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Review	of	EM	Theory
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(1) Maxwell’s	Equations
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Phasor	Representation
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[where              (no magnetization)]
m = 0

[constitutive equation]
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(2)	Wave	Equation
Free	Space j
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e.g.	Laser	Medium:	Ruby	Laser		(Active	Medium	– Chromium	(5%)	in	a	dielectric	host
of	

2 3Al O
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(3)	Waves	in	dielectrics
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