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I WHY VEDA?

I. WHY VEDA?

Since its debut in 1986, atomic force microscopy (AFM) invented by Rohher, Binnig et al. [1] has emerged as a

powerful tool in nanotechnology. In particular, dynamic atomic force microscopy (dAFM) [2, 3] has proven to be

an invaluable tool that has enabled the imaging, measurement and manipulation of matter at the molecular and

atomic scale. As the ability for AFM to measure and manipulate properties at the nanoscale has increased, so too has

the importance of understanding the tip dynamics as the oscillating AFM probe interacts with nonlinear tip-sample

interaction forces [4�11]. Thus the topographic images generated in dAFM scans are actually a cumulative result of

nonlinear interaction forces between the probe tip and the sample [4�11], cantilever probe mechanics [8, 12�14], tip-

sample geometry convolution [15�18], and the AFM feedback control system [19�21]. Ultimately the limits of dAFM

nanometrology depend on the ability to correctly �deconvolve� or eliminate such spurious e�ects in some manner.

From an experimentalist's point of view, operating an dAFM can often be quite non-intuitive due to the underlying

nonlinear dynamics. As a result the choice of operating conditions and cantilevers for a speci�c experiment can involve

much trial and error. Where intuition fails, simulations can provide powerful insights into the fundamental physics

of this instrument. With the aid of simulation tools like VEDA (Virtual Environment for Dynamic AFM), students

and researchers can develop a deeper quantitative understanding of dAFM.

This document attempts to provide the user with the necessary information about the theory, modeling, and com-

putational approach that are present in the VEDA simulation tools, and the inputs required to perform simulations.

Additionally, several demonstration examples are provided that point out some of the nonlinear phenomena that

underpin the operation of dynamic AFM. User are encouraged to use these examples as a starting point to explore

the vast parameter space and variety of nonlinear phenomena present in dAFM.

VEDA [22, 23] currently includes many di�erent tools. Each tools corresponds to a di�erent type of AFM experi-

ment. This includes

The F-Z Curves tool (FZC) uses the equations and solution procedure developed for the other Approach Curves

tools to simulate an the mechanics of an undriven microcantilever approaching or retracting from a sample.

This tool is useful for observing bi-stabilities in equilibria and the related �snap-in� and �pull-o�� phenomena.

The Frequency Sweep tool (FS) simulates the nonlinear response of a driven cantilever swept across resonance.

Simulations of single or multiple eigenmodes are possible.

Dynamic Approach Curves simulates an AFM cantilever excited near resonance and brought towards a sample

surface. Several di�erent versions are available: Amplitude modulation (i.e. tapping mode) and Frequency

modulation. The AM tool has both a basic and advanced version. The basic tool is suitable for simulating

either ambient conditions or ultra high vacuum (UHV). The advanced tool is an expanded version of the

basic tool allowing both multiple eigenmode simulations as well as multiple excitation frequencies. This tool
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I WHY VEDA?

is designed speci�cally for simulating approach/retraction curves in liquids, bimodal excitations, and internal

resonance (harmonic cantilevers) applications. The model for cantilever dynamics includes a general number

of eigenmodes and users are able to specify either acoustic (base) and magnetic excitation sources with single

or multiple frequencies. The frequency modulated version simulates the situation where the AFM cantilever is

excited at a frequency that is tuned to the nonlinear natural frequency through the use of a phase locked loop

(PLL) and amplitude is maintained constant with an active feedback loop.

Scanning tools simulates scans over speci�ed geometric features with heterogeneous material properties. Several

di�erent version are available corresponding to contact mode, amplitude modulated (i.e. tapping mode), and

frequency modulation. Both basic and advanced versions of the Amplitude Modulated tool are also available,

corresponding to the same feature sets as the basic and advanced Amplitude Modulated Approach Curves tools,

respectively.
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II BASIC CONCEPTS AND TERMINOLOGY

II. BASIC CONCEPTS AND TERMINOLOGY

In this section we will introduce basic AFM concepts and terminology for the bene�t of beginning AFM users.

Additionally, schematics are provided to illustrate relevant coordinates and reference frames.

A. Basic AFM design

A schematic of the standard AFM is shown in Figure 1. A microcantilever probe with a sharp tip (Figure 2)

interacts with a sample. The position of the sample is controlled by a stage with piezo actuators. To create an image,

the sample is moved so that the microcantilever probe tip rasters over the sample. The precise method by which

an image of the sample's surface is generated from the raster depends on the imaging mode. However, in general,

creating an image of the surface topography in AFM involves monitoring some characteristic measure (de�ection,

amplitude, phase, etc.) of the cantilever de�ection caused by the interactions forces between the tip and the sample.

Measurements of the microcantilever de�ection have been made in a variety of ways. In the most common method,

the optical-lever technique, a laser beam is re�ected o� of the cantilever and detected by a quadrature photodetector.

For small de�ections of the probe, signal of the photodetector is proportional to the change in slope (angle) of the

microcantilever.

Components of the AFM along with relevant coordinates are shown in Figure 1. Simulations approaching the

sample, either statically (F-Z curves) or with an oscillating probe are achieved through extensions of the Z-piezo to

reduce the Z distance Z(t). While the cantilever is approaching the sample, the stage is �xed (Xscan is constant).

While cantilever is scanning over the sample, the stage moves the sample at a constant rate Xscan(t) at a constant

rate Vscan = dXscan(t)/dt.

B. Imaging modes

There are myriad di�erent AFM operating modes, all of which are built on the basic design above. These di�erent

modes have di�erent strengths and weaknesses, and a particular task may be better served by one mode than another.

A taxonomy of the major AFM modes is shown in Figure 3. There is a major division between static modes and

dynamic modes. In dynamic modes, the cantilever probe is excited (typically at resonance) as it is scanned over

the surface. In static modes, the probe is not excited. Within static modes, two of the major modes are contact

mode and force-volume mode. In contact mode, the probe is essentially in contact with the sample at all times.

In force-volume mode and the related jump mode, the probe touches a point, retracts, moves to the next point,

approaches, and touches the next point. Both of these modes are built upon force-distance curves, also known as F-Z

Curves. In dynamic modes, two of the main modes are amplitude modulated (AM) and frequency modulated (FM).

These names can be confusing because in both AM and FM modes a feedback controller is used to keep the vibration
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B Imaging modes II BASIC CONCEPTS AND TERMINOLOGY

Z‐piezo 

Dither piezo 

Probe chip 

u(x,t) 
y(t) 

d(t) 

Sample h(Xscan(t)) 

Stage Xscan(t) 

Z(t) 

FIG. 1: A schematic of basic AFM operation (top [24]) and important coordinates (bottom). The Z-piezo expands or contracts
in order to modify the Z distance Z(t). The dither piezo is used to excite the cantilever by shaking the base (acoustic excitation)
by y(t). The transverse de�ection relative to the base is u(x, t), where x is the axial displacement from the base. Scanning
is achieved by varying Xscan(t) by a constant scanning velocity Vscan = Xscan(t)/dt. The instantaneous gap between the tip
and the sample is d(t) = Z(t) + y(t) + u(L, t), where the Z distance Z(t) is modi�ed by the Z-piezo extension/displacement or
variations in the sample height h(t).

amplitude constant during a scan. In AM mode, the height of the probe above the sample is what is used to keep the

vibration amplitude constant, while in FM mode, a more complicated feedback scheme is used that attempts to keep

the oscillation amplitude, phase, and frequency shift constant while scanning the sample.. These feedback schemes

are described in more detail in Section IV.

A diagram of the operation of contact mode, AM, and FM modes is shown in Figure 4. Note that FM-AFM (Figure

4b) is shown scanning far away from the sample to indicate operation in the attractive regime, and that AM-AFM

(Figure 4c) is shown closer to the sample to indicate intermittent contact or repulsive regime. Although this is usually

the way the two modes are used in practice, it is not the distinguishing characteristic. AM-AFM can be used in the
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B Imaging modes II BASIC CONCEPTS AND TERMINOLOGY

FIG. 2: SEM image of a typical AFM cantilever. The imaging tip is in the lower right.
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FIG. 3: A taxonomy of some major AFM modes.

attractive regime and FM-AFM can be used in the repulsive regime. The distinguishing characteristic between the

two modes is the feedback scheme.

VEDA was originally written with AM-AFM in mind. Later expansions have allowed simulations of F-Z/F-d Curves

and FM methods.

C. Excitation methods

With dynamic modes, there are many di�erent methods by which the cantilever can be vibrated. Two of the most

common are acoustic mode and magnetic mode. Figure 5 shows these two methods schematically. In the magnetic

mode, a magnetic coating (or magnetic particles) is applied to the cantilever and a solenoid provides an alternating

magnetic �eld that drives the cantilever. In acoustic mode, a so-called dither piezo vibrates up and down. which

moves the base of the cantilever up and down. Note that due to the readout scheme used in most AFMs, the absolute

de�ection of the cantilever cannot be accessed but only the de�ection relative to the base (bending). This can cause
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C Excitation methods II BASIC CONCEPTS AND TERMINOLOGY

FIG. 4: Schematic diagrams of the operation mechanisms for (a) contact mode AFM, (b) FM-AFM, and (c) AM-AFM. Taken
from [24]

signi�cant complications for acoustic mode in low Q (e.g. liquid) operation. More details on the di�erence between

these excitations can be found in [25]

FIG. 5: A schematic showing the di�erent tip motions measured in the magnetic mode and acoustic mode. In magnetic mode
the measured tip motion is the absolute tip motion w(x, t). While in the acoustic mode the measured motion w(x, t) (transverse
cantilever de�ection) is the motion u(x, t) relative to the base motion y(t). Reproduced from [25]

D. Photodiode output

In this section, we demonstrate why the photodiode is more sensitive to slope than displacement.

In 6, we see that if a �at mirror is moved down, the laser spot will move on the photodiode. Similarly, if a �at
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D Photodiode output II BASIC CONCEPTS AND TERMINOLOGY

mirror is rotated, the laser spot will move on the photodiode. Now for a cantilever, there will be some displacement

at the end and some slope. There will be contributions from both. But which is more sensitive?

The static bending shape of a cantilever is given by g(x) = 1 − 0.5(x/L)
2
(3(x/L)), where L is cantilever length.

This means that the slope g′(L) = −1.5/L. In other words, for a bending displacement of h, the cantilever has a

slope at the end of 1.5h/L, which means the rotation angle is dθ = arcsin(1.5h/L). Because the angles are small,

sin(dθ) ≈ dθ. So, for bending displacement of h, the laser spot moves H ∗ 2 ∗ 1.5h/L.

For example assume H = 1 cm, θ=45 deg, h=1e-9, L=100e-6 Then the displacement contribution to spot movement

is 1.4e-9 = 1.4 nm and the rotation contribution is H*2*1.5h/L = 2e-7 = 200 nm. In other words, the displacement

contribution is less than 1 percent of the rotation contribution. For this reason, we typically ignore the displacement

contribution.

