} \\
& \dot{\nabla} \cdot d=\rho
\end{aligned}
$$

\vec{d} is displacement vector
m, b are magnetization \& magnetic induction $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ is permittivity of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \quad$ is permeability of free space
(2) $\vec{\nabla} \cdot \vec{b}=0 \quad \vec{b}=\mu_{0}(\vec{h}+\vec{m})$
$\vec{\nabla} \cdot \vec{A}=\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) \cdot\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right)=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
(3) $\vec{\nabla} \times \vec{h}=\vec{j}+\varepsilon_{0} \frac{\partial \vec{e}}{\partial t}+\frac{\partial \vec{p}}{\partial t}=\vec{j}+\frac{\partial \vec{d}}{\partial t}$

- Ampere' s Law
(4) $\vec{\nabla} \times \vec{e}=-\mu_{0} \frac{\partial \vec{h}}{\partial t}-\mu_{0} \frac{\partial \stackrel{\rightharpoonup}{m}}{\partial t}=-\frac{\partial \vec{b}}{\partial t}$
- Faraday’s Law

Phasor Representation

$\frac{\partial}{\partial t} \Rightarrow j \omega$	$\vec{d}(\vec{r}, t)=\operatorname{Re}\left[\vec{D}(\vec{r}) e^{j \omega t}\right]$
$\vec{b}(\vec{r}, t)=\operatorname{Re}\left[\vec{B}(\vec{r}) e^{j \omega t}\right]$	

$\vec{\nabla} \times \overrightarrow{\mathrm{H}}=\vec{J}+j \omega \varepsilon_{0} \vec{E}+j \omega \vec{P}$
$\vec{\nabla} \times \vec{E}=-j \omega \mu_{0} \vec{H} \quad[$ where $\vec{m}=0 \quad$ (no magnetization)]
$\vec{D}=\varepsilon_{0} \stackrel{\rightharpoonup}{E}+\vec{P}$
[constitutive equation]

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{P}=\varepsilon_{0} \chi \stackrel{\rightharpoonup}{E} \\
& \vec{P}(\omega)=\varepsilon_{0} \chi(\omega) \stackrel{\rightharpoonup}{E}(\omega) \quad \stackrel{\rightharpoonup}{F}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
& \vec{D}=\varepsilon_{0} \stackrel{\rightharpoonup}{E}+\stackrel{\rightharpoonup}{P}=\varepsilon_{0}(1+\chi) \stackrel{\rightharpoonup}{E}=\varepsilon_{0} \varepsilon_{r} \stackrel{\rightharpoonup}{E}=\varepsilon_{0} n^{2} \stackrel{\rightharpoonup}{E}=\varepsilon \stackrel{\rightharpoonup}{E} \\
& \quad \varepsilon_{r}=1+\chi=n^{2} \quad \text { (Relative Dielectric Constant) } \\
& \quad \varepsilon \equiv \varepsilon_{0} \varepsilon_{r}
\end{aligned}
$$

(2) Wave Equation

$$
\text { Free Space } \quad \vec{j}=0, \vec{p}=0
$$

$\vec{\nabla} \times(\vec{\nabla} \times \vec{e})=\vec{\nabla} \times\left(-\mu_{0} \frac{\partial \vec{h}}{\partial t}\right)=-\mu_{0} \frac{\partial}{\partial t}(\vec{\nabla} \times \vec{h})=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{e}}{\partial t^{2}}$

$$
\text { using: } \vec{\nabla} \times \stackrel{\rightharpoonup}{\nabla} \times \vec{A}=\vec{\nabla}(\stackrel{\rightharpoonup}{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A} \quad \text { and } \quad \stackrel{\rightharpoonup}{\nabla} \cdot \vec{e}=0
$$

then:
$\nabla^{2} \stackrel{e}{e}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{e}}{\partial t^{2}}=0 \quad$ where $\quad c^{2}=\frac{1}{\mu_{0} \varepsilon_{0}}$
similarly:

$$
\nabla^{2} \stackrel{\rightharpoonup}{h}-\frac{1}{c^{2}} \frac{\partial^{2} \stackrel{\rightharpoonup}{h}}{\partial t^{2}}=0
$$

$$
\nabla^{2} \vec{f}=\frac{\partial^{2} \vec{f}}{\partial x^{2}}+\frac{\partial^{2} \vec{f}}{\partial y^{2}}+\frac{\partial^{2} \vec{f}}{\partial z^{2}}
$$

$$
\vec{\nabla} \times \overrightarrow{\mathrm{H}}=j \omega \varepsilon_{0} \stackrel{\rightharpoonup}{\mathrm{E}} \rightarrow \vec{k}_{0} \times \overrightarrow{\mathrm{H}}=-\omega \varepsilon_{0} \stackrel{\rightharpoonup}{\mathrm{E}}
$$

