Computational Imaging from Nanoscopic to Astronomical Scales

Oliver Cossairt

Assistant Professor EECS Department Northwestern University

A Centuries Old Design

Camera Obscura

http://www.camerapixela.net

Digital Camera

Jean François WITZ

Both cameras produce perspective images

Traditional vs. Computational Imaging

A Generalized Camera Model

A Generalized Camera Model

Incoherent Imaging (e.g. sun, incandescent, LEDs)

 $y \in \mathbb{R}^M_+$

 $x \in \mathbb{R}^N_+$

 $A \in \mathbb{R}^{M \times N}_+$

Coded Coding Matrix Noise $y = A \cdot x + n$

Optical Coding Equation

A Generalized Camera Model

Coherent Imaging (e.g. LASER illumination)

 $\sum_{\text{Image}}^{\text{Coded}} \sum_{\text{Matrix}}^{\text{Coding}} \text{Noise}$ $y = |A \cdot x|^2 + n$

Optical Coding Equation

 $y \in \mathbb{R}^{M}_{+}$

 $x \in \mathbb{C}^N$

 $A \in \mathbb{C}^{M \times N}$

Decoding and Image Priors

Assume we have a PDF for images, e.g.

$$P(x) = \exp\left(\left\|B \cdot x\right\|^{\alpha}\right)$$

Other priors •Total Variation (TV) •Wavelet/sparsity prior •Learned priors (K-SVD,DNN)

Compute the Maximum A Posteriori (MAP) estimate

$$x^{*} = \underset{\mathcal{X}}{\operatorname{argmax}} \left(\left\| \underbrace{y - H \cdot x}_{\text{Data term}} \right\|^{2} + \left\| \underbrace{B \cdot x}_{\text{Prior term}} \right\|^{\alpha} \right)$$

Previous Work: CI Performance

Long Exposure

Previous Work: CI Performance

When does computational imaging improve performance?

What are the limits of CI Performance?

Stopped Down Camera: F/11, Focal Sweep: F/1 q=.5, R=.5, t=6ms, p=1um, $\sigma_r=4e^-$

[Mitra et al., PAMI '13]

In this Talk: CI Across Scale

Research Timeline

Talk Outline

Talk Outline

Goal: Long Distance Imaging

Diffraction Limits Resolution

- Light diffracts at the edge of the aperture instead of focusing to a point
- Diffraction is represented by an Airy disk, radius (m)

: wavelength of light (m): distance to object (mm): aperture diameter (mm)

Diffraction Blur For Different Cameras

Diffraction Blur For Different Cameras

Cost Of Using Larger Lenses

Remote Fourier Ptychography Imaging

Image Formation Model

¹Goodman, Joseph W. Introduction to Fourier optics. 2005.

Image Formation Model

Image Formation Model

- Lens forms the Fourier transform at the sensor plane
 \$\mathcal{F}\${A(\hat{\psi}(x',y'))}\$
- Sensor captures the squared magnitude

 $I(x', y') \propto \left| \mathcal{F} \{ A(\hat{\psi}(x', y')) \} \right|^2$

Improving Resolution With FP

- Individual images are low resolution, combine multiple bandpass regions to improve resolution
- Move aperture in the Fourier domain to synthetically increase aperture size

Sampling the Fourier domain

Gerchberg-Saxton Phase Retrieval

- high-resolution Fourier field at the aperture plane
- bandpass operator
- complex field at the camera sensor
- measured image
- index of aperture positions

Goal: Recover

Gerchberg-Saxton Phase Retrieval

Effect Of Overlap On Reconstruction

¹Bodmann, Bernhard G., and Nathaniel Hammen. "Stable phase retrieval with low-redundancy frames." *Advances in computational mathematics* 41.2 (2015): 317-331.

