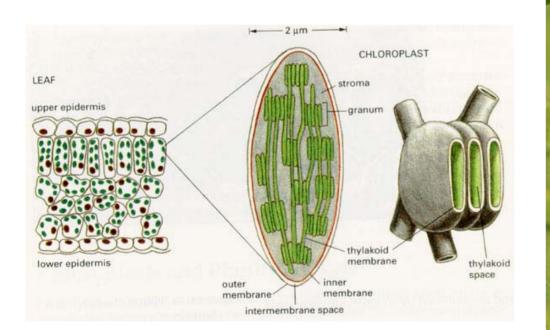
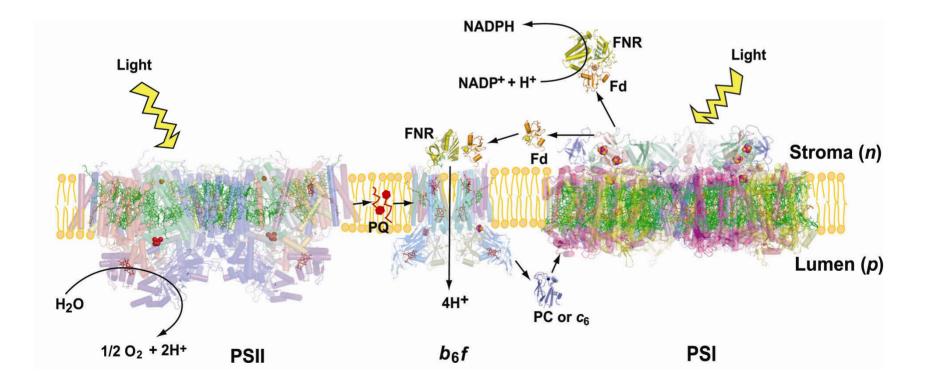

Charge Transfer Across an Energy Transducing Membrane Protein Complex

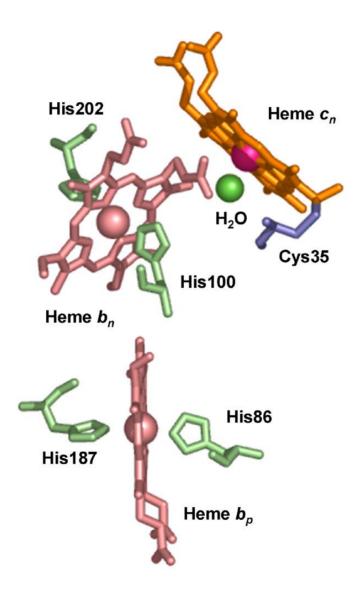

Energy stored in biological membranes in ion (e.g., H+) gradients & membrane potential formed by light or redox-driven ion pumps

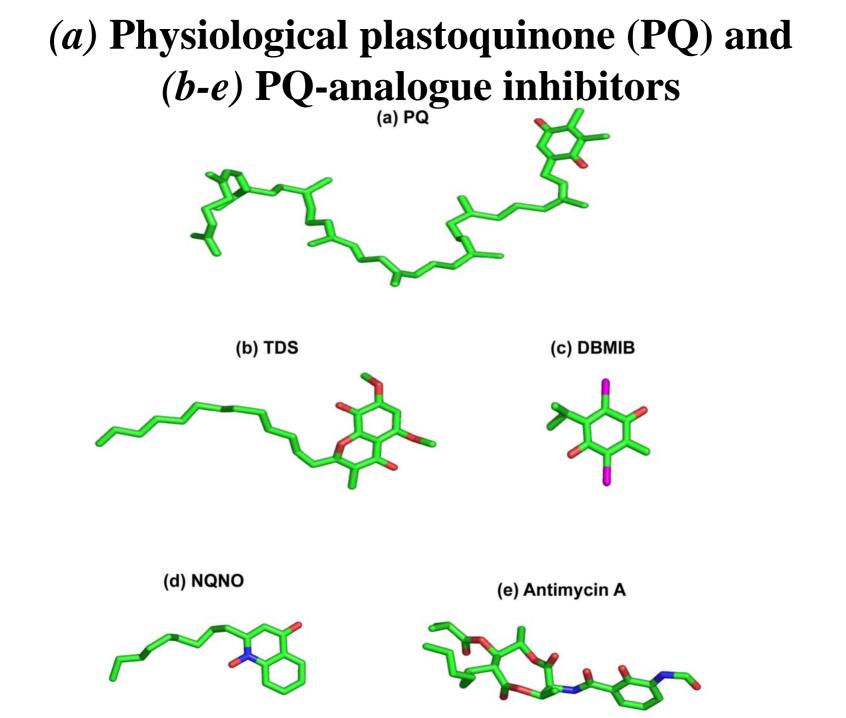
Membrane specific capacitance \cong 1 μ F/cm²


How does this capacitor work in detail, i. e., with respect to biological and biochemical detail?