  

Θ

h

x

Flat mirror displaces 
down an amount h.
Laser spot moves 
h/sinΘ

dΘ
h

x

Flat mirror rotates an 
amount dΘ.
Laser spot moves 
Hsin(2dΘ)

H
2dΘ

Bending cantilever both 
translates and rotates.  What 
is the relative contribution 
from each?

FIG. 6: A schematic explaining why the photodiode measures slope and not true de�ection
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III. TOOLS

A. Amplitude Modulated Approach Curves (AMAC, basic)

At the backbone of dAFM is the assumption that the microcantilever's oscillations are a�ected by nonlinear inter-

actions between the tip and sample. In particular, in AM-AFM, the amplitude of the microcantilever is a�ected by of

both attractive and repulsive forces interactions between the tip and the sample. This occurs primarily because of the

detuning on the nonlinear natural frequency from the �xed excitation frequency as the probe approaches the sample.

However when the oscillation amplitude is much smaller than the decay length of the interaction forces, there is also a

shift in linear frequency of the oscillator which can reduce the driven oscillation amplitude. Monitoring characteristics

of the microcantilever's oscillation while approaching a sample reveals information about the mechanical properties

of the sample and of tip-sample interaction (imaging) forces. Additionally, an appropriate set-point amplitude for use

in AM-AFM scanning (and simulated by the AMS tool) can be determined. The Amplitude Modulated Approach

Curves (AMAC) tool can be utilized to simulate the response of a microcantilever excited near it's fundamental

resonance and gradually introduced to the sample by extending the Z-piezo and reducing the Z distance between the

base and the sample. Input parameters for AMAC (basic) include the properties of the cantilever and the tip-sample

interactions, as well as operating conditions and simulation parameters.

The following assumptions have been made in the AMAC tool (in addition to the assumptions made in the models):

1. Cantilever dynamics are modeled by a single eigenmode model (Eq. 101 for i = 1).

2. Interactions between the tip and the sample are modeled by any one of the models given in Sec. IVA.

3. The cantilever is either acoustically or magnetically excited with a single frequency.

4. The Z distance between the sample can be reduced or increased, but the cantilever does not move laterally.

Inertial and hydrodynamic forces caused by the Z motion are negligible.

This section provides an overview of the outputs of the Amplitude Modulated Approach Curves (AMAC) tool in the

form of three example simulations.
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A Amplitude Modulated Approach Curves (AMAC, basic) III TOOLS

TABLE I: Input parameters for AMAC examples.

PARAMETER EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

Operating conditions and cantilever properties
Unconstrained amplitude (nm) 30 30 60
k (N/m) 40 40 3
Q 400 400 150
f (kHz) 350 350 75
fd (kHz) 350 350 75
Z approach velocity (nm/s) 200 200 200
Z range Determination Autocalc Specify Autocalc
Initial Z separation (nm) NA 0 NA
Final Z separation (nm) NA 35 NA

Tip-sample interaction properties
Tip-sample interaction model DMT contact DMT contact Hertz contact
Tip radius (nm) 20 20 10
Young's modulus of tip (GPa) 130 130 130
Poisson's ratio of the tip 0.3 0.3 0.3
Auto calculate intermolecular distance? no no n/a
Intermolecular distance (nm) 0.164 0.164 n/a
Hamaker constant (J) 7.1 · 10−20 7.1 · 10−20 n/a
Young's modulus of sample (GPa) 1.2 1.2 1
Poisson's ratio of the sample 0.3 0.3 0.3
Sample visco-elastic forces? none none Kelvin-voigt
Sample viscosity (Pa · s) NA NA 500

Simulation parameters
Number of points plotted 500 500 500
De�ection points per cycle 400 1000 1000
Include time histories yes no yes
Number of time histories 1 NA 1
Choose amplitude ratio(s) 0.55 NA 0.55
Number of cycles 5 NA 5
Choose X-axis variable Z-distance (nm) Z-distance (nm) Z-distance (nm)

14
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1. Example 1: Attractive and repulsive regimes of oscillation

In this example, two di�erent regimes of oscillation are explored. The attractive regime refers to oscillations where

the interaction forces between the tip and sample are primarily attractive. Likewise, the repulsive regime refers to

oscillations where the interactions with the sample are primarily repulsive contact forces. Proper identi�cation of

the attractive and repulse regimes is critical for an AFM experimentalist for improving imaging resolution, avoiding

imaging bi-stabilities and correctly interpreting of phase contrast images. This �rst example is aimed at reproducing

some of the key results from Garcia and San Paulo [5].

After opening VEDA, select Amplitude Modulated Approach Curves (basic) from the pull-down menu labeled Ap-

plication. Once the interface for the AMAC tool is loaded, there is a second pull-down menu titled Example loader.

Select Example 1: Attractive and repulsive regimes of oscillation and the inputs for this example listed in Table I will

be loaded automatically into the interface. Take a moment to peruse the three input panels.

The �rst tab is Operating conditions and cantilever properties and it contains the following input parameters:

Unconstrained amplitude this is the amplitude when the cantilever is very far from the sample, sometimes called

free amplitude or initial amplitude.

k (N/m) represents the cantilever sti�ness of the fundamental eigenmode.

Q represents the quality factor of the resonance. The quality factor is a measure of the sharpness of the resonance

peak and is easily determined experimentally from a frequency sweep or �tuning curve�.

Nat. Freq (kHz) represents the fundamental natural frequency in kilohertz.

Driving Freq. (kHz) represents the drive frequency, or excitation frequency applied by the excitation source

(acoustic or magnetic) to the microcantilever.

Z approach speed (nm/s) represents the average speed of the Z piezo (i.e. the speed at which the base of the

microcantilever approaches the sample) in nanometers per second.

Z range determination allows a few di�erent options to speci�cy the initial and �nal Z displacements of the base

of the microcantilever. For the purposes of this example, the autocalculated values will be �ne (in this case it

will 5 nm above where the tip contacts the sample, which is Z=35 nm because the unconstrained amplitude is

30 nm)

The second tab is Tip-sample interaction properties. There are several input parameters on this tab; however, the

user required only to input parameters relevant to the choice of tip-sample interaction model. In this example, we

choose the DMT contact model, which is selected from the pull-down menu at the top of this panel. The DMT contact

model requires the following inputs:
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Tip radius (nm) represents the radius of the cantilever tip, in nanometers, which will come into contact with the

sample.

Young's modulus of tip (GPa) represents the sti�ness of the elastic tip material. More precisely, the Young/s

modulus is a relationship between stress and strain for an elastic element according to Hooke's law. For silicon

(Si), E ≈ 130 GPa.

Poisson's ratio of the tip represents the Poisson's ratio of the material used in the cantilever's tip. This parameter

is used in all tip-sample interaction models except for the two linear-contact models. The Poisson's ratio is a

material property that relates a uniaxial strain induced in a speci�c direction due to a stress applied in the

orthogonal direction.

Auto calculate intermolecular distance gives the user the opportunity to have the intermolecular distance a0

automatically calculated. If the box is checked (�yes�), a0 will be calculated for the DMT and DMT+DVLO

models using the van der Waals adhesion force, the tip radius, and the Hamaker constant. If unchecked (�no�),

the van der Waals adhesion force will be calculated from a0, the tip radius, and the Hamaker constant. This

option is provided solely for convenience. In either case, the component of the adhesion resulting from the van

der Waals forces is Fad,vdW = HR/6a2
0 (see tip-sample interaction models in the theory in Section IVA).

van der Waals adhesion force (nN) represents the component of adhesion force, measured in nanonewtons, at-

tributable to attractive van der Waals forces. If the DMT contact model is applicable, the adhesion forces is

the �pull-o�� force that can be found experimentally from a static force-distance curve

Fad = |kc × w∗|, (1)

where kc is the static bending sti�ness of the cantilever, and w∗ is the de�ection of the tip at the �pull-o��

location as the cantilever is withdrawn from the surface.

Hamaker constant (J) represents the value used to predict the attractive van der Waals forces between the tip and

the sample. This parameter depends on the material of both the tip and the sample, as well as the surrounding

material.

Young's modulus of the sample (GPa) represents the sti�ness of the sample material.

Poisson's ratio of the sample: see Poisson's ratio of the tip above.

Solvation forces this is applicable only for liquids, and thus is not relevant to this example.

Nonconservative forces Allows users to include non-conservative interaction forces between the tip and the sample.

Non-conservative dissipate mechanical energy of the probe during interaction. This example does not call for

including such forces.
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The third and �nal tab is Simulation parameters, which contains input parameters relating to the simulation, but not

the physics of the problem. Relevant inputs in this example are:

Number of points plotted: This is the number of points contained in each plot. This values of this parameter

may be increased if the user is interested in abrupt features in the results.

Speed versus accuracy tradeo�: This controls the number points that the di�erential equation solver computes

in each drive cycle. Using more points will give a more accurate result, but will take longer to compute.

Include time histories: The default outputs of VEDA are quantities such as amplitude and phase that are averaged

over several drive cycles (similar to a real AFM). This option allows the user to examine the raw data of each

individual cycle (similar to hooking up an oscilloscope to the AFM and viewing the raw voltage traces).

Choose X-axis variable: Choose whether to plot simulation data against Z distance or against amplitude ratio

(A1/A0)

After reviewing that the input parameters, click on the Simulate button. The simulation results for the input

parameters are available by selecting a result from the pull-down menu once the simulation has concluded. The

following provides a brief discussion of each result.

A few minutes after pressing the simulation button, the plot in Figure 7 should appear. Simulations running much

longer than a few minutes are likely due to erroneous or non-physical input parameters. If these occurs even though

the inputs parameters are correct, please submit a support ticket by selecting the Help! button.

Figure 7 shows that, as the cantilever approaches the sample from right to left, there is �rst a reduction in amplitude

due to the attractive van der Waals interaction [5]. This reduction is due to the attractive interaction forces detuning

the nonlinear resonance frequency of the probe tip from the �xed excitation frequency. This detuning also causes

the phase of the �rst harmonic to increase above 90 degrees, as shown in Figure 8. The onset of repulsive regime is

marked by a jump in amplitude and corresponding jump in phase to a value less than 90 degrees.

