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Laser	Oscillation:	a	different	viewpoint

Before stimulated emission becomes important, we must obtain the initial photon from 
the “noise”.

The laser oscillation builds up from the spontaneous emission “noise” emitted from the 
upper state until the coherent photon flux saturates the gain.

(1)                - rate of generation of spontaneous photons into all frequencies.  Modes are separated 
by:

(2) - fraction of emission that appears in the interval

(3)  only the generated has a high Q, but there are                            - modes in the volume
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If              ,        still increases but the output (caused by spontaneous emission) is 
extremely small:

Photons in the cavity mode bounce back and forth between the 2 mirrors, being amplified 
by G per pass, with some of them escaping by mirror transmission.

If     - is starting # of photons, then returns after a round trip taking seconds.
(i.e.
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Then, saturation becomes important and eventually 1st term becomes 
negative (but small) and exactly balances the positive 2nd term so that we 
have a steady-state laser.
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In the steady-state:
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The fact that the gain does saturate at a value slightly less than 
the loss, implies that the laser will have a finite, nonzero, 
spectral width caused by the “noise” contributed by the 
spontaneous emission.  (minimum laser linewidth, as follows…)
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at           ,         has a peak (same as    in (3) has a peak at              )

Minimum	Laser	Linewidth
For Fabry-Perot cavity (see 6.3.3 in the text):
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Using (4),(5),(6) 
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(see (4), (*) and (**))

- in cavity with gain!
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use: 
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Even for             (which is normally the case)          is very small. (minimum laser linewidth) 
oscvD1 0N =

In practice, perturbations in the mirror separation completely overwhelm the 
foregoing limit.

A “ -function” for the spectral representation of the laser is an excellent 
approximation.
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