Two sources of oxygenic photosynthetic membranes: (left) the chloroplast thylakoid membrane; (right) cells of the filamentous thermophilic cyanobacterium, *M. laminosus*

The Electron Transport Chain of Oxygenic Photosynthesis: Electron Transfer from H₂O to NADP⁺

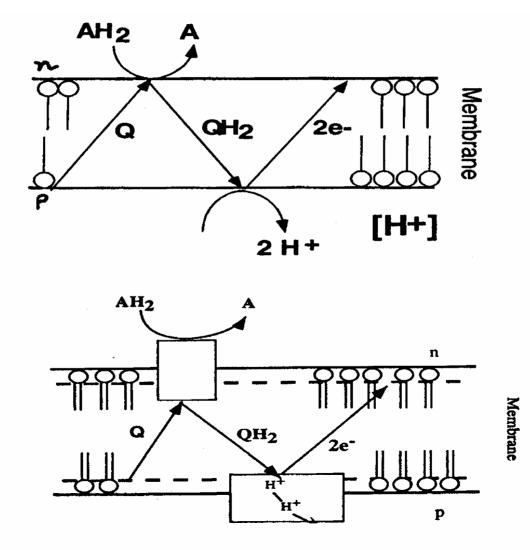



Glossary & Notation

- *p, n*: electrochemically positive and negative sides of the membrane
- Electron transfer groups: hemes; ISP, ironsulfur protein; FNR, ferredoxin:NADP⁺ reductase
- Electron and proton transfer group, quinone (e.g., plastoquinone).
- Quinone analogue inhibitors:

 (i) TDS, tridecyl-stigmatellin
 (ii) NQNO, 2-n-nonyl-4 hydroxyquinoline N-oxide
 (iii) DBMIB: 2, 5-dibromo-3-methyl 6-isopropyl-benzoquinone

Hemes in the cytochrome $b_6 f$ complex

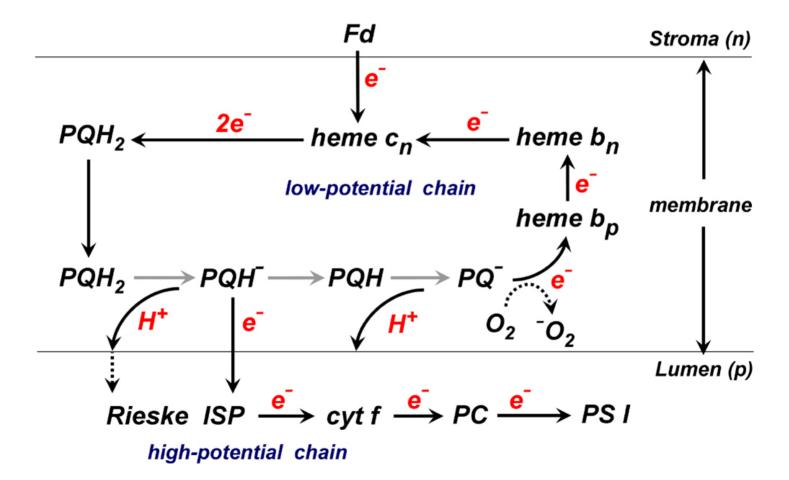


The Cytochrome *b*₆*f* Complex: Topics and Questions

- Major Question: How does the *bf* complex function in energy transduction; quinone-dependent electron and proton transfer?
- **1. Problems in crystallization; lipid requirement.**
- 2. Properties of hetero-oligomeric integral membrane protein complex.
- 3. Quinone exchange cavity.
- 4. Novel prosthetic groups: chlorophyll *a* and β -carotene (in a "dark"complex), and a unique heme, *c*_n.
- 5. Binding sites of *p* and *n*-side quinone (Q) analogue inhibitors; heme *c*_n inferred to be PQ-binding site.
- 6. Labyrinthine quinone transfer pathway: exchange cavity, *p*-and *n*-side binding sites.