While approaching the sample, the �rst harmonic phase �rst increases about 90 degrees in the attractive regime of

oscillations due to the softening of the nonlinear natural frequency. At this point, the nonlinear natural frequency has

been detuned (decreased in this case) from the �xed excitation frequency applied to the probe. This results in a phase

greater than 90 degrees. Continuing to approach the sample, a jump from the attractive to the repulsive regime occurs

at a Z distance around 27 nm. This jump is marked by a phase less than 90 degrees in Figure 8. In the repulsive

regime, the nonlinear natural frequency sti�ens, and is now greater than the �xed excitation frequency applied to the

probe. If the user repeats the simulations for an excitation frequency fd not equal to the natural frequency f (say 200

Hz above or below) the results will be slightly di�erent because the detuning e�ects of the attractive and repulsive

regimes will accomplish di�erent results.
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FIG. 7: Amplitude of the �rst harmonic vs. Z distance during approach to the sample. The abrupt change in amplitude
marks the transition from the attractive to the repulsive regime of oscillations. (AMAC Ex 1)

FIG. 8: Phase of the �rst harmonic vs. Z distance during approach to the sample. A phase greater than 90 degrees indicates
the attractive regime while a phase of less than 90 indicates the repulsive regime. (AMAC Ex 1)
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FIG. 9: Mean (oscillation cycle averaged) tip-sample interaction forces during approach. Mean forces are negative in the
attractive regime and positive in the repulsive regime. (AMAC Ex 1)

As the cantilever proceeds through the attractive regime, there is eventually a sharp change in amplitude as the

probes transitions from the attractive to the repulsive regime. By comparing the mean forces (Figure 9) to the

amplitude (Figure 7) and phase (Figure 8), the user will �nd that the jumps in amplitude and phase occur precisely

when the mean forces change abruptly from negative (attractive) to positive (repulsive). In this example, the change

occurs around Z = 27 nm. Hence, the two regimes have been dubbed the attractive regime and the repulsive regime

according to the mean interaction force observed during oscillation.

Figure 10 contains a sample of photodiode de�ection signal up(t) and interaction force histories containing �ve

complete cycles. The histories shown in Figure 10 correspond to 1000 points per cycle. This number is likely to be

su�cient for most simulations. To accurately record very small time-scale interactions, however, the user may wish to

increase the value of the parameter. It is important to note that the tip-sample interactions are not directly measured

in dAFM.

2. Example 2: Retraction curves

In this example, we investigate the tip dynamics during cantilever retraction from the surface. The cantilever/sample

parameters used are the same in AMAC Example 1 (Section IIIA 1). Retraction curves are particularly interesting

when the approach curves show a discontinuous amplitude jump from attractive to repulsive regimes of oscillation.

In fact it can be shown [5] that there is a noticeable amplitude hysteresis between approach and retraction curves.
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FIG. 10: De�ection signal from the photodiode accompanied by the corresponding tip-sample interaction force (setpoint =
0.55 %). (AMAC Ex 1)

We recommend completing AMAC Example 1 before proceeding to this example so the user can will be able to study

the hysteresis due to the bi-stable oscillation regimes. The physical parameters, such as the cantilever properties and

tip-sample interaction parameters, of this simulation are identical to the �rst example; however, we have changed the

operating and simulation parameters to simulate retraction from the sample. The retraction is achieved by changing

Z range determination to Specify Z range and change the initial Z separation to 0 nm and the �nal Z distance to 35

nm. The default Z range for the simulation is from 5 nm greater than the unconstrained amplitude (30 nm) to 0 nm.

For this simulation we have simply inverted the default Z range.

If you have not already run AMAC Example 1, then follow these instructions: open the AMAC (basic) tool from

the VEDA tools selection. Wait for the user input window to open. Under the Operating conditions and cantilever

properties tab, set the Unconstrained amplitude (nm) to 30, and set ki (N/m) to 40. Change Q to 400, change both

f (kHz) and fd (kHz) to 350, and change Z approach velocity (nm/s) to 200. Next, click the Tip-sample interaction

properties tab. Under this tab, be sure that the Tip-sample interaction model is DMT contact. Change the rest of the

input parameters under this tab and under the Simulation parameters tab to match those shown in Table I Example

2. Once all of the inputs have been correctly modi�ed, click the Simulate button in the lower right-hand corner. This

simulation generally takes about 4 minutes to run to completion.

The results of the retraction simulation are shown in Figures 11-13. We �nd that there is noticeable amplitude and

phase hysteresis for Z distances between 27 to 30 nm. If the simulations for approaching the sample and retracting
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FIG. 11: (a) Amplitude (nm) vs. Z distance for retraction. The jump between attractive and repulsive regime oscillations
occurs at a slightly di�erent location when retracting from the sample. (b) Phase (deg) vs. Z distance for retraction from the
sample. (AMAC Example 2)

from the sample are performed successively, the user will be able to plot both sets of results for comparison. We

encourage users who are interested in hysteresis to download the actual data for plotting purposes.
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FIG. 12: (a) Mean interaction force (nN) vs. Z distance (nm) while retracting from the sample. (b) Peak attractive and
repulsive interaction forces (nN) vs. Z distance (nm) while retracting from the sample. (AMAC Example 2)

Important note: For these operating parameters there is a range of Z distances where there are two amplitude

branches, hence the hysteresis. If the user is interested in studying approach/retraction hysteresis, the cantilever

must start in the repulsive regime during retraction curves and the attractive regime during approach. In this

simulation, the initial Z separation was chosen to be 0 assuring with a high degree of con�dence that the cantilever

will start in the repulsive regime. This is con�rmed in Figure 12. Had we chosen an initial Z separation closer to 25

nm, where there are two amplitude branches, this may not have been the case.
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FIG. 13: Contact time (µs) vs. Z distance (nm) while retracting from the sample. (AMAC Example 2)

3. Example 3: E�ects of viscoelastic damping in polymer samples

Our �nal example focuses on the e�ects of sample viscoelastic damping on the amplitude modulated approach

curves and the resulting power dissipation curve resulting from this particular form of non-conservative tip-sample

interaction. For this simulation, we choose sample properties that are characteristic of typical polymers including a

sample viscosity of 500 Pa s (Table I).

To begin this example, open the AMAC tool from the VEDA tools selection. Wait for the user input window

to open. Under the Operating conditions and cantilever properties tab, set the Unconstrained amplitude (nm) to 60,

and set ki (N/m) to 3. Change Q to 150, change both f (kHz) and fd (kHz) to 75, and change Z approach velocity

(nm/s) to 500. Next, click the Tip-sample interaction properties tab. Under this tab, be sure that the Tip-sample

interaction model is Hertz contact. At the bottom under �non-conservative forces�, change �Include sample viscoelastic

forces� to the �Kelvin-voigt� model. Change the rest of the input parameters under this tab and under the Simulation

parameters tab to match those shown in Table I Example 3. Once all of the inputs have been correctly modi�ed,

click the Simulate button in the lower right-hand corner. This simulation generally takes about 1.25 minutes to run

to completion. After the simulation is �nished, click back to tab 2 and change the �Include sample viscoelastic forces�

to �None�. Run this simulation and then compare the results with and without the viscoelastic forces.

The results of this simulation are shown in Figures 14 - 17.

First, in Fig. 14, we see that the amplitude does not change very much with the addition of the viscoelastic forces,

but the phase changes signi�cantly. The change in phase can be related to the fact that viscoelastic forces are non-

conservative. That is, they dissipate energy. This is seen in Fig. 15. Additional e�ects of the viscous interaction are

seen in the mean (Figure 15a) and peak (Figure 15b) interaction forces. The viscoelasticity signi�cantly raises the

peak force, although the mean force decreases slightly.
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To have a better look at the forces, we can examine the interaction force time histories shown in Figure 16. During

most of the cycle, the tip is not in contact with the sample. This �gure shows just the small portion where they are

in contact. Again, the peak value of the force is higher with the viscoelasticity, although the total area under the

curve (the mean force) is approximately the same. Most notable, the shape of the force curve is asymmetric due to

the viscous contribution.

Many additional details about viscoelasticity can be found under the viscoelasticity part of the theory section of

this manual.
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FIG. 14: (a) Amplitude (nm) vs. Z distance. (b) Phase (deg) vs. Z distance.(AMAC Example 3).
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FIG. 15: (a) Mean interaction force (nN) vs. Z distance. (b) Peak interaction force (nN) vs. Z distance. (c) Power dissipated
(pW) vs. Z distance. The power dissipated by viscoelastic damping depends on both the indentation and rate of indentation
(AMAC Example 3).

B. Amplitude Modulated Scanning (basic)

A microcantilever is commonly used to image nano-scale surfaces by tapping along the surface while monitoring

the location of the cantilever base as well as the tip de�ection amplitude. The Amplitude Modulated Scanning tool

(AMS) was created to simulate the response of a microcantilever excited near its �rst �exural natural frequency and

in contact with a sample while being moved along the surface of the sample as a controller attempts to keep the

cantilever tip de�ection amplitude constant.

The following assumptions are unique to the basic Amplitude Modulated Scanning tool:

1. Cantilever dynamics are modeled by a single eigenmode model (Eq. 101, i = 1).

2. The cantilever is acoustically or magnetically excited with a single frequency.

3. The Z separation between the sample can be reduced or increased, but the cantilever does not move laterally.

4. The AFM controller is modeled as a simple proportional-integral (PI) controller.

5. Inertial and hydrodynamic forces acting on the cantilever due to the controller's Z adjustment of the base while

scanning are negligible.

This section provides an overview of the outputs of the basic Amplitude Modulated Scanning (AMS) tool in the form

of several example simulations.
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FIG. 16: Tip-sample gap and interaction force histories corresponding to A/A0 = 0.55. The viscoelastic forces cause the
interaction force history to be asymmetric. (AMAC Example 3).
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FIG. 17: (a) Indentation (nm) vs. Z distance (nm). (b) Contact time (µs) vs. Z distance (nm). (AMAC Example 3)
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TABLE II: Input parameters for AMS examples.

