Extracting Hidden Three-Dimensional Information from Your Fluorescence Microscope

By Mikael Backlund

Department of Physics, Harvard University, Cambridge, MA

Published on


Fluorescence microscopy is a workhorse technique in both biological and abiological imaging and sensing. A fluorescence photon can carry information encoded in its position, momentum, polarization, phase, spectrum, and timing, but off-the-shelf microscopes are poor conduits of most of this information. As a consequence, efficiently extracting information from the specimen often requires redesign of the microscopy experiment in a way that leverages some additional physical and/or chemical know-how.

Here I will focus on two studies that demonstrate this concept. First I will discuss the fundamental limits associated with determining the three-dimensional position of a fluorescent emitter, with insights provided by quantum parameter estimation theory. Second I will show how nitrogen-vacancy (NV) centers in diamond can be used to convey three-dimensional magnetic information from the sample to the microscope.

These and related approaches push the limits of what can be measured with a fluorescence microscope, offering exciting new possibilities for studies in molecular biology and more.

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Mikael Backlund (2019), "Extracting Hidden Three-Dimensional Information from Your Fluorescence Microscope," http://nanohub.org/resources/30017.

    BibTex | EndNote



4102 Brown Hall, Purdue University, West Lafayette, IN