Quinone (Q) trans-membrane H⁺ carrier (P. Mitchell, 1965; Nobel Laureate, 1978); (bottom) with membrane proteins (in boxes). Thus, electrons, protons, and quinones cross the membrane.

e⁻-H⁺ transfer function of $b_6 f$ complex: PQH₂ oxidized on *p*-side, and reduced on *n*-side.


<u>p-side quinol oxidation</u>: $PQH_2 + FeS(ox) \rightarrow PQ - + FeS(red) + 2H^+$ $PQ^{-} + b_p(ox) \rightarrow PQ + b_p(red)$

<u>Trans-membrane electron transfer</u>: heme b_p (red) + heme b_n (ox) $\rightarrow b_p$ (ox) + b_n (red)

n-side quinone reduction as in *bc*1 complex (i) heme b_n (red) + PQ $\rightarrow b_n$ (ox) + PQ⁻⁻ (ii) heme b_n (red) + PQ⁻⁻ + 2 H⁺ \rightarrow 2 b_n (ox) + PQH₂

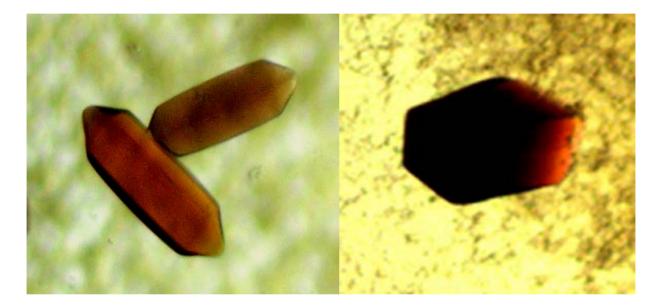
Thus, e-, H⁺, and PQ/PQH₂ must cross the complex.

Electron transfer pathway involving quinone (PQ/PQH₂) cycle in cytochrome *bf* complex

<u>Purification:</u> Masses (electrospray MS) of the 8 subunits of the *bf* complex from *M. laminosus*

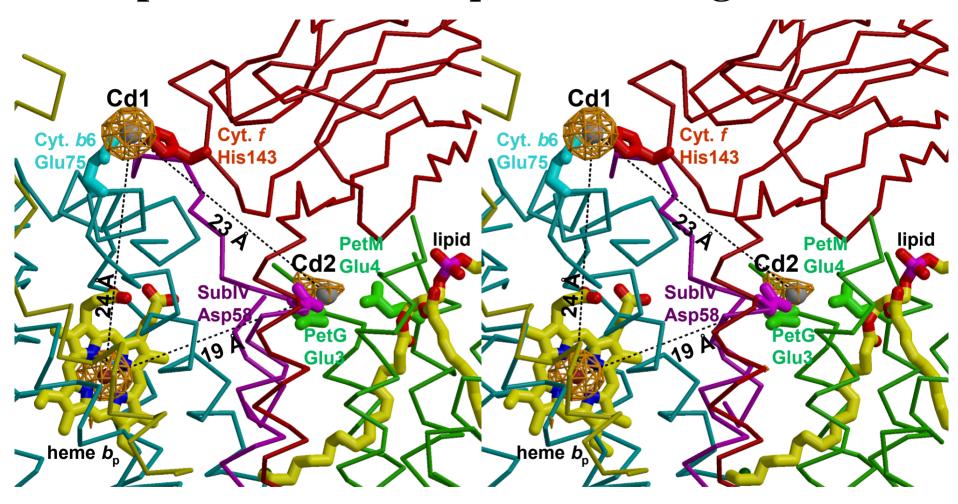
Subunit Measured Mass (Da)				
(I) "Large" Subunits				
Cyt f	32,270			
Cyt <i>b</i> ₆	24,710 (calc., 24,268)			
Rieske ISP	19,295			
Sub IV	17,529			
(FNR in spinac	h) 35,314 (weakly bound)			
(II) "Small" Subunits				
PetG	4057			
PetM	3841			
PetL	3530			
PetN	3304			