Effect Of Overlap On Reconstruction

Experimental Setup For Macroscopic FP

- Camera: Blackfly Camera from Point Grey, 2.2 μ m pixels
- Fujinon Lens: 75 mm focal length, 2.3 mm aperture (f/32)
- Laser: Helium Neon laser from Thorlabs, $\lambda = 633$ nm
- Diffraction: Spot size on sensor = $49 \,\mu\text{m} \sim 20$ pixels

Experimental Setup For Macroscopic FP

Not to scale

USAF Target

Reflection Mode Imaging Geometry

Rough Surfaces and Random Phase

Rough Surfaces and Random Phase

Captured Images for a Diffuse Object

			ૻૼ૾૽ૼ૾	

Experimental Setup

Experimental Setup

Diffuse USAF Resolution Target

Example captured image

Diffuse USAF Resolution Target

SAVI reconstruction

Resolution Improvement with SAVI

Future Work

- Capturing long distance FP data in a snapshot
- Camera array to simultaneously acquire images
- Multiplexed lasers to fill in gaps in Fourier domain

Talk Outline

Different Methods for 3D capture

- Passive stereo, DFF/DFD
- Active Scanning, Structured Light (SL), ToF

Tradeoffs in SL

Optimal SL System

Motion Contrast Principle

- Traditional photo sensor continually outputs values
- Motion contrast sensor measures temporal changes

Motion Contrast Capture

- Same bandwidth for Video and motion contrast
- Video frames are dense, temporal resolution is low
- Motion contrast stream is sparse in space and time

MC3D Principle

MC3D Advantage: Bandwidth

Requires only one measurement per pixel

Results: Ambient Illumination

Second Generation MC3D works with 50,000lux

Live Outdoor 3D Scanning

Live Outdoor 3D Scanning

Kinect2

MC3D (Zoom Lens)

IR Image

MC3D works with 80,000 lux at 4m stand-off distance

Talk Outline

X-ray Ptychography at ANL

X-ray Ptychography at ANL

nology. um. (b) scaling g 22nm

X-Ray Ptychography

RAVEN / PRISMA Goals:

- Non-invasive IC chip imaging.
- 10nm resolution over 1cm x 1cm FoV.
- 3D reconstruction of 10-15 layers.
- Capture + Reconstruction within 25 days.

GDSII Design File

Big Picture

Connection 1: Coding

Connections I: Coding

Connections 2: Super-resolution

Connections 2: Super-resolution

Connections 3: Self-calibration

Connections 3: Self-calibration

Uncalibrated X-Ray Tomography Unknown Projection Angles:

Calibrated Projection Angles

Cultural Heritage Imaging

Uncalibrated Photometric Stereo:

Gauguin Surface Measurement:

3D Surface Reconstruction

Drawing Reconstruction

Connections 4: Scattering

Connections 4: Scattering

All Photon Imaging ToF Imaging through Fog/Rain:

Model 3D STPSF Response:

Summary

Advantages of Computational Imaging

- Reduce hardware complexity
- Photon efficient imaging
- Introduce new functionality

Many common problems across large range of physical scales

SAVI

MC3D

X-ray CD

Aknowledgements

<u>Northwestern</u>

- Nathan Matsuda
- Manoj Sharma
- Marina Alterman
- Kuan He
- Leonidas Spinoulas
- Winston Wang
- Chia-Kai Yeh
- Andrew Yoo
- Pablo Ruiz
- Marc Walton
- Aggelos Katsaggelos
- Jack Tumblin

Rice University

- Jason Holloway
- Ashok Veeraraghavan
- Adithya Pediredla
- Sudarshan Nagesh
- Salman Asif
- Yicheng Wu

Art Institute of Chicago

- Harriet Stratis
- Mary Broadway
- Francesca Casadio

<u>Argonne</u>

- Xiang Huang
- Mark Herald
- Nicola Ferrier
- Doga Gursoy
- Youssef Nashed

<u>U of Chicago</u>

- Norbert Sherer
- Matt Daddysman
- Itay Gdor

UW Madison

Mohit Gupta