$$
\left(\overline{\mathrm{E}} \perp \bar{k}_{0} \text { and } \overline{\mathrm{H}}\right)
$$

$$
\stackrel{\rightharpoonup}{\nabla} \times \overrightarrow{\mathrm{E}}=-j \omega \mu_{0} \stackrel{\rightharpoonup}{\mathrm{H}} \rightarrow \vec{k}_{0} \times \stackrel{\rightharpoonup}{\mathrm{E}}=\omega \mu_{0} \stackrel{\rightharpoonup}{\mathrm{H}}
$$

$$
\left|\frac{\stackrel{\rightharpoonup}{\mathrm{E}}}{\overline{\mathrm{H}}}\right|=\frac{\mathrm{E}}{\mathrm{H}}=\frac{\omega \mu_{0}}{k_{0}}=\frac{\omega \mu_{0}}{\omega} c=\frac{\mu_{0}}{\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\eta_{0}=377 \Omega
$$

Wave Impedance in free space
Poynting Vector:

$$
\begin{aligned}
& \vec{S}=\frac{1}{2} \stackrel{\rightharpoonup}{\mathrm{E}} \times \overrightarrow{\mathrm{H}}^{*} \quad\left(\vec{S} \| \vec{k}_{0}\right) \\
& \vec{S}=\frac{1}{2} \stackrel{\rightharpoonup}{\mathrm{E}} \times \overrightarrow{\mathrm{H}}^{*}=\frac{1}{2} \stackrel{\rightharpoonup}{\mathrm{E}} \times \frac{\left(\vec{k}_{0} \times \overrightarrow{\mathrm{E}}^{*}\right)}{\omega \mu_{0}}=\frac{1}{2}|\overrightarrow{\mathrm{E}}|^{2} \frac{\vec{k}_{0}}{\omega \mu_{0}} \\
& \text { using } \overrightarrow{\mathrm{A}} \times(\overrightarrow{\mathrm{B}} \times \vec{C})=\overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{~A}} \cdot \vec{C})-\vec{C}(\overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~B}})
\end{aligned}
$$

(3) Waves in dielectrics

e.g. Laser Medium: Ruby Laser (Active Medium - Chromium (5\%) in a dielectric host of $\mathrm{Al}_{2} \mathrm{O}_{3}$
$\vec{\nabla} \times \vec{h}=\varepsilon_{0} \frac{\partial \vec{e}}{\partial t}+\frac{\partial \vec{p}_{l}}{\partial t}+\frac{\partial \vec{p}_{a}}{\partial t}=\varepsilon_{0} n^{2} \frac{\partial \vec{e}}{\partial t}+\frac{\partial \vec{p}_{a}}{\partial t} \quad n^{2}=\left(1+\chi_{l}\right)$
$\vec{\nabla} \times \vec{e}=-\mu_{0} \frac{\partial \vec{h}}{\partial t}$
$\stackrel{\rightharpoonup}{\nabla} \times \vec{\nabla} \times \vec{e}=-\mu_{0} \frac{\partial}{\partial t}\left(\varepsilon_{0} n^{2} \frac{\partial \vec{e}}{\partial t}+\frac{\partial \vec{p}_{a}}{\partial t}\right)$
using $\quad \stackrel{\rightharpoonup}{\nabla}(\stackrel{\rightharpoonup}{\nabla} \cdot \vec{e})-\nabla^{2} \stackrel{\rightharpoonup}{e} \quad\left(\vec{\nabla} \cdot \vec{d}=\varepsilon_{0} \varepsilon_{r} \vec{\nabla} \cdot \vec{e}=0\right)$
$\Rightarrow \nabla^{2} \stackrel{\rightharpoonup}{e}-\frac{n^{2}}{c^{2}} \frac{\partial^{2} \stackrel{\rightharpoonup}{e}}{\partial t}=\mu_{0} \frac{\partial^{2} \vec{p}_{a}}{\partial t^{2}} \quad$ Source for the Optical Fields
Propagation velocity $\quad v=\frac{c}{n}$
$\vec{k}_{0} \rightarrow \vec{k} \quad k=n \frac{\omega}{c}=\sqrt{\frac{\varepsilon}{\varepsilon_{0}}} \sqrt{\varepsilon_{0} \mu_{0}} \omega=\sqrt{\varepsilon \mu_{0}} \omega=\sqrt{\varepsilon_{r}} \sqrt{\varepsilon_{0} \mu_{0}} \omega$