Dimer MW = 217 kDa

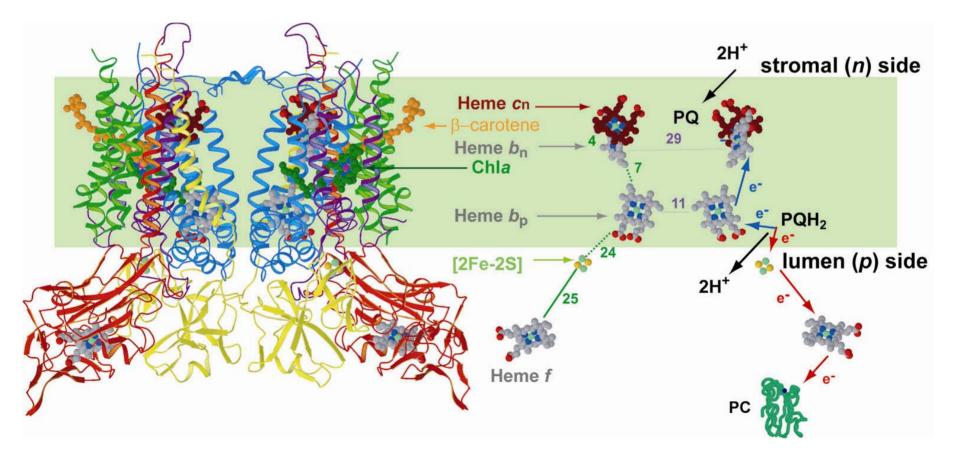

[Whitelegge et al., Molec. Cell Proteomics (2002) 1: 816-826]

Hetero-oligomeric proteins; problems of crystallization.

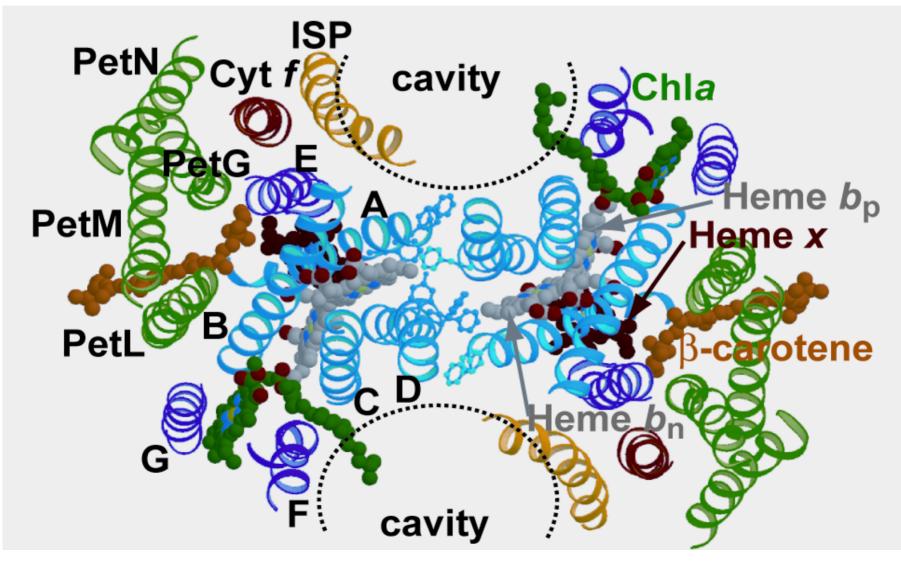
Protein name	PDB- ID	Highest resolution (Å)	References
Particulate methane monooxgenase	1YEW	2.8	Lieberman <i>et al.</i> (2005) (3)
Photosynthetic reaction center from <i>T. tepidum</i>	1EYS	2.2	Nogi <i>et al.</i> , 2000 (4)
Light harvesting complex from Rho. acidophila	1NKZ	2.0	Papiz et al.(2005) (5)
Photosystem I from T.elongatus	1JBO	2.5	Jordan et al. (2001) (6)
Photosystem II from T. elongatus	2AXT	3.0	Loll et al. (2005) (7)
Cytochrome b ₆ f complex from <i>M. laminosus</i> and <i>C. reinhardtii</i>	1VF5 1Q90	3.0; 2.95 3.1	Kurisu <i>et al.</i> (2003) (8); 2.95 Å, unpublished Stroebel <i>et al.</i> (2003) (9)
Calcium ATPase from rabbit sarcoplasmic reticulum	1WPG	2.3	Toyoshima & Nomura (2002) (10)
Rotor of V-type Na ⁺ -ATPase from Enterococcus hirae	2BL2	2.1 .	Murata <i>et al.</i> (2005) (11)
Rotor of F-type ATPase from Ilyobacter tartaricus	1YCE	2.4	Meier <i>et al.</i> (2005) (12)
Fumarate reductase from Wolinella succinogenes	1QLA	2.2	Lancaster <i>et al.</i> (1999) (13)
Formate dehydrogenase from E. coli	1KOG	1.6	Jormakka et al. (2002) (14)
Succinate:UQ oxidoreductase from porcine heart mitochondria	1ZOY	2.4	Sun <i>et al.</i> (2005) (15)
NarGHI nitrate reductase A from <i>E. coli</i>	1Q16	1.9 /	Bertero <i>et al.</i> (2003) (16)
Mitochondrial ADP/ATP carrier from bovine heart	10KC	2.2 ,	Pebay-Peyroula et al. (2003) (17)
Cytochrome <i>c</i> oxidase- <i>aa</i> ₃ from <i>P. denitrificans</i> and bovine heart	1AR1 10CC	2.8	lwata <i>et al.</i> (1995) (18) Tsukihara <i>et al.</i> (1996) (19)
Cytochrome oxidase <i>ba</i> ₃ from <i>T. thermophilus</i>	1EHK	2.4	Soulimane <i>et al.</i> (2000) (20)
Cytochrome <i>bc</i> ₁ complex from yeast and bovine heart	1EZV 2FYU 2A06	2.3 2.3 2.1	Hunte <i>et al.</i> (2000) (21) Esser <i>et al.</i> (2006) (22) Huang <i>et al.</i> (2005) (22)

