Q - Switched Lasers

Capable of generating 10's of MW peak power in 10 ns pulses
Principle of operation

1) Active medium is pumped while lasing is suppressed, Gain becomes very large.
2) Optical switch is opened, allowing optical power to build up from spontaneous emission.

FIGURE 9.11. Guess at the sequence of events during a Q switch.

For net single-pass gain 5 [i.e. $\left(R_{1} R_{2}\right)^{\frac{1}{2}} e^{\gamma_{0} \ell}=5$], in 5 round trips, the photon flux would be amplified by $5^{10} \sim 10^{7} \Rightarrow$ fast depleting of n_{i} after $t=0$
$n \equiv\left(N_{1}-N_{2}\right) A \ell_{g}$ - the total \# of inverted atoms in the cavity interacting with an optical mode of crosssectional area A

For a round trip, the number of photons, N_{p}, increased by $\mathrm{e}^{2\left(N_{2}-N_{1}\right) \sigma \theta_{8}}$ and decreased by $R_{1} R_{2} e^{-2 \alpha d}$ (loss) \Rightarrow

$$
\frac{d N_{p}}{d t}=\left\{\frac{\left(R_{1} R_{2} e^{-2 \alpha \ell}\right) \mathrm{e}^{2\left(N_{2}-N_{1}\right) \sigma \ell_{8}}-1}{\tau_{R T}}\right\} N_{p}
$$

$$
\begin{aligned}
& {\left[N_{2}(t)-N_{1}(t)\right] \sigma \ell_{g} \square g(t)} \\
& \text { - the line integrated gain } \\
& e^{-2 g_{\text {th }}} \square R_{1} R_{2} e^{-2 \alpha d}
\end{aligned}
$$

- the threshold value of g

$$
\underbrace{\tau_{p}}=\frac{\tau_{R T}}{1-R_{1} R_{2} e^{-2 \alpha d}}=\frac{\tau_{R T}}{1-e^{-2 g_{B /}}}=\frac{\tau_{R T}}{1-\underbrace{S}}
$$

photon lifetime fraction of photons
for a passive
surviving in a

$$
\begin{array}{lll}
\frac{d N_{p}}{d t}=\frac{\mathrm{e}^{2\left[g(t)-g_{t h}\right]}-1}{1-e^{-2 g_{t h}} \frac{N_{p}}{\tau_{p}}} \begin{array}{c}
\text { Taylor series: } \\
\mathrm{e}^{\mathrm{x}} \square 1+x+\ldots
\end{array} & \text { cavity } & \text { round-trip } \\
\frac{d N_{p}}{d t}=\left[\frac{1+2\left[g(t)-g_{t h}\right]-1}{1-\left(1-2 g_{t h}\right)}\right] \frac{N_{p}}{\tau_{p}}=\frac{N_{p}}{\tau_{p}}\left\{\frac{g(t)}{g_{t h}}-1\right\} & \\
& \tau_{p}=\frac{\tau_{R T}}{1-e^{-2 g_{t h}}} \square \frac{\tau_{R T}}{2 g_{t h}}(*) & g=\left(N_{2}-N_{1}\right) \sigma \ell_{g}
\end{array} \quad n=\left(N_{2}-N_{1}\right) A \ell_{g} . l y
$$

$$
\frac{d N_{p}}{d t}=\frac{N_{p}}{\tau_{p}}\left(\frac{n}{n_{t h}}-1\right)
$$

- same as obtained previously

Timescale for the build up and decay of photons \sim a few $\tau_{p}\left(\square \tau_{2}\right.$ or pump time $)$

$$
\begin{aligned}
& \frac{d N_{2}}{d t}=-\frac{\sigma\left(I^{+}+I^{-}\right)}{h v}\left(N_{2}-N_{1}\right) \\
& \frac{d N_{1}}{d t}=+\frac{\sigma\left(I^{+}+I^{-}\right)}{h v}\left(N_{2}-N_{1}\right)
\end{aligned}
$$

$$
\text { subtract and } \times A \ell_{g}
$$

$$
\frac{d n}{d t}=-2\left[\left(N_{2}-N_{1}\right) \sigma \ell_{g}\right] \frac{\left(I^{+}+I^{-}\right) A}{h v} \times \frac{\tau_{R T}}{2} \times \frac{2}{\tau_{R T}}
$$

$$
N_{p}=\frac{\left(I^{+}+I^{-}\right) A}{h v} \times \frac{\tau_{R T}}{2} \quad I=\frac{I^{+}+I^{-}}{2}
$$

$$
g(t)=\left(N_{2}-N_{1}\right) \sigma_{e q}
$$

$$
\frac{d n}{d t}=4 g(t) \frac{N_{p}}{\tau_{R T}}
$$

$$
\frac{g(t)}{g_{t h}}=\frac{n}{n_{t h}}
$$

$$
\begin{gathered}
g=\left(N_{2}-N_{1}\right) \sigma \ell_{g} \\
\tau_{R T} \approx \tau_{p}\left(2 g_{t h}\right)-\operatorname{see}(*)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d n}{d t}=-2 \frac{n}{n_{t h}} \frac{N_{p}}{\tau_{p}} \\
& \frac{d N_{p}}{d t}=\frac{N_{p}}{\tau_{p}}\left(\frac{n}{n_{t h}}-1\right)
\end{aligned}
$$