PARAMETER EX. 1 EX. 2 EX. 3 EX. 4 EX. 5

Operating cond. + Cantilever prop.
Choose excitation source Acoustic Acoustic Acoustic Acoustic Acoustic
Unconstrained Amplitude (nm) 30 30 13 10 6
k (N/m) 40 1 0.3 0.3 1
Q 400 200 100 100 10
f (kHz) 350 30 150 150 40
fd (kHz) 350 350 150 150 40
Tip mass, (mtip/mc) 0 0 0 0 0
Set point ratio 0.9 0.9 0.98 0.85 0.7
Signal/Noise ratio (dB) 20 80 30 30 60
Scan Lines per second 13.33 33.33 33.33 33.33 10
Proportional gain 0.002 0.002 0.008 0.001 0.04
Integral gain 0.002 0.0015 0.004 0.004 0.1
Sampling frequency (Mhz) 1 1 1 1 1
Lock-in �lter order 2nd 2nd 2nd 2nd 2nd
Lock-in time constant (µs) 50 50 50 50 200

Tip-sample int. prop: substrate
Tip-sample interaction model DMT contact DMT contact DMT contact DMT contact Hertz
Tip radius (nm) 10 10 10 10 10
Young's modulus of tip (GPa) 130 130 130 130 130
Poisson's ratio of the tip 0.3 0.3 0.3 0.3 0.3
Auto Calculate intermolecular distance? yes yes no yes NA
van der Waals Adhesion force (nN) 3.2 3.4 N/A 1.4 NA
Intermolcular distance (nm) N/A N/A 0.2 N/A NA
Hamaker constant (J) 1.8 · 10−19 2.96 · 10−19 3.4 · 10−20 3.4 · 10−20 NA
Young's modulus of sample (GPa) 130 10 60 60 1
Poisson's ratio of the sample 0.3 0.3 0.3 0.3 0.3
Include sample visco-elastic forces None 3 element None None None
Sample E2 modulus (GPa) NA 0.1 NA NA NA
Sample Viscosity (Pa · s) NA 100 NA NA NA

Simulation parameters
Number of points plotted 1000 1000 1000 1000 1000
Maximum number of de�ection points per cycle 1000 1000 1000 1000 1000
Scan size (length) (nm) 150 30 30 30 100

Feature properties
Select a geometric feature Trapezoid Step Step Step Step
Feature height (nm) -40 0 1 1 0
Length of feature (nm) 110 10 10 10 50
Length of trapezoid top (nm) 50 NA NA NA NA
Include geometric convolution no no no no no
Specify material properties no yes yes no yes
Tip-sample interaction model NA DMT contact DMT contact NA DMT contact
Auto Calculate intermolecular distance? NA yes no NA yes
Intermolecular distance NA NA 0.2 NA NA
van der Waals Adhesion force (nN) NA 4.4 N/A NA 15
Hamaker constant (J) NA 7.1 · 10−20 3.0 · 10−20 NA 1e-19
Young's modulus of sample (GPa) NA 1.2 60 NA 1
Poisson's ratio of the sample NA 0.3 0.3 NA 0.3
Include sample visco-elastic forces None 3 element None None None
Feature E2 modulus (GPa) NA 0.1 NA NA NA
Feature Viscosity (Pa · s) NA 10 NA NA NA
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1. Example 1: Silicon trench

In the �rst example, we choose to simulate an amplitude modulated AFM scan of a silicon trench, representing a

critical feature of a semiconductor device.

Prior to performing the scanning simulation, we �rst explore the dynamics between the cantilever probe and the

sample with the Amplitude Modulated Approach Curves tool. The necessary inputs for this simulation are all also

present in Table II with the exception of the Z approach velocity, which was chosen as 200 nm/s. To begin this

example, open the AMAC tool from the VEDA tools selection. Enter the proper user inputs as shown in the Table

II, then click the Simulate button in the lower right-hand corner. After this simulation is complete, open the AMS

tool from the VEDA tools selection. After the user input window has opened, change the input values to those shown

in Table II, and click the Simulate button in the lower right-hand corner.

From the results of AMAC simulation (Figure 18), we �nd that the transition from attractive to repulsive regime

is more subtle (See Example 1 (IIIA 1) of AMAC for a contrasting example). To ensure that the cantilever will be

tapping on the sample at the chosen set point ratio, we look at the phase vs. Z distance curve (Figure 18). When

exciting the cantilever at resonance, a negative phase shift con�rms that the cantilever is oscillating in the repulsive

regime or �tapping� on the sample as long as the interaction is conservative. Finally, larger set point ratios are

generally preferred to reduce peak repulsive interaction forces (Figure 19). With this in mind, we choose a set point

ratio of 0.90 for this simulation.
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FIG. 18: (a) Amplitude (nm) vs. Z distance (b) Phase (deg) vs. Z distance (nm). (AMS Example 1)

Next, we need to determine the proportional gain and integral gain of the controller. To do so, we can apply the

following methodology. The default gains should provide a good starting point, however these values may need to

be adjusted for di�erent cantilever and tip-sample properties and lock-in time constant. In general, if the system is

unstable, or if there is a large ringing e�ect, these gains should be decreased. If the system is stable and there is no

ringing, then these gains may be increased if there is a slow response time. Note that the controller is active during
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FIG. 19: Peak repulsive and attractive interaction forces (nN) vs. Z distance (nm). (AMS Example 1)

the transient computations so if the simulation progress bar stays on transient for a very long time, you may have an

unstable controller and should probably decrease your gains.

Through some experimentation, we choose 0.002 as the proportional gain and 0.002 as the integral gain. Finally,

the sample geometry is constructed by choosing the trapezoidal feature type and entering a negative feature height.

All other inputs for this example are shown in Table II.

The results of the scanning simulation are shown in Figures 20 - 23. The measured topography (Figure 20a) refers

to the sample height imaged by the AFM. This is determined by �rst allowing the simulation to reach steady state

oscillations at the speci�ed set point ratio, and then as the cantilever begins to scan over the sample and the change

in Z distance based on the lock-in (Eq. 117) is recorded as the sample topography. The measurement error (Figure

21) represents the di�erence between the actual sample height and the measured topography. The amplitude error

(Figure 21) represents the di�erence between the computed amplitude and the amplitude that satis�es the set point

ratio. The amplitude is calculated two ways. First, by the lock-in and second by a Fourier transform. The controller

uses the lock-in's calculation, the Fourier transform is provided as a reference so that you can check the performance

of the lock-in. The phase (Figure 20) is computed is the same manner. Finally, the mean and peak interaction forces

(Figure 22) and indentation (Figure 23) are found from the tip oscillation waveform (without noise).
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FIG. 21: (a) The measurement error (nm) vs. X distance (nm) plotted represents the di�erence between the measured
topography and the sample height (see Figure 20). (b) Amplitude error (nm) vs. X distance (nm). The amplitude error is
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FIG. 22: (a) The mean interaction force (nN) vs. X distance (nm) is calculated based on the clean, padded tip oscillation
waveform. (b) Peak attractive and repulsive interaction forces (nN) vs. X distance. Peak forces are calculated based on the
clean tip oscillation waveform. (AMS Example 1)
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FIG. 23: The indentation (nm) vs. X distance (nm) corresponds to the peak repulsive force for the DMT contact force model.
Indentation is calculated from the clean tip oscillation waveform. (AMS Example 1)
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2. Example 2: Phase contrast in polymer blends

In this example we simulate scanning over a �at (no change in actual topography), heterogeneous sample composed

of two di�erent polymers. The total sample is 30 nm long and there is a 10 nm patch in the center that has

di�erent visco-elastic properties than the rest. We choose a smooth sample (Figure III B 2) to investigate the spurious

topography imaged by the AFM due to di�erent tip-sample interaction properties for the two materials. Finally,

we choose similar input parameters as the previous example (Table II), but with a cleaner signal (60 dB) to reduce

measurement error due to signal noise.

To run this simulation, choose �Example 2� from the example loader drop down box. Looking at the material

properties tab for the substrate versus the feature, we see that we are modeling the contact with a Hertz contact

based model (sec IVB2) and modeling the viscoelastic properties with a three element model (sec IVB5) The two

modulii E1 and E2 are the same, but the viscosity is di�erent. A better understanding of what this means can be

gained by using equations (50) and (51) to calculate the storage and loss modulus for each material. This is shown in

Figure . Because E1 and E2 are the same, the static modulus (i.e. the modulus that would be probed by a slow F-z

curve) are the same, as are the high frequency behaviors. However, because the viscosity is not the same, the dynamic

behavior at intermediate frequencies is di�erent. Speci�cally, near the drive frequency of 30 kHz (dashed line), the

red curve (the feature in the center) is signi�cantly softer than the blue curve (the substrate). The loss modulus is

signi�cantly higher on the blue material, so we expect more energy dissipation there.

The results for this simulation are shown in Figure III B 2-III B 2. Figure III B 2 shows the topography imaged by

the AFM. There is a step between the materials, but the sample is actually �at, so this is a measurement error of

around -0.8 nm. Looking as the indentation (c) we see that there is also a 0.8 nm di�erence in indentation and we

conclude that the measurement error is largely due to the di�erence in indentation of the (dynamically) softer sample.

Thus topography errors can be expected due to changes in local viscoelasticity of the sample.

If we were to repeat this simulation with a cantilever natural frequency that was signi�cantly lower, there would be

a reverse in phase contrast because there would be signi�cantly more energy dissipation on the blue material than on

the red. (try it yourself: for example 35 kHz nat. freq. and drive frequency. Also use a lockin time constant 2 kHz

and 3.33 line/s).

There is also clear phase contrast for the two di�erent regions (d). In particular, the red material has a lower phase.

This corresponds to less energy dissipation on the red material, as expected from the lower loss tangent at the driving

frequency.

This simulation was relatively straighforward. Now let us repeat the simulation for a case that is not so easy to

interpret. Increase the natural frequency and driving frequency to 200 kHz and increase the cantilever sti�ness to 40

N/m. You may also want to increase the Scan lines per second to 36 so that the simulation runs in a similar amount

of time. Repeat the simulation for both a setpoint of 0.9 and a setpoint of 0.3.
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FIG. 24: Dynamic Storage and Loss modulus for the two materials used in this example. (AMS Example 2)

The result is shown in Figure 27. We see that now, the red material has a higher phase at 90\% setpoint, but a

lower phase at 30% setpoint. How can this contrast reversal be explained? After all, the drive frequency is the same

in both cases, and the red material has a lower loss tangent at the driving frequency.

To shed some light on the situation, we want to examine some time histories. If you've used the example loader,

these were enabled. Otherwise, click to tab 3 Simulation Parameters, check the box �Include time histories�, set

number of histories to 1, and enter 15 for �choose time history points�. This gives one time history when the tip is in

the middle of the red region. We will want to compare the time histories for the di�erent setpoints.

The time history of force is shown in Figure 28. Note that while the cantilever de�ection is nearly sinusoidal,

the time history of force is far from sinusoidal. In other words, if we examine the fourier transform of the force, it

contains many higher harmonics (even though the fourier transform of the cantilever would have no signi�cant higher

harmonics). This means that the quantity of interest is not the loss tangent of the material at the driving frequency,

but the loss tangent over a wide range of driving frequencies. Importantly, the number and relative magnitude of the

higher harmonics is di�erent for the two di�erent setpoints, which means that e�ectively a di�erent frequency range

of the materials is being sampled in each case.
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FIG. 25: a) Schematic of sample. There is a region in the middle (the �feature�) that has the same height as the surrounding
area (the �substrate�) but di�erent material properties. b) Measured topography vs. X distance over which the AFM scans.
The sample is actually �at so the step in topography is an artifact. c) The indentation, which shows that the measurement
error is due to an increased indentation on the softer region. d) The lock-in phase (deg) vs. X distance (nm). (AMS Example
2)
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FIG. 26: (a) The mean interaction force (nN) vs. X distance (nm). The magnitude of the average force is a�ected by the
viscoelastic sample damping. (b) Peak attractive and repulsive interaction forces (nN) vs. X distance. (c) The tip-sample
energy dissipation (eV / drive cycle) vs. X distance (nm). (AMS Example 2)
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FIG. 27: 1st harmonic phase versus X for two di�erent setpoints when the natural frequency is increased to 200 kHz and the
sti�ness is raised to 40 N/m. There is now a phase contrast reversal between the di�erent setpoints.