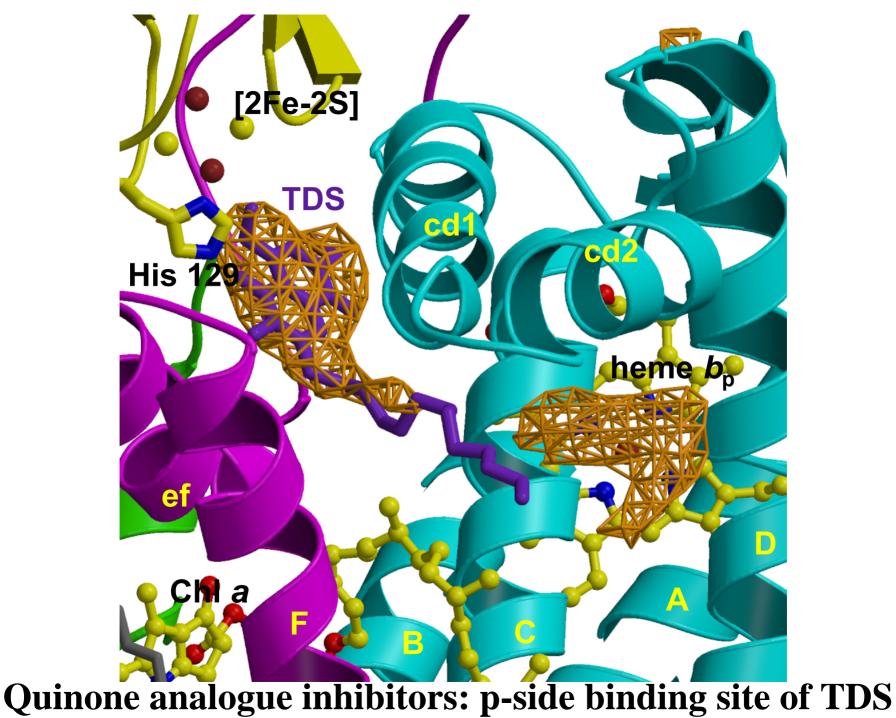

Table 1. Hetero-oligomeric integral membrane protein structures with ≤3Å resolution

Crystals of *b₆f* complex are brownish-red (because of additional pigments)