if the photons increase by 1 , then the inversion must decrease by 2

- same as we had except: no external pump (r), no relaxation $\left(\tau_{2}\right)$, and the factor of 2 (assumed that $N_{2} \square N_{1}$)

$$
\begin{aligned}
& T=\frac{t}{\tau_{p}} \quad-\text { new variable } \quad[T=\tau \text { in } \\
& \frac{d N_{p}}{d T}=N_{p}\left(\frac{n}{n_{t h}}-1\right) \quad \frac{d n}{d T}=-2 \frac{n}{n_{t h}} N_{p} \\
& \Rightarrow \frac{d N_{p}}{d n}=\frac{1}{2}\left(\frac{n_{t h}}{n}-1\right) \\
& \Rightarrow \int_{N_{p, i}}^{N_{p}} d N_{p}=\frac{1}{2} \int_{n_{i}}^{n}\left(\frac{n_{t h}}{n}-1\right) d n \\
& N_{p}-N_{p, i}=\frac{1}{2} n_{t h} \ln \left(\frac{n}{n_{i}}\right)-\left(n-n_{i}\right)
\end{aligned}
$$

long before the pulse, $N_{p, i}=0$

$$
N_{p}=\frac{1}{2}\left[n_{t h} \ln \left(\frac{n}{n_{i}}\right)-\left(n-n_{i}\right)\right]
$$

How much of the population inversion (stored energy) is in the medium?

For $t ?$ pulse duration, $N_{p}=0 \quad n=n_{f}$

$$
\begin{aligned}
& 0=\frac{1}{2}\left[n_{t h} \ln \left(\frac{n_{f}}{n_{i}}\right)-\left(n_{f}-n_{i}\right)\right] \\
& \frac{n_{f}}{n_{i}}=\exp \left[-\frac{n_{i}-n_{f}}{n_{t h}}\right] \quad \text {-transcendental equation }
\end{aligned}
$$

extraction efficiency $\frac{n_{i}-n_{f}}{n_{i}} \rightarrow 1$ when $\frac{n_{i}}{n_{t h}}$ increases

FIGURE 9.13. The energy extraction efficiency for a Q switched pulse.

$$
\begin{aligned}
& N_{p}=\frac{1}{2}\left[n_{t h} \ln \left(\frac{n}{n_{i}}\right)-\left(n-n_{i}\right)\right] \\
& P_{\text {out }}=\frac{N_{p} h v}{\tau_{p}}=\frac{h v}{2 \tau_{p}}\left[n_{t h} \ln \left(\frac{n}{n_{i}}\right)-\left(n-n_{i}\right)\right]
\end{aligned}
$$

To find the peak power, we would usually let $\frac{\partial P}{\partial t}=0$ But since n is a monotonic function of time, we can set, instead, $\frac{\partial P}{\partial n}=0$

$$
\begin{aligned}
\frac{\partial P_{\text {out }}}{\partial n} & =\frac{h v}{2 \tau_{p}}\left[-1+\frac{n_{\text {th }}}{n}\right]=0 \\
& \Rightarrow n=n_{t h}
\end{aligned}
$$

- see Fig on slide 1

(makes sense, since gain = losses when $n=n_{t h}$, so power neither increases nor decreases.)

$$
P_{\max }=\frac{h v}{2 \tau_{p}}\left[\left(n_{i}-n_{t h}\right)-n_{t h} \ln \left(\frac{n_{i}}{n_{t h}}\right)\right]
$$

for $n_{i} \square n_{t h}$
$n_{i} / 2=$ max \# of photons

$$
P_{\max }=\frac{n_{i} h v}{2 \tau_{p}}
$$

Build up time $\square \tau_{p}$, so most of the photons are still present)
Rise time can be extremely short
Fall time $\sim \tau_{p}$

$$
\begin{aligned}
& n_{i}=\left(N_{2 i}-N_{1 i}\right) A \ell_{g} \quad n_{f}=\left(N_{2 f}-N_{1 f}\right) A \ell_{g} \\
& \operatorname{but}\left(N_{2 i}-N_{2 f}\right) A \ell_{g}=N_{p}=\left(N_{1 f}-N_{1 i}\right) A \ell_{g} \\
& \Rightarrow n_{i}-n_{f}=\left\{\left(N_{2 i}-N_{1 f}\right)-\left(N_{2 f}-N_{1 f}\right)\right\} A \ell_{g}=2 N_{p} \\
& N_{p}=\frac{n_{i}-n_{f}}{2}
\end{aligned}
$$

Total energy in pulse $=\frac{n_{i}-n_{f}}{2} h v=W$

$$
\Delta t \square \frac{W}{P_{\max }}
$$

Methods for Q - Switching

1) Rotating Mirror $-Q$ is high when mirrors are alligned
2) Saturable absorber - in a cavity, Q is high after the absorber bleaches
3) Electro-optic Q-switch

Q is low when voltage is applied