FIG. 28: Time histories of force for the two di�erent setpoints in Figure 27. Also shown in the Fourier transform of the time
history. At the higher setpoint, the contact time is shorter, which means higher frequency components. At the lower setpoint,
the contact time is longer, which means not as many high frequency components. (AMS Example 2)
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3. Example 3: E�ects of adhesion, Jumps between regimes

In the previous example, the topography error was largely attributed to a di�erence in indentation caused by a

di�erence in sample elasticity. In this example we demonstrate that even for samples with identical elasticity, there can

be topography errors that are not related indentation. This simulation consists of a hard substrate with a small step

feature on it. The feature has identical tip-sample interaction properties to the substrate except that the Hamaker

constant is slightly smaller. We also explore consequences of the attractive and repulsive regimes introduced in the

Amplitude Modulated Approach Curves section. You may wish to work through AMAC example 1 and 2 before

trying this example.

You can run the example by choosing �Example 3� from the drop down menu, or by entering the parameters from

the table manually. After the simulation runs look at the measured topography, Figure 29. You will note that the

red line indicates the true topography and the blue line the measured topography. Clearly there is a signi�cant error.

It will be instructive in sorting this out to consider what really is the e�ect on tip-sample interaction of changing

the Hamaker constant while keeping the intermolecular distance the same? The Force Viewer tool can easily show

this. This tool is explained in section IIIH. For now, we simply present the result in �gure 30. We note that for

the larger Hamaker constant, the minimum value of force is smaller, although it occurs at the same gap. Also, for a

given force that is less than the minimum, say -1 nN, it occurs farther from the sample surface with a larger Hamaker

constant. Since tapping mode images at a constant amplitude reduction, and to a rough approximation the same

amplitude reduction will happen with a similar force level, we see that we might expect that with a larger Hamaker

constant, the cantilever will be farther away from the same surface at the same amplitude reduction.

Now, is there anything that we could do to get a better scan? Examine the mean interaction forces, shown in �gure

31. Note that they are negative for the whole scan. That is, we are imaging in an attractive regime. We may guess

that if we were to image in an repulsive regime, the e�ects of the attractive forces may be less important. The proper

way to �nd the repulsive regime would be use the Amplitude Modulated Approach Curves tool (section IIIA). For

now, assume that we'll try to guess a better set of parameters. Lower the setpoint ratio from 0.98 to 0.95 and re-run

the simulation. The results should look like Figure 32. This is actually worse than before. Not only is the feature

height incorrect, the section of substrate after the feature is incorrect as well. What is going on here? Again, examine

the mean interaction forces for a clue, see Figure 33. Note that the substrate section at the begining of the scan has

an repulsive mean force while the substrate section at the end of the scan has an attractive mean force. We are now

in a bi-stable region, which is even worse.

Again, the proper way to correct this situation is to perform Amplitude Modulated Approach Curves and �nd

a good region for imaging. For now, try the following: raise the Unconstrained Amplitude from 13 nm to 25 nm.

The results show now like look �gures 34 and 35. The topography error is now much smaller on the step, and the

mean interaction forces are repulsive for the whole scan. You'll note, of course, that now we have some overshoot at
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the leading edge of the step. This is due to poor controller gains. We brie�y discussed controller gains in the next

example.

FIG. 29: Measured topography and sample height. (AMS Example 3)
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FIG. 30: Tip-sample interaction forces for (AMS Example 3). The bold line is A=3.4e-20, the thin line is A=6.8e-20
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FIG. 31: Mean interaction forces. (AMS Example 3)
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FIG. 32: Measured topography and sample height, with setpoint lowered to 0.65 (AMS Example 3)
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FIG. 33: Mean interaction forces with setpoint lowered to 0.65 (AMS Example 3)

FIG. 34: Measured topography and sample height with unconstrained amplitude raised to 25 nm. (AMS Example 3)
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FIG. 35: Mean interaction forces with unconstrained amplitude raised to 25 nm. (AMS Example 3)
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4. Example 4: E�ect of controller gains

In this section we explore the e�ects of controller gains on the scanning response. There are many factors which

a�ect the response, the largest ones are scanning speed (slower speed = more accurate scan), setpoint ratio, lock-in

time constants, and controller gains. In this example we will explore only the controller integral gains.

This example use the same basic parameters from Example 3 but the feature material properties to be the same

as the substrate. To run this example, �rst select Example 4 from the Example loader drop down menu. The initial

value of Integral gain will be 0.001. Run this simulation. Then click Input to go back, and enter an integral of 0.002.

Repeat for 0.004 and 0.008. Then, examine the topography response (click the All button to overlay the results). If

you zoom in, it should look similar to Figure 36, your lines may be di�erent colors. The blue line in this example

corresponds to a gain of 0.001. This gain is clearly a little low, it takes awhile for the controller to respond when it

hits the step edge. The green line is 0.002. This is a little better. The purple line is 0.004. This response is much

quicker, but now there is some overshoot. Finally, the orange line is 0.008. This gain is so high that the controller is

on the verge of going unstable, and rings signi�cantly.

If we take this example to the extreme, try entering an integral gain of 0.032. You will note that the transient

percent number �uctuates rapidly and does not converge. Eventually, it will give up without ever performing the

simulation. This represents the fact that the controller cannot stabilize on the substrate surface and so it cannot

even begin the scan (let alone the step edge). You will note that are some hints on stabilizing the controller in the

�ErrorMessage� drop down. Conversely, if we enter a value of 0.00001 for the integral gain, the controller will take so

long to stabilize on the substrate surface that it will time out.

5. Example 5: Controller Instability

In this example we demonstrate an imaging artifact that can occur on sticky (i.e. highly adhesive) samples. Choose

example 5 from the Example loader. Note that this simulation models the substrate with Hertz contact (no adhesion)

and the feature with DMT contact (adhesion). When you run the simulation, the measured topography should look

like Figure 37. On the feature (between X=25 and X=75), there is a series of sharp spikes. The cantilever appears to

be jumping away from the surface for some reason. This is apparently some kind of controller instability. Based on

the results in the previous example, we might try to decrease the controller gains. However that will not change the

behavior (try it for yourself).

The best way to determine what is going on is to open the Dynamic Approach Curves tool and examine the approach

curve for the cantilever and sample parameters. In particular, we should examine the behavior around 70% setpoint

ratio that we are using in this example. Perform one run for the substrate (Hertz contact) and one for the sample

(DMT). The result should look like 38. On the substrate (red curve) the amplitude is reduced smoothly to zero as the

cantilever approaches the surface. But on the sample, the cantilever snaps in to permanent contact with the surface
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FIG. 36: The e�ect of integral gain on the measured topography response. (AMS Example 4)

at about A=4.5 nm (75% setpoint).

We can now explain the scanning behavior. The cantilever starts far from the surface with a large amplitude.

The controller brings the cantilever closer to the surface to reduce the amplitude. However, before the amplitude is

reduced to the setpoint of 70%, the cantilever snaps-in and the amplitude jumps to nearly 0. The controller sees that

this amplitude reduction has gone too far, and pulls the cantilever away from the sample in order to increase the

amplitude. The process then repeats.

There simply is no settings of controller gains or scannin speeds that would make this system stable. In a real

experiment, the only two choice would be to raise the setpoint ratio to a point that is stable (e.g. 80%), or to change

the free amplitude. Raising the setpoint is simple enough, but the behavior on change the free amplitude may be

non-intuitive. Try raising the unconstrained amplitude to 7 nm, and then decreasing it to 5 nm. Which one gives a

larger stable region (in terms of amplitude ratio)?

You should �nd that raising the free amplitude decreases the width of the stable region (i.e. the jump happens at

80% instead of 75) but lowering the free amplitude increases the width of the stable region (i.e. the jump happens

at 70% instead of 75). Why should this be? The answer has to do with the stability of dynamic systems, and is

somewhat out of the scope of this manual. The curious reader is encouraged to �nd an introductory text on mechanical

vibrations.
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FIG. 37: Measured topography. The large spikes represent a controller instability. (AMS Example 5)

C. Amplitude Modulated Approach Curves: Advanced

Microcantilevers are used to image biological and other materials in liquids. The Amplitude Modulated Approach

Curves: Advanced (AMAC: Advanced) tool was originally developed to simulate the response of an excited micro-

cantilever approaching a sample in liquid; however, it can also be used for multi-mode simulations in air or vacuum.

Both the �rst and second �exural eigenmodes of the cantilever are considered in the simulation (this allows for a

better approximation of the cantilever response in liquid).

The following assumptions are made in the AMAC Advanced tool:

1. Cantilever dynamics are modeled by the multiple eigenmode model (Eq. 101).

2. Interactions between the tip and the sample are modeled by any one of the models described in Section IVA.

3. The cantilever is either acoustically excited or magnetically excited [25].

4. The cantilever excitation occurs through either a single frequency (conventional) or two-frequencies (bimodal).
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FIG. 38: Approach curves on the substrate (red) and sample (blue). On the sample, the cantilever snaps in to the surface due
to the large attractive forces. (AMS Example 5)

5. The Z separation between the sample can be reduced or increased, but the cantilever does not move laterally.

Inertial and hydrodynamic forces caused by the Z motion are negligible.

This section provides an overview of the outputs of the AMAC: Advanced tool in the form of several example

simulations.
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TABLE III: Input parameters for AMAC: Advanced examples.

PARAMETER EX. 1 EX. 2 EX. 3 EX. 4 EX. 5

Operating conditions, cantilever properties
Choose excitation source Magnetic Magnetic Magnetic Magnetic Acoustic
Choose frequency scheme Single freq. Two freq. Single freq. Two freq. Two freq.
Number of eigenmodes 2 2 2 2 2
Unconstrained Amplitude (nm) 10 10 20 20 17
Unconstrained Amplitude (2nd drive frq) (nm) NA 1 NA 1.17 0.56
Auto calculate ki (i > 1)? no no no no yes
ki (N/m) 0.036, 1.4 0.036, 1.4 30, 1200 30, 1200 0.9
Qi 1.2, 2 1.2, 2 400, 1200 400, 1200 225, 1000
fi (kHz) 9.3, 72 9.3, 72 350, 2450 350, 2275 48.9, 306.6
fd (kHz) 9.3 9.3,72 350 350,2275 48.9, 306.6
Tip mass, (mtip/mc) 0 0 0 0 0
Z approach velocity (nm/s) 20 20 100 100 100
Z range Determination Autocalc Autocalc Autocalc Autocalc Specify
Lock-in Time Constant (us) 500 500 NA NA 200

Tip-sample interaction properties
Tip-sample interaction model Hertz Hertz Hertz Hertz DMT
Tip radius (nm) 30 30 10 10 20
Young's modulus of tip (GPa) 130 130 130 130 130
Poisson's ratio of the tip 0.3 0.3 0.3 0.3 0.3
Intermolecular Distance NA NA NA NA 0.1
Hamaker constant NA NA NA NA 4e-20
Young's modulus of sample (GPa) 10 1 1, 5 1, 5 1e-6
Poisson's ratio of the sample 0.3 0.3 0.3 0.3 0.3
Include visco-elastic forces? none Kelvin-voigt none none none
Sample viscosity (Pa· s) NA 100 NA NA NA

Simulation parameters
Number of points plotted 1000 750 500 500 1000
De�ection points per cycle 1000 1000 1000 1000 1000
Plot a higher harmonic? no no yes no no
Number of higher harmonics NA NA 1 NA NA
Choose higher harmonics NA NA 7 NA NA
Include time histories yes yes yes yes no
Number of time histories 3 1 1 1 NA
Choose amplitude ratio(s) 0.95, 0.9, 0.5 0.9 0.9 0.9 NA
Number of cycles 2 2 2 4 NA
Choose X-axis variable Amp. ratio Z-distance Amp. ratio Amp. ratio Amp. ratio
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1. Example 1: Multiple impact regimes for a Biolever in liquid

In this example, we will simulate a Biolever approaching a mica sample in a bu�er solution and observe oscillations

with multiple impacts per oscillation period [26]. We will show how abrupt transitions in the phase correspond to

grazing trajectories which indicate multiple impact oscillations. Refer to Table III, Example 1 for the correct input

values.

To begin this example, open the Amplitude Modulated Approach Curves (Advanced) tool from the VEDA

tools selection. Wait for the user input window to open (you should start in the Operating conditions and cantilever

properties tab). Either select �Example 1� from the Example Loader dropdown box, or follow these instructions to set

the parameters manually: Change the excitation source to Magnetic. Enter the �rst and second natural frequencies in

f (kHz) and excitation frequencies both as comma delimited values: 9.3, 72. Next, click on the Tip-sample interaction

properties tab. Verify the Include sample viscoelastic forces is set to None, and change the Young's modulus of sample

(GPa) to 10. Now, click on the Simulation parameters tab. Check the Include sample of time histories box. Make

sure that the Number of time histories to collect is 3, and that the corresponding amplitude ratios are 0.95, 0.9,

0.5. Set the Number of cycles included in sample to 2. Finally, click Simulate and wait for the simulation to reach

completion. The simulation runs in less than one minute.

The simulation records three extractions of de�ection/tip-sample interaction time histories. The �rst corresponds

to an amplitude ratio A1/A0 = 0.95 (see Figure 39a). At this amplitude ratio, single impact oscillations are observed

where the tip makes contact with the sample once per oscillation period. Closer to the sample, at an amplitude

ratio A1/A0 = 0.9 (see 39b), double impact oscillations are observed and eventually triple impacts occur are found at

A1/A0 = 0.5 (see Figure 39c).

Looking at the phase of the response (Figure 40), we have identi�ed the precise amplitude ratios where transitions to

the indicated multiple impact regime occurs where Gn marks to grazing trajectory which leads to an amplitude branch

where n impacts per oscillation occur. Not surprisingly, we can see in Figure 42 and Figure 43 that characteristics of

the interaction with the sample (mean force, peak force) are a�ected by multiple impact regimes.

Figure 43 demonstrates that tip-sample contact time for soft cantilevers in liquids behaves much di�erently than

sti� cantilevers in air (see Figure 13). Inside a given impact regime, contact time is actually decreasing as amplitude

ratio decreases. This is happens because of the role momentary excitation of the second eigenmode during tip-sample

contact. Secondly, we see that contact time increases nearly stepwise near the beginning of a multiple impact regime,

also indicating the importance of second eigenmode dynamics to tip-sample contact for soft cantilevers in liquids.

2. Example 2: Bimodal excitation of a Biolever in a liquid environment

In this example, we will simulate a Biolever being excited at its �rst two natural frequencies in a liquid environment.

Refer to Table III, Example 2 for the correct input values.
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FIG. 39: Photodiode de�ection signal up(t) and tip-sample interaction force Fts(t) fro two periods of oscillation at amplitude
ratios A1/A0 of 0.95 (a), 0.9 (b), and 0.5 (c). Each time the cantilever passes a grazing point, an additional impact with the
sample is added to the oscillation cycle. (AMAC Advanced Example 1)
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FIG. 40: Phase (deg) of the primary harmonic vs. amplitude ratio A1/A0. G1-G4 are grazing points where the cantilever tip
contacts the sample at zero velocity (AMAC Advanced Example 1).

Because the least common multiple of two drive periods ωd1 = ω1 = 2π · 9.3 kHz and ωd2 = ω2 = 2π · 72 kHz

is large, the period of the overall oscillation is long T = 0.0033s, which is very long compared to the period of the

fundamental drive. This requires a much longer lock-in time constant for a good measurement. In this example, we

compare two lock-in time constants: of 500 us and time constant of 5 ms.

To begin this example, open the AMAC Advanced tool from the VEDA tools selection. Wait for the user input

window to open (you should start in the Operating conditions and cantilever properties tab). Either select �Example

2� from the Example Loader dropdown box, or follow these instructions to set the parameters manually: Change the

excitation source to Magnetic and change the Frequency scheme to two frequencies (bimodal). Change the �rst and

second natural frequencies in f (kHz) to 9.3, 72, and include two drive frequencies fd (kHz) to 9.3, 72. Set Z approach

velocity (nm/s) to 20. Uncheck the Autocalculate Time Constant box and manually the set Lockin Time constant to
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FIG. 41: Response of the �rst q1(t) and second q2(t) eigenmodes tapping at an amplitude ratio A1/A0 = 0.95. Near times of
contact with the sample, the second eigenmode becomes momentary excited and then decays. A slower varying de�ection is
caused by the excitation force. (AMAC Advanced Example 1)
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FIG. 42: Mean (a) and peak repulsive (b) interaction forces (nN) vs. amplitude ratio. A sharp change in their trends occurs
near the grazing trajectories. (AMAC Advanced Example 1)

500 µs. Next, click on the Tip-sample interaction properties tab. Set the Young's modulus of sample (GPa) to 1.

Under the Non-conservative forces box, choose Kelvin-voigt for the sample viscoelastic forces dropdown box and set

the Sample viscosity (Pa · s) to 100. Now, click on the Simulation parameters tab. Make sure the Include sample of

time histories box is checked. Set the Number of time histories to collect to 1, and that the corresponding amplitude

ratio is 0.9 only. Set the Number of cycles included in sample to 2. Set the X-axis variable to Z-distance (nm) for

this example. At the bottom of this tab, uncheck Fourier so that only the lock-in computations are plotted not the

Fourier integrals (for clarity in the plots)

Finally, click the Simulate button in the lower right-hand corner, and wait for the simulation to reach completion.

Once the simulation has completed, click the Input button. Open the Operating conditions and cantilever properties

tab, and change the Lock-in Time Constant to 5 ms. Then, click the Simulate button again, and wait for the second

simulation to reach completion. For this example, each run generally takes less than 1 minute to complete.
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FIG. 43: Contact time (µs) vs. amplitude ratio A1/A0. Notice the abrupt change in contact time occurring near each grazing
point. (AMAC Advanced Example 1)

The amplitudes of the primary and secondary excitations are shown in Figure 44 (a) and (b), respectively, for

lock-in time constants of 500 us and 5 ms. Only after increasing the lock-in time constant by an order of magnitude

does the amplitude of the second eigenmode converge. The reason for this becomes clear looking at the time history

in Figure 45. The second eigenmode interacts sporadically with the sample due to the combination of external forcing

excitation and the momentary excitation from the tip-sample interaction. This leads to mixture of single and double

impact oscillations occurring at the same amplitude ratio.
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FIG. 44: Amplitude (nm) vs. Z-distance (nm) for the �rst (Left) and second (Right) frequencies. Two simulations were
performed with two di�erent lock-in time constants: 500 us and 5 ms. (AMAC Advanced Example 2)
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FIG. 45: Photodiode de�ection signal up(t) and tip-sample interaction force vs. Z-distance (nm) at an amplitude ratio
A1/A0 = 0.9. (AMAC Advanced Example 2)
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FIG. 46: Response of the �rst q1(t) and second q2(t) eigenmodes of the cantilever at an amplitude ratio A1/A0 = 0.9. (AMAC
Advanced Example 2)

3. Example 3: Internal resonance of a sti� cantilever in air

In this example, we will simulate internal resonance of a sti� microcantilever in air; this situation is commonly

known as �harmonic cantilevers� in the AFM community. Internal resonance is a phenomenon that occurs for special

cantilevers in which a higher eigenmode, such as the second �exural eigenmode or the �rst torsion mode, is very near

an integer multiple of the fundamental eigenmode [27�31]. This results in the higher eigenmode being excited by

a harmonic of the tip-sample interaction force. Refer to Table III Example 3 for the correct input values for this

example.

To begin this example, open the AMAC Advanced tool from the VEDA tools selection. Wait for the user input

window to open (you should start in the Operating conditions and cantilever properties tab). Either select �Example

3� from the Example Loader dropdown box, or follow these instructions to set the parameters manually: Change

the excitation source to Magnetic and set the Frequency scheme to Single frequency (conventional). Set the First
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frequency amplitude (nm) to 20. Set the eigenmode sti�ness values (ki (N/m)), and eigenmode quality factors (Q)

to 30, 1200 and 400, 1200, respectively. Change the �rst and second natural frequencies in (kHz) to 350, 2450, and

change fd (kHz) to 350. Change the Z approach velocity (nm/s) to 100. Next, click on the Tip-sample interaction

properties tab. Under this tab, change the Tip radius (nm) to 10, and make sure the Young's modulus of sample

(GPa) is set to 1 for the �rst simulation. On the second run, the Young's modulus of sample (GPa) will be changed

to 5. Set all non-conservative and forces to �no� or �none�. Now, click on the Simulation parameters tab. Set the

Number of points plotted to 500. Check the Plot a higher harmonic box, and set the Number of higher harmonics to

1. Set the higher harmonic to 7 only. Make sure the Include sample of time histories box is checked. Set the Number

of time histories to collect to 1, and that the corresponding amplitude ratio is 0.9 only. Set the Number of cycles

included in sample to 2. Also, set the X-axis variable to Amplitude ratio for this example.

Finally, click the Simulate button in the lower right-hand corner, and wait for the simulation to reach completion.

Once the simulation has completed, click the Input button. Open the Tip-sample interaction properties tab, and

change the Young's modulus of sample (GPa) to 5. Then, click the Simulate button again, and wait for the second

simulation to reach completion. For this example, each run generally takes about seven minutes to complete. This

gives a total running time of about 14 minutes.

Figure 47 shows the key di�erence between internal resonance in air for harmonic cantilevers, which is a steady

state resonant e�ect, and momentary excitation of higher eigenmode for soft cantilevers in liquids shown in Figure

39, which is a transient ring-down e�ect that occurs because of low quality factors inherent to soft cantilevers in

liquids. For harmonic cantilevers in air, which have high quality factors, the second eigenmode develops a steady state

resonant oscillation shown in Figure 47b.