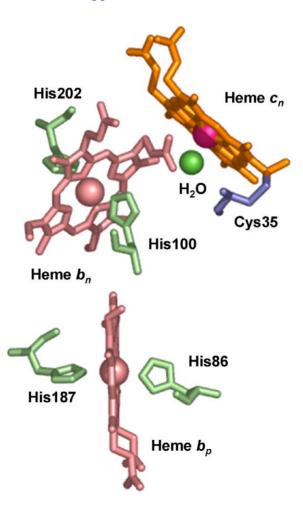
(a) Native: (3.00 Å); R = 0.222; R_f = 0.268); pdb: 2E74
(b) TDS (3.40 Å); R = 0.201; R_f = 0.258; pdb id: 2E76
(c) DBMIB, 3.8 Å [pdb id: 2D2C]
(d) NQNO (3.55 Å); R = 0.224; R_f = 0.273; pdb: 2E75 Crystallization required addition of lipid

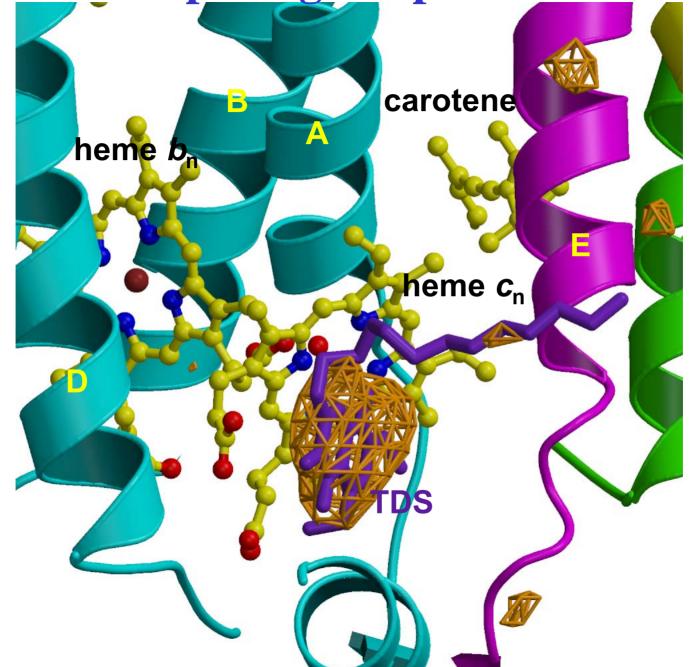

Resolution of native complex greatly improved in presence of Cd2+: *p*-side binding sites



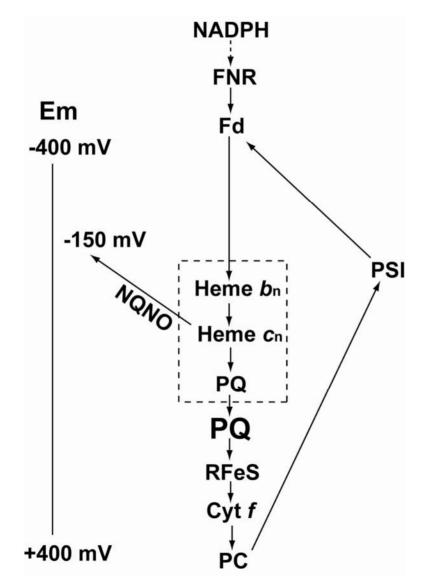
Dimeric $b_6 f$ complex: 26 TM helices; 8 subunits per monomer; 7 redox or pigment groups (4 hemes, 1 [2Fe-2S] cluster, 1 Chl a, 1 β -carotene); 30 x 25 x 15 Å inter-monomer quinone exchange cavity connects Q_pH_2 oxidation site in 1 monomer with Q_n reduction site in the other.

p-side view of intra-membrane domain along membrane normal showing 26 TM helices, and 3 heme, 1Chl *a*, 1 β-Car prosthetic groups



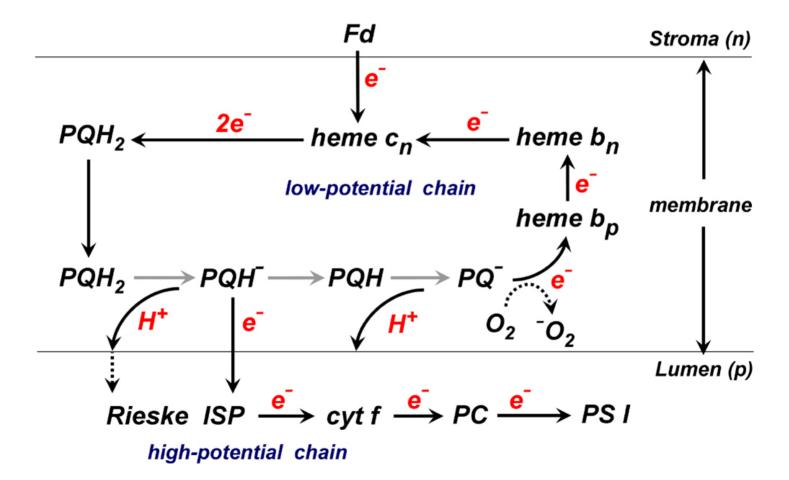

A novel *n*-side heme (c_n) in the $b_6 f$ complex

- A CO-reactive heme on the *n*-side of the membrane that equilibrates with heme b_n was identified spectrophotometrically through Soret band absorbance changes (Lavergne, 1983; Joliot and Joliot, 1988), and given the notation, "G."
- A heme "c_n" was found near heme b_n in ~ 3.0 Å X-ray structures of the b₆f complex from the green alga, *C. reinhardtii* (Stroebel *et al.*, 2003), and the thermophilic cyanobacterium, *M. laminosus* (Kurisu *et al.*, 2003).
- EPR studies have shown heme c_n to be associated with high 'g' values(Zhang *et al.*, 2004; Zatsman *et al.*, 2006).
- What is the function of heme *c*_n?

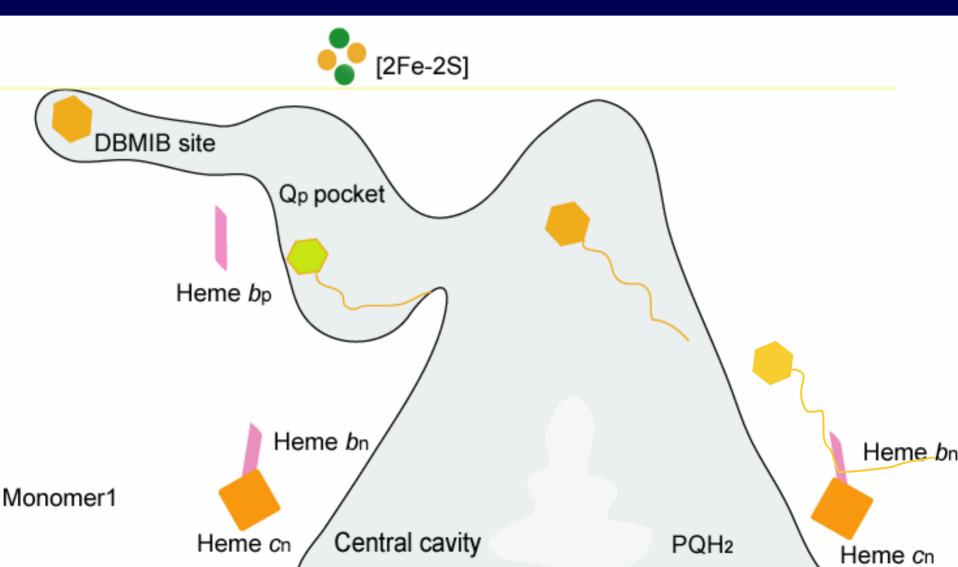

Novel redox prosthetic group: heme c_n (n-side) covalently bound to cyt b_6 Cys35, close (4 Å) to heme b_n , no amino acid side chain as axial ligand; H₂O connects heme b_n propionate and heme c_n Fe.

TDS binds to open ligand position of heme cn

n-side binding of quinone analogue inhibitors implies that PQ bound to heme *c*n is the entry and interface to the PQ pool, from which PQH2 serves as the donor to the [2Fe-2S] cluster


Modified Q cycle in cytochrome *b*₆*f* complex including heme *c*_n

p-side quinol oxidation


 $\begin{array}{l} \mathsf{PQH}_2 + \mathsf{FeS} \ (\mathsf{ox}) \to \mathsf{PQ}^{\bullet-} + \mathsf{FeS} \ (\mathsf{red}) + 2\mathsf{H}^+ \\ \mathsf{PQ}^{\bullet-} + b_p \ (\mathsf{ox}) \to \mathsf{PQ} + b_p \ (\mathsf{red}) \\ \underline{\mathsf{trans-membrane} \ \mathsf{electron} \ \mathsf{transfer}} \\ \mathrm{heme} \ b_p \ (\mathsf{red}) + \mathrm{heme} \ b_n \ (\mathsf{ox}) \to b_p \ (\mathsf{ox}) + b_n \ (\mathsf{red}) \end{array}$

n-side 2 electron reduction of plastoquinone (PQ) (i) b_n (r) / c_n (ox)/PQ (o) → b_n (o)/ c_n (r)/PQ(o) (ii) Fd (r) + b_n (o)/ c_n (r)/PQ(o) → Fd(o) + b_n (r)/ c_n (r)/PQ(o) (iii) b_n (r)/ c_n (r)/PQ(o) + 2 H⁺ → b_n (r)/ c_n (r)/PQ(o) + PQH₂

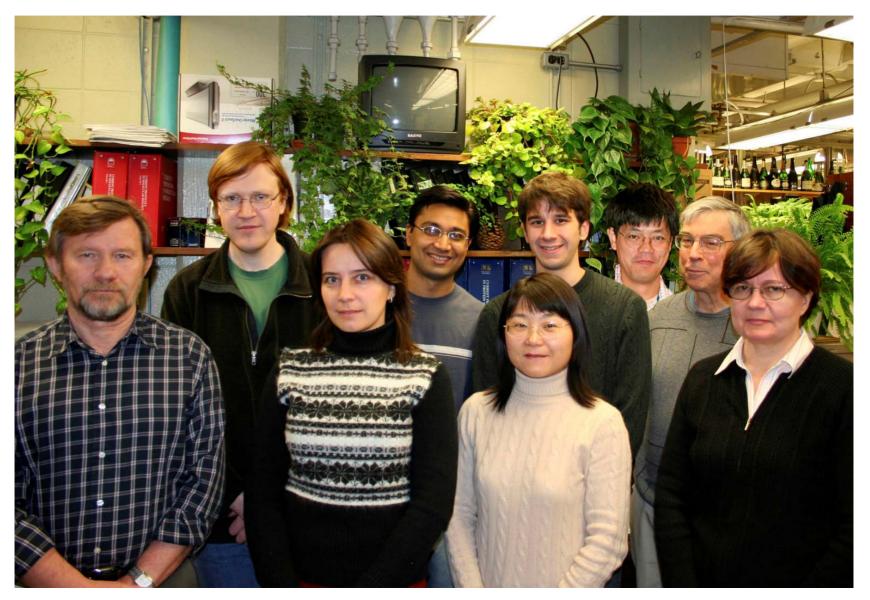
Electron transfer pathway involving quinone (PQ/PQH₂) cycle in cytochrome *bf* complex

Quinone transfer through *b6f* complex: labyrinthine pathway through lipophilic cavity/exit portal; distal (19 Å from His129) DBMIB binding site

Summary

- 3.00 Å native structure of hetero-oligomeric 8 subunit, 220 kDa dimeric b₆f complex with 8 different prosthetic groups. Central core conserved in evolution.
- Movement of Q/QH₂ across complex is not simple "flipflop," but a "labyrinthine" quided diffusion through caverns and portals.
- 3 novel prosthetic groups: Chl *a*, β -carotene; novel high spin heme.
- *n*-side: unique high spin heme c_n; proximal to b_n; PQ axial ligand displaced by quinone analogue NQNO; b_n-c_n-PQ electron wire, donor to PQ pool. The "Q cycle" mechanism functions differently in mitochondria and chloroplasts.

Acknowledgment to colleagues who worked previously on these studies: Janet L. Smith, Genji Kurisu, Jiusheng Yan



Acknowledgments

Colleagues at Purdue

P. Furbacher, M. Ponamarev, G. Soriano; A. Szczepaniak, **Biological Sciences (L. A. Sherman); Biochemistry (D. W.** Krogmann); Physics: S. Savikhin (N. Dashdorj, H. Kim). **Structural Biology Group** J. T. Bolin A. M. Friedman M. G. Rossmann **MPI (Frankfurt) Structural Biology** G. Fritzsch, H. Michel UCLA, mass spectroscopy: J. Whitelegge Synchrotron Lines Advanced Photon Source (Argonne, IL), SBC-19; Spring-8 (Hyogo, Japan)

We thank you for your attention! (except for the two guys sleeping in the back)

Questions & Answers

Questions 2

Questions 3