1. Blood Filtration
a) For a tube, surface area divided by pore volume is $2 / R$, so surface area divided by solid volume S_{0} is given by:

$$
\begin{aligned}
S_{\mathrm{o}} & =\frac{(2 / R)(\omega)}{(1-\omega)} \\
& =\frac{\left(2 / 50^{*} 10^{-6}\right) *(0.4)}{0.6} \\
\boldsymbol{S}_{o} & =26,666.7 \mathrm{~m}^{-1}
\end{aligned}
$$

b) The flow rate Q is given by:

$$
\begin{aligned}
& Q=\frac{\Pi(\Delta P) R^{4}}{8 \mu L} \\
& Q=\frac{\Pi\left(1.013 * 10^{4}\right) *\left(50 * 10^{-6}\right)^{4}}{8 * 0.0027 * 15 * 10^{-3}} \\
& \boldsymbol{Q}=\mathbf{6 . 1 4 *} \mathbf{1 0}^{-10} \mathbf{m}^{\mathbf{3}} \mathbf{s}
\end{aligned}
$$

c) To determine the Reynolds Number, we need to first calculate U_{o} as follows:

$$
\begin{aligned}
& U_{\mathrm{o}}=K^{-1} \frac{\mathrm{\Delta P} \omega}{\mathrm{~L} \mu} \quad \frac{\omega^{2}}{\mathrm{~S}_{0}{ }^{2}(1-\omega)^{2}} \\
& (1 / 2) *\left[\left(1.013 * 10^{4 *} .4\right) /\left(15 * 10^{-3 *} .0027\right)\right] *\left[(0.4)^{2} /(26,666.7)^{2}\right. \\
& =0.3125 \mathrm{~m} / \mathrm{s} \\
& \begin{array}{cc}
\boldsymbol{R} \boldsymbol{e}= & \rho \mathrm{U}_{\mathrm{o}} \\
\mu^{*}(1-\omega) \mathrm{S}_{\mathrm{o}} & =\frac{1060 * 0.1488}{0.0027^{*} 0.6 * 26,666.7}
\end{array}=\mathbf{0 . 7 6 7}
\end{aligned}
$$

d) The entrance length is determined by:

$$
L \boldsymbol{e}=\frac{\mathrm{Re}^{*} 2 * 50^{*} 10^{-6}}{100} \quad=3.66 \times 10^{-7} \mathrm{~m}
$$

$\mathrm{Le} \ll \mathrm{L}$ so the entrance length approximation is valid and our flow is fully developed.
e)
i) For a packed bed of spheres, S_{o} is given by:
$\mathrm{S}_{\mathrm{o}}=(3 / \mathrm{R})$
$S_{o}=\left(3 / 500 * 10^{-6}\right)$
$S_{o}=6000 \mathrm{~m}^{-1}$
ii) For a packed bed of spheres, $\omega=0.26$

And so, to determine U_{0} :
$\mathrm{U}_{\mathrm{o}}=\mathrm{K}^{-1} \frac{\Delta \mathrm{P} \omega}{\mathrm{L} \mu} \quad \frac{\omega^{2}}{\mathrm{~S}_{\mathrm{o}}{ }^{2}(1-\omega)^{2}}$
$\mathrm{U}_{\mathrm{o}}=(1 / 4.2) *\left[\left(1.013 * 10^{4} * 0.26\right) /\left(15 * 10^{-3} * 0.0027\right)\right] *\left[\left\{(0.26)^{2}\right\} /\left\{\left(6000^{2}\right) *\right.\right.$ (0.74 ${ }^{2}$) $]$
$U_{o}=0.053 \mathrm{~m} / \mathrm{s}$
Now to determine the Reynolds Number:
$\boldsymbol{R} \boldsymbol{e}=\frac{\rho \mathrm{U}_{0}}{\mu^{*}(1-\omega) \mathrm{S}_{\mathrm{o}}}=\frac{1060 * 0.053}{0.0027^{*} 0.74 * 6000}=4.21$
f) For the tube, qualitative turbulent and laminar flows are depicted in the graphic below:

Courtesy of: http://www.engineersedge.com/fluid flow/flow velocity profiles. htm
g) The size of the AIDS virus is $0.1 \mu \mathrm{~m}$. The radius of the tubes is $50 \mu \mathrm{~m}$ which means that should the AIDS virus be in the blood, it would not be filtered by this process. Rather, the virus would flow through the tube with the components of blood that are less than $100 \mu \mathrm{~m}$ (tube diameter) in size. Because of the relatively large radius of the tube, it can only be counted on to separate blood constituents that are larger than the tube diameter in size.