The second eigenmode is excited by a harmonic of the tip-sample interaction force and therefore contains information

about tip-sample interaction and thus the material properties of the sample. Unlike phase contrast in air (See Figure

48), which tells only about variations in dissipative (nonconservative) interactions, the amplitude of the second

eigenmode in an internal resonance scheme contains information about conservative interactions. For the two purely

elastic samples (conservative tip-sample forces), there is a clear contrast in the amplitude of the second 7th harmonic

due to the di�erent elasticities.
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FIG. 47: Internal resonance observed while tapping on a sample of E = 1 GPa at an amplitude ratio A1/A0 = 0.9. (a)
Photodiode de�ection signal up(t) and tip-sample interaction force Fts(t) vs. time t/T at A1/A0 = 0.9. (b) The �rst and
second eigenmodes at A1/A0=0.9. (AMAC Advanced Example 3)
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FIG. 48: Internal resonance observed while tapping on a sample of E = 5 GPa at an amplitude ratio A1/A0 = 0.9. Photodiode
de�ection signal up(t) and tip-sample interaction force Fts(t) vs. time t/T at A1/A0 = 0.9. (b) The �rst and second eigenmodes
responses A1/A0 = 0.9. (AMAC Advanced Example 3)

4. Example 4: Bimodal excitation in air

In this example, we will simulate a microcantilever excited in air at its �rst two natural frequencies. To begin this

example, open the AMAC Advanced tool from the VEDA tools selection. Wait for the user input window to

open (you should start in the Operating conditions and cantilever properties tab). Either select �Example 4� from the

Example Loader dropdown box, or follow these instructions to set the parameters manually: Change the excitation

source to Magnetic and set the Frequency scheme to two frequencies (bimodal). Set the unconstrained amplitude

A0,1 (nm) to 20 and set the Second frequency amplitude (nm) to 1.17. Then, set the equivalent sti�nesses of the

eigenmodes ki (N/m), and eigenmode quality factors Qi to 30,1200 and 400,1200, respectively. Change the �rst and

second natural frequencies (kHz) and excitation frequencies (kHz) both to 350, 2250, and change fd1 (kHz) to 350.

Set fd2 (kHz) to 2275. Change the Z approach velocity (nm/s) to 100. Next, click on the Tip-sample interaction

properties tab. Under this tab, change the Tip radius (nm) to 10, and make sure the Young's modulus of sample

(GPa) is set to 1 for the �rst simulation. On the second simulation, the Young's modulus of sample (GPa) will be

changed to 5. Set the Sample viscosity (Pa · s) to 0. Now, click on the Simulation parameters tab. Set the Number of

55



C Amplitude Modulated Approach Curves: Advanced III TOOLS

0 5 10 15 20 25
0

5

10

15

20

25

Z−distance (nm)
A

1 (
nm

)

 

 

(a)
E

Sample
 = 1 GPa

E
Sample

 = 5 GPa

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

A
1
/A

0

A
7 (

nm
)

 

 

(c)

0 0.5 1
0

20

40

60

80

100

A
1
/A

0

P
ha

se
1 (

de
g)

 

 

(b)
E

Sample
 = 1 GPa

E
Sample

 = 5 GPa

0 0.5 1
−200

−100

0

100

200

A
1
/A

0

P
ha

se
7 (

de
g)

 

 

(d)

FIG. 49: (a) Amplitude A1 (nm) or the primary harmonic of the excitation frequency vs Z-distance for two di�erent samples.
(b) Phase of the primary harmonic vs amplitude ratio A1/A0 where A0 is the unconstrained amplitude. (c) Amplitude A7 (nm)
and (d) phase (deg) of the 7th harmonic vs amplitude ratio A1/A0 for two di�erent samples. (AMAC Advanced Example 3)

points plotted to 500. Uncheck the Plot a higher harmonic box. Make sure the Include sample of time histories box

is checked. Set the Number of time histories to collect to 1, and that the corresponding amplitude ratio is 0.9 only.

Set the Number of cycles included in sample to 4. Also, set the X-axis variable to Amplitude ratio for this example.

Finally, click the Simulate button in the lower right-hand corner, and wait for the simulation to reach completion.

Once the simulation has completed, click the Input button. Open the Tip-sample interaction properties tab, and

change the Young's modulus of sample (GPa) to 5. Again, click the Simulate button and wait for the second

simulation to complete. For this example, each of the two simulations may take up to 6 minutes to complete for a

total running time of about 12 minutes.

Figure 50 shows the waveform, tip-sample interaction, and individual eigenmode responses for the �rst and second

eigenmode. Because of the high quality factors in air, the momentary excitation of the second eigenmode is obviated

and the waveform is much less sporadic. However, the signal still does not evolve into a periodic oscillation with

respect to the drive frequency. Note the slightly di�erent tip-sample forces shown in Figure 50.

Unlike conventional single frequency tapping-mode, internal resonance, and the �rst eigenmode of a bimodal scheme,

we see that there is phase contrast in the second eigenmode that occurs even for the purely elastic samples (Figure

51). Additionally, the amplitude contrast of the second eigenmode is inverted from internal resonance (see Sec. III C 3,

the sti�er sample having a smaller amplitude.)
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FIG. 50: The cantilever response when approaching a sample of E = 1 GPa. (a) Photodiode de�ection signal up(t) and
tip-sample interaction force vs. Z-distance (nm) at A1,1/A0,1=0.9, where A1,1 is the �rst harmonic or the primary excitation
frequency and A0,1 is the unconstrained amplitude at this frequency. (b) The response of �rst and second eigenmodes at
A1,1/A0,1 = 0.9. (AMAC Advanced Example 4)
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FIG. 51: The cantilever response when approaching a sample of E = 5 GPa. (a) Observed tip de�ection and tip-sample
interaction force vs. Z-distance (nm) at A1,1/A0,1 = 0.9. (b) The �rst and second eigenmodes at A1/A0 = 0.9. (AMAC
Advanced Example 4)

5. Example 5: Phase spectroscopy in Bimodal AFM

This example reproduces the results of [32]. We will attempt to show that bimodal AFM is sensitive to variations

in conservative attractive forces. Select example 5 from the dropdown example loader and run the simulation. Then

click back to tab 2 and change the Hamaker constant from 4e-20 to 9e-20, and run the simulation. Compare the

two di�erent results. In particular look at the 1st and 2nd frequency phase. Note that we are plotting these phases

against the 1st frequency amplitude ratio. Then, click back to tab 3, and change the x-axis variable to 2nd frequency
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FIG. 52: (a) The amplitude A1,1 (nm) of the �rst harmonic of the primary excitation frequency vs Z distance for two di�erent
samples. (b) Phase of the �rst harmonic of the primary excitation frequency vs. amplitude ratio A1,1/A0,1 where A0,1 is the
unconstrained amplitude of the primary frequency. The amplitude A1,2 (nm) (c) and phase (1,2) (d) of the primary harmonic
of the second (bimodal) excitation frequency vs amplitude ratio A1,1/A1,0 for two di�erent samples. (AMAC Advanced
Example 4)
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amplitude ratio. Simulate both Hamaker constants. Examine the two phases now. Your results should look like

Figure 53. You should �nd contrast between the two materials when plotting the cross-mode representation. That is,

when you plot 2nd phase against 1st amplitude, or 1st phase against 2nd amplitude, there is contrast between the two

material. But when you plot 1st phase versus 1st amplitude, or 2nd phase versus 2nd amplitude, the two materials

look identical. Your simulation results will likely show a little more noise than [32]. This is because we have picked a

fast approach speed (100 nm/s) in order to keep the simulation time short. Reducing the approach speed will yield

cleaner results.

FIG. 53: Demonstration of bimodal sensitivity to conservative material properties. The left column shows the parallel mode
representation: 1st phase vs 1st amp and 2nd phase vs 2nd amp. In this representation, both materials have the same result
(aside from a small amount of noise). The right column shows the cross-mode representation, 1st phase vs 2nd amp and
2nd phase versus 1st amplitude. In this representation, there is a very clear di�erence between the two materials. (AMAC
Advanced Example 5)

D. Amplitude Modulated Scanning (Advanced)

The Advanced Amplitude Modulated Scanning builds upon the Basic Scanning tool in the same way that the

Advanced Amplitude Modulated Approach Curves tool builds upon the Basic Amplitude Modulated Approach Curves.

Multiple eigenmodes, magnetic excitation, and other advanced features are included. New users should �rst refer to

the examples for the Advanced Amplitude Modulated Approach curves tool and the Basic Amplitude Modulated
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Scanning tool. All of the concepts in these tools are directly transferable.

1. Material Contrast in Bimodal AFM

While imaging a two component-blend polymer sample with a tapping mode cantilever in air, what types of material

contrast can bimodal AFM give between the two blends? Open the Amplitude Modulated Scanning tool (advanced)

and Load Example 1. This will set the parameters for a small step feature on a substrate, initially the feature and

the substrate have the same material properties.

Before we run the bimodal case, let's run a plain tapping mode case. Choose �single frequency (conventional)� from

the dropdown box �Choose frequency scheme� on tab 1. Run this simulation and look at the topography. By default,

the feature has the same material properties as the substrate. Now, click back and change the Feature Young's

modulus to 5 GPa on tab 4. Run this simulation. Examine the 1st harmonic phase. Can you see any di�erence

between the phase on the feature and on the substrate?

You should notice two things. First, there is a topography error due to the di�erent sti�ness of the feature. Second,

there is no phase contrast. Remember, phase in tapping mode depends on the RATIO of dissipative to conservative

forces. That ratio is zero for both cases here because there is no dissipative component.

Now, change back to tab 1, and select Bimodal. You'll note that the drive amplitudes and frequencies are already

�lled in for you. Run this simulation. Examine second frequency amplitude and phase. You should see a very clear

contrast between the materials.

Experiment with di�erent combinations of materials. What types of contrasts can you see?
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E. Amplitude Modulated Approach curves, steady state solution

THIS SECTION IS STILL UNDER CONSTRUCTION

The basic idea of the tool is described in Ref [33]. This tool uses a completely di�erent method than all of the other

tools. Instead of numerically solving the exact equations in time, an single-harmonic steady state version is used.

This is less accurate, however in many situations can still provide a reasonable estimate and is an order of magnitude

faster than other tools. This was motivated by the desire to simulate polymer surfaces using Attard's model (section

IVB8). This model is computationally intractable for the direct simulation used in the other tools, but runs in a

reasonable amount of time with this tool.

The basic options are similar to the other Amplitude Modulated Approach Curves tools. Some exceptions are

described below.

First, the excitation frequency is always assumed to be equal to the natural frequency (i.e. on resonance operation).

Second, for bimodal operation, the tool needs to compute a number of cycles equal to the lowest common multiple

(aka as �winding number�) of the two drive periods. E.g. if the second frequency is 6.5 times the �rst, then the

winding number is 2 (i.e. the pattern repeats every 2 cycles of the �rst frequency and every 13 cycles of the second

frequency, because 13/2=6.5). If the ratio is 6.25 then the winding number is 4, and if the ratio is 6.249, then the

winding number is 1000 (6249/1000 = 6.249).

To avoid this number being excessive, the second drive frequency is rounded. Two types of rounding are available.

The �rst is ordinary everyday rounding to either 1, 2 or 3 decimal places. For example 6.24 (156/25, winding number

25) could be rounded to 6.2 (31/5 winding number 5). Although this is easy to understand, it may result in a larger

than necessary winding number (i.e. a slower simulation).

A more intelligent rounding is available. This looks for a pair integers p, q such that p/q is approximately equal

to the desired ratio and q is no more than a speci�ed limit. q is the winding number. E.g. instead of rounding 6.24

down to 6.2 (winding number 5) with ordinary rounding, we could round it up to 6.25, which has a winding number

of 4. This results in a simulation that is 20% faster.

You can check the exact frequencies that were used by looking for the �Omega_i (natural frequency)� line in the

�Misc internal values� result.

The following examples are available

• Example 1: This is an identical set of parameters to Example 1 from the Basic Amplitude Modulated Approach

Curves tool, meant to illustrate the di�erences between them. You should note that the steady state tool runs

an order of magnitude faster, and gets nearly the same result. However, as the amplitude reduction must always

be monotonic in this tool, it misses a portion of the curve after the jump from attractive to repulsive mode.

• Example 2: This example illustrates using the tool on a conservative sample, speci�cally capillary forces

61



F Frequency Sweep III TOOLS

• Example 3: This example illustrates the use of Attard's model in tapping mode, in repulsive regime. Examing

the time history plots will show the useful features of Attard's model.

• Example 4: A second example of Attard's model, but this one is performed in an attractive regime. Note in the

time histories, the tip does not indent the sample, rather you can see the sample rising up to meet the tip.

• Example 5: This example illustrates the use of bimodal on a conservative sample (Hertz)

• Example 6: This example illustrates the use of Attard's model in bimodal

F. Frequency Sweep

In the process of imaging a sample, an AFM operator would typically use a frequency sweep tuning curve to �nd a

natural frequency (in order to pick an operating frequency), and possibly to measure the quality factor and/or sti�ness

of the given cantilever. In this case, the frequency sweep performed far from the sample, and frequency response is

linear. To study nonlinear interactions with the sample, the cantilever is brought closer to the sample so that the

oscillating tip interacts with the sample. The frequency sweep tool in VEDA is able to simulate frequency sweeps

while in interacting with the sample. This is useful for gaining understanding of the underlying nonlinear dynamics

of AFM as well as understanding the operation of the instrument.

1. Example 1: Examining the nonlinear resonance response of a microcantilever near HOPG in air

This example simulates the frequency response of an Olympus diving board cantilever at various distances above

HOPG in dry air. The parameters for this simulation are taken from Lee, et al. [7] and are given in Table IV. In this

example we will investigate the nonlinear resonance response.

To begin this example, open the Frequency Sweep tool from the VEDA tools selection. Start in the Operating

conditions and cantilever properties tab. For excitation method choose Acoustic excitation, for Excitation scheme,

choose Linear ramp, and uncheck the box Use setpoint. Enter the values listed in the table in the respective boxes.

Then click the Tip-sample interaction properties tab. For Tip-sample interaction model select DMT contact, and

uncheck the box Auto Calculate intermolecular distance. Enter the values from the table in the respective boxes.

Then click simulate (the defaults in the Simulation parameters will be su�cient for this example.

The simulation should take approximately 20s. After the simulation has run, click the input button in the lower

left to go back to the inputs. Select the Operating conditions and cantilever properties tab and increase the Uncon-

strained Amp @ Nat Freq (nm) from 89.3 nm to 89.4 nm. Click the simulate tab. Repeat this process increasing the

unconstrained amplitude by 0.1 nm each time until a maximum of 90.2 nm (total 10 simulation runs).

Then, click the All button to the right of the slider bar on the graph window to plot all of the runs on top of

each other. Then, click and drag in the plot window to zoom in on the peak of the curves. You should see a result
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like in Figure 54. This �gure is approximately the same as Fig 9 in Lee, et al., with three exceptions. First, Lee, et

al. plotted peak-peak amplitudes while VEDA plots peak amplitudes, so the results are di�erent by a factor of two.

Second, Lee, et al. did not use exactly 0.1 nm steps. Finally, the paper was computed using AUTO97, which is able

to �nd unstable branches (the dashed lines in Figure 9 of Lee, et al. ). VEDA integrates the di�erential equation

numerically and so only the stable branches can be plotted.

We note the following results about the plot. The lowest curve, representing 89.3 nm amplitude, is approximately

the frequency response of a linear single degree of freedom (DOF) oscillator. The separation 90 nm minus the peak

amplitude 89.3 nm yields a minimum tip-sample separation of 0.7 nm during the oscillation. At this range the van der

Waals forces are almost zero, so there is little non-linear e�ect. With each successive curve, the minimum tip-sample

separation decreases, so now van der Waals forces start to be signi�cant. On each curve, identify the point at which

the maximum amplitude occurs. You will notice that these points are decreasing in frequency as amplitude increases.

This is characteristic of a softening non-linearity (see, for example [34]). At 89.8 nm unconstrained amplitude, the

resonant peak will start to move up in frequency. This indicates that the repulsive DMT forces are starting to have

some e�ect. DMT contact forces have a sti�ening e�ect. By 90.0 nm unconstrained amplitude, the resonance peak

has moved to the right of the original resonant peak. If we draw a line connecting the resonance peaks for each curve,

we get the �backbone� curve, which is Figure 8 in Lee, et al.

Let us use VEDA to examine some further features of this phenomena. From the Result drop down box, pick Mean

Interaction forces. Drag Unconstrained Amp @ Nat Freq slider bar from left to right to highlight the curves one at

a time. It should look something like Figure 55. Notice that as the Unconstrained amplitudes increase, the Mean

forces become more and more negative (attractive) until 89.8 nm. At 89.8 nm the mean force is still attractive but it

is has started to turn around and come back towards zero. At 90.0 you see that the mean force has become positive

(repulsive) for the �rst time. This is the transition between the so-called attractive and repulsive imaging regimes.

Of course, in an real experiment we could not observe tip-sample interaction force directly. But we can observe

the phase of the response signal. Choose First harmonic phase from the drop down box, which will look like Figure

56. For the curves in the attractive regime, note that the phase angle increases (relative to the linear case) as the

frequency sweeps through resonance but for the curves in the repulsive regime, the phase angle decreases.
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TABLE IV: Input parameters for Frequency sweep examples.

PARAMETER EXAMPLE 1

Operating conditions, cantilever properties
Choose excitation source Acoustic
Excitation scheme Linear Ramp
Number of eigenmodes 1
Unconstrained Amp. @ Nat. Freq.(nm) 89.3
Auto calculate ki (i > 1)? no
ki (N/m) 0.87
Qi 33.3
Auto calculate Slope calibration? yes
f1 (kHz) 44
fdstart (kHz) 43.5
fdstop (kHz) 44.5
Sweep time (s) 0.1
Tip mass, (mtip/mc) 0
Use setpoint no
Z distance (nm) 90

Tip-sample interaction properties
Tip-sample interaction model DMT contact
Tip radius (nm) 10
Young's modulus of tip (GPa) 130
Poisson's ratio of the tip 0.3
Auto Calculate intermolecular distance? no
Intermolecular distance (nm) 0.38
Hamaker constant (J) 2.96e-19
Young's modulus of sample (GPa) 10
Poisson's ratio of the sample 0.3

Simulation parameters
Number of points plotted 1000
De�ection points per cycle 1000

2. Example 2: E�ect of sample Sti�ness on non-linear response

In this example, we will determine the e�ect of sample sti�ness on the non-linear frequency response that we found

in the previous example. This example will use the same basic parameter set as Example 1. If you have just run

example 1, then hit the �Clear� button in the outputs window to delete the old results and then go back to the

Simulation. If you are starting this example fresh, follow the instructions to in Example 1 to input the �rst set of

parameters, or use the Example Loader to get the �rst set of parameters. Make sure the Unconstrained Amplitude

is 90.2 nm. Then in the simulation tab, change the Young's modulus to 5 GPa and hit the �simulate� button. Once

the simulation has run, return the to inputs window and change Young's modulus to 10 GPa. Repeat for 15, 20, and

25 GPa.

Hit the �All� button to overlay the results. If you zoom in a little bit, the output window should look like Figure 57.

You will notice that the jump-down happens farther to the right for sti�er samples. That is, there is a larger range

of frequencies where non-linear e�ects are important. This is a general trend in AFM: Tip-sample non-linearities are
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FIG. 54: First harmonic amplitude versus frequency for 10 di�erent unconstrained amplitudes. The series of curves illustrates
the softening (due to van der Waals) and then hardening (due to DMT contact) backbone curve (Frequency Sweep Example
1)

more pronounced for sti�er samples.

3. Example 3: Sweep up versus sweep down

In this example, we will examine the di�erence between sweep up (starting at a low frequency and gradually

increasing the frequency) and sweep down (starting at a high frequency and gradually decreasing the frequency). For

a linear system, these two are always identical, but for a non-linear system they may be quite di�erent. This example

will use the same basic parameter set as Examples 1 and 2. If you have just run example 1 or 2, then hit the �Clear�

button in the outputs window to delete the old results and then go back to the Simulation. If you are starting this

example fresh, follow the instructions to in Example 1 to input the �rst set of parameters, or use the Example Loader

to get the �rst set of parameters. Make sure the Unconstrained Amplitude is 90.2 nm, and set the sample Young's

modulus to 15 GPa and hit the �simulate� button. Once the simulation has run, return the to inputs window and

reverse fd start and fd stop (i.e. set fd start = 44.5 and set fd stop = 43.5 kHz). Then hit simulate again. Hit the

�All� button to overlay the two results.

You will notice that the sweep up and sweep down are close to each other, except for a small region in the middle.

If you zoom in on this region, the output window should look like Figure 58. First, examine the responses at 44.2

kHz. At this frequency, the sweep up and sweep down simulations have very di�erent amplitudes. This mean that
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FIG. 55: Mean interaction force versus frequency for 10 di�erent unconstrained amplitudes. The series of curves illustrates the
transition from the attractive regime to the repulsive regime (Frequency Sweep Example 1)

at this particular combination of Z, unconstrained amplitude, and drive frequency, there are two di�erent possible

solutions. Which solution you get depends on the initial conditions (i.e. where you are coming from). Note that this

condition, refered to as bi-stability, can be undesirable for imaging. Bi-stabilities are explored more in the Amplitude

Modulated Approach Curves examples.

Now, examine the response at 44.3 kHz. There is also a