
Computational Imaging from 
Nanoscopic to Astronomical Scales

Oliver Cossairt
Assistant Professor 
EECS Department
Northwestern University



Nanoscopy Microscopy Photography Remote Sensing Astronomy

Physical
Scale



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

A Centuries Old Design

http://www.camerapixela.net

Camera Obscura Digital Camera

Jean François WITZ
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A Generalized Camera Model
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A Generalized Camera Model
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A Generalized Camera Model
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Assume we have a PDF for images, e.g.

Decoding and Image Priors

Compute the Maximum A Posteriori (MAP) estimate

Data term Prior term

Other priors
•Total Variation (TV)
•Wavelet/sparsity prior
•Learned priors (K-
SVD,DNN)

Power Spectra Prior
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Previous Work: CI Performance
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Previous Work: CI Performance

Camera
Exposure

Time50 millisec

Coded Exposure

Time50 millisec

Short Exposure

Vs.

Deblurred Image

When does computational imaging improve performance?

Camera
Exposure

[Raskar ’06]



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

What are the limits of CI Performance?

[Mitra et al., PAMI ‘13]
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Gain due to 
prior alone

q=.5, R = .5, t=6ms, p = 1um,Stopped Down Camera: F/11, Focal Sweep: F/1
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In this Talk: CI Across Scale
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Talk Outline

Microscopy
10-6m - 10-3m

Astronomy
104m - ∞

Re
se

ar
ch

 Ti
m

el
in

e

VR Displays

CS Video

API

Nano-
tomography

Seeing
Around Corners

Coded Aperture
Astronomy

Cultural
Heritage

Lens-less
microscopy

Snapshot
3D Imaging

Transmission
Matrix



Nanoscopy
10-9m - 10-6m

Photography
10-3m - 10m

Remote Sensing
10m - 104m

Physical
Scale

MC3D

SAVI

X-ray CDI



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

Talk Outline
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SAVI

Synthetic Aperture 
Visible Imaging (SAVI)

“SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using 
Fourier ptychography”, Holloway et al. SCIENCE ADVANCES, 14 APR 2017.

"Toward Long Distance, Sub-diffraction Imaging Using Coherent Camera Arrays", Holloway 
et al. IEEE Transactions on Computational Imaging, 2016.

“PtychNet: CNN-based Fourier Ptychography”, Kappeller et al. IEEE Conference on Image 
Processing (ICIP) 2017.
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Goal: Long Distance Imaging

Observed 
blurry image

1 km

Diffraction blur
(40 mm)

Aperture
(12.5 mm)
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Diffraction Limits Resolution
Light diffracts at the edge of the 
aperture instead of focusing to a 
point

Diffraction is represented by an Airy 
disk, radius  (m)

: wavelength of light (m)
: distance to object (mm)
: aperture diameter (mm)

Simulated Airy pattern

𝟐𝟐𝟐𝟐
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Diffraction Blur For Different Cameras
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Diffraction Blur For Different Cameras
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Cost Of Using Larger Lenses
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Remote Fourier Ptychography Imaging

1 km

Diffraction blur
(5 mm)

Aperture
(125 mm)

Individual observed 
images

Reconstruction

Magnitude Phase

Active Coherent
Illumination



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

Image Formation Model

Coherent 
illumination

source Object
plane

Fourier transform

Far-field
(Fraunhofer diffraction1)

𝑢𝑢(𝑥𝑥,𝑦𝑦)
𝑡𝑡(𝑥𝑥,𝑦𝑦) �𝜓𝜓(𝑥𝑥′,𝑦𝑦′)

𝜓𝜓(𝑥𝑥, 𝑦𝑦)

1Goodman, Joseph W. Introduction to Fourier optics. 2005.
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Image Formation Model

Object
plane

Fourier transform

Far-field

𝜓𝜓(𝑥𝑥, 𝑦𝑦)

𝐴𝐴 𝐴𝐴 �𝜓𝜓(𝑥𝑥′,𝑦𝑦′)

Fourier transform

Sensor

ℱ 𝐴𝐴 �𝜓𝜓(𝑥𝑥′,𝑦𝑦′)

Aperture

�𝜓𝜓(𝑥𝑥′,𝑦𝑦′)
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Image Formation Model

Lens forms the Fourier transform at the sensor plane

ℱ 𝐴𝐴 �𝜓𝜓(𝑥𝑥′,𝑦𝑦′)

Sensor captures the squared magnitude

𝐼𝐼 𝑥𝑥′,𝑦𝑦′ ∝ ℱ 𝐴𝐴 �𝜓𝜓(𝑥𝑥′,𝑦𝑦′)
2
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Improving Resolution With FP

Individual images are low resolution, 
combine multiple bandpass regions 
to improve resolution

Move aperture in the Fourier domain 
to synthetically increase aperture size

3 ×

1
×
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Sampling the Fourier domain

⋯

⋯
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Gerchberg-Saxton Phase Retrieval

– high-resolution Fourier field at the aperture plane
– bandpass operator
– complex field at the camera sensor
– measured image
– index of aperture positions

Goal: Recover 
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Gerchberg-Saxton Phase Retrieval

Capture images

𝐼𝐼𝑖𝑖 = 𝜙𝜙𝑖𝑖 2
Compute complex-field at 

camera planes

Convert to 
spatial domain

𝜙𝜙𝑖𝑖𝑚𝑚+1 = ℱ 𝐴𝐴𝑖𝑖 �𝜓𝜓𝑚𝑚+1

Enforce spatial 
domain magnitudes

𝜙𝜙𝑖𝑖𝑚𝑚 = 𝐼𝐼𝑖𝑖∠𝜙𝜙𝑖𝑖𝑚𝑚

Update Fourier estimate and enforce aperture constraint

Convert to 
Fourier domain

�𝜓𝜓𝑚𝑚+1 ← min
�𝜓𝜓
�
𝑖𝑖

𝜙𝜙𝑖𝑖𝑚𝑚 − ℱ 𝐴𝐴𝑖𝑖 �𝜓𝜓𝑚𝑚
2 + 𝜏𝜏 �𝜓𝜓𝑚𝑚

2

Iterate for 𝑚𝑚 =
1, … ,𝑀𝑀 iterations or 
until convergence
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Effect Of Overlap On Reconstruction

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80

R
M

SE

1Bodmann, Bernhard G., and Nathaniel Hammen. "Stable phase retrieval with low-
redundancy frames." Advances in computational mathematics 41.2 (2015): 317-331.

∼ 4𝑁𝑁
measurements, 

necessary for phase 
retrieval algorithms 

to converge1

Overlap (%)
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Effect Of Overlap On Reconstruction

0% 41% 50% 75%
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Experimental Setup For Macroscopic FP

Camera: Blackfly Camera from Point Grey, 2.2 𝜇𝜇m pixels
Fujinon Lens: 75 mm focal length, 2.3 mm aperture (𝑓𝑓/32)
Laser: Helium Neon laser from Thorlabs, 𝜆𝜆 = 633 nm
Diffraction: Spot size on sensor = 49 𝜇𝜇m ∼ 20 pixels

HeNe Laser

Aperture 
plane

Image 
sensorBeam 

spreader
Focusing
lens ℱ{x} ℱ−1{x}

BFLY-PGE-50A2M-CSNot to scale

HF75SA-1
HNL210L



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

Experimental Setup For Macroscopic FP

HeNe Laser

Aperture 
plane

Image 
sensor

ℱ{x} ℱ−1{x}

Beam 
spreader

Focusing
lens

1.5 m

Not to scale
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USAF Target

Overlap: 72% Resolution Gain: 1 × −7.12 ×

Observed Image
𝑓𝑓/32

Recovered Image 
𝑓𝑓/4.4

SAS

1.00

2.53 lp/mm
2x gain

5.04 lp/mm
4x gain

8.98 lp/mm
7.12x gain

2.12

4.36

5.48

7.16
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Reflection Mode Imaging Geometry

Laser

Spatial filter

Focusing 
lens

Object

Camera lens

Recorded 
image
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Rough Surfaces and Random Phase

Amplitude Phase
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Rough Surfaces and Random Phase
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Captured Images for a Diffuse Object
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Experimental Setup

Camera

LaserSpatial 
FilterFocusing 

lens

Polarizer
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Experimental Setup



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

Diffuse USAF Resolution 
Target

Example captured image
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Diffuse USAF Resolution 
Target

SAVI reconstruction
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Resolution Improvement with SAVI

(0,3) 
1.26 lp/mm

Multi-image 
averaging

SAVI with 
denoising

(Group, Element) 

Observed 
image

(0,6) 
1.78 lp/mm

(1,6) 
3.56 lp/mm

(2,6) 
7.13 lp/mm



Computational Imaging from Nanoscopic to Astronomical Scales
Oliver Cossairt, Northwestern University

Diffuse Everyday Objects –
Mystery Object #1

2 mm
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2 mm

Diffuse Everyday Objects –
Mystery Object #1
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Diffuse Everyday Objects –
Mystery Object #2

1 mm
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1 mm

Diffuse Everyday Objects –
Mystery Object #2
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Future Work

Capturing long distance 
FP data in a snapshot

Camera array to 
simultaneously acquire 
images

Multiplexed lasers to fill 
in gaps in Fourier 
domain
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Talk Outline
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Motion Contrast 3D 
Scanning (MC3D)

“MC3D: Motion Contrast 3D Scanning”, Matsuda et al., IEEE 
Conference on Computational Photography (ICCP), 2016.

“Fluorescence lifetime estimation using a dynamic vision 
sensor.” I et al., Proc. SPIE, Computational Imaging II, 2017.
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Different Methods for 3D capture

Passive – stereo, DFF/DFD
Active – Scanning, Structured Light (SL), ToF
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Tradeoffs in SL
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Optimal SL System
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Motion Contrast Principle

Traditional

Intensity 

Light Source

Digital Output

Traditional photo sensor continually outputs values
Motion contrast sensor measures temporal changes 

Motion Contrast

Light Source

Digital OutputIntensity 
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Motion Contrast Capture
Same bandwidth for Video and motion contrast 
Video frames are dense, temporal resolution is low
Motion contrast stream is sparse in space and time
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MC3D Principle

Projector

i

j

t

i
j

Motion 
Contrast 
Camera

Laser
Projector

Output 
( i, t ):

Disparity

i-j

Camera
t

i

3D Model
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y

x

t

y

x

t

Depth information

Traditional Laser Scan

MC3D

Depth information

Wasted bandwidth
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Results: Ambient Illumination

Second Generation MC3D works with 50,000lux
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Live Outdoor 3D Scanning

Solar
Illumination
(80 kLux)
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Live Outdoor 3D Scanning

MC3D works with 80,000 lux at 4m stand-off distance

Kinect2 MC3D (Zoom Lens) IR Image
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X-Ray Coherent 
Diffraction Imaging



"High Dynamic Range Coherent Imaging Using Compressed Sensing”, He et al., Optics 
Express, November 2015.

"A Compressed Sensing Approach to Solving the Dynamic Range Problem in Fourier 
Transform Holography”, He et al., Imaging and Applied Optics 2015, OSA Technical Digest 
(online) (Optical Society of America, 2015), paper CW2F.3.

“Nanoscale x-ray imaging of circuit features without wafer etching”, Deng et al. PHYSICAL 
REVIEW B 95, 104111 (2017).
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X-ray Ptychography at ANL

Advanced Photon 
Source (APS)
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X-ray Ptychography at ANL

Advanced Photon 
Source (APS)

Ptychographic reconstruction of a CMOS IC fabricated in 65 nm technology.
(a) the phase retrieved for the IC with a wafer thickness of 300 μm. (b)
Performance plot for the synchronous and asynchronous algorithms, scaling
up to 192 GPUs; (c) Line profile plot along the red line in (a) showing 22nm
resolution.

Advanced Photon 
Source (APS)
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IARPA RAVEN / PRISMA

Advanced Photon 
Source (APS)

Advanced Photon 
Source (APS)

X-Ray Ptychography GDSII Design File

RAVEN / PRISMA Goals:
• Non-invasive IC chip imaging.
• 10nm resolution over 1cm x 1cm FoV.
• 3D reconstruction of 10-15 layers.
• Capture + Reconstruction within 25 days.
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Big Picture
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Microscopy
10-6m - 10-3m

Connection 1: Coding
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Connections I: Coding
Coded Aperture AstronomyCompressed Sensing Video

Measurement Model:

CS Video Camera:

Snapshot Video Reconstructions:

Slats (opaque to 
gamma rays)

Spherical X-Ray 
Detector

Gamma 
Burst
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Connections 2: Super-resolution
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Synthetic Aperture Visible Imaging

Connections 2: Super-resolution

Snapshot 3D Microscopy
Small Worlds DOE Project :

Snapshot 3D Reconstructions:

X-ray tomography 3D-Optical Microscopy STEM tomography

MultiFocal Microscopy (MFM):
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Connections 3: Self-calibration
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Cultural Heritage Imaging

Uncalibrated Photometric Stereo:

Gauguin Surface Measurement:

Re
co

ns
tru

ct
io

n
O

rig
in

a
l

3D Surface Reconstruction Drawing Reconstruction

Connections 3: Self-calibration
Uncalibrated X-Ray Tomography

Unknown Projection Angles:

Calibrated Projection Angles
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Connections 4: Scattering
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Transmission Matrix Descattering
Experimental TM Measurement :

Connections 4: Scattering

From Laser

Random 
Illumination L D

MO

Captured 
Image

SLM

Phase + Retreival Descattering:

Results: Ground Truth Captured Reconstruction

All Photon Imaging
ToF Imaging through Fog/Rain:

Model 3D STPSF Response:
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Summary
Advantages of Computational Imaging

Reduce hardware complexity
Photon efficient imaging 
Introduce new functionality



Nanoscopy
10-9m - 10-6m

Microscopy
10-6m - 10-3m

Photography
10-3m - 10m

Remote Sensing
10m - 104m

Astronomy
104m - ∞

Physical
Scale

Many common problems across large range of physical scales

MC3D

SAVI

X-ray CDI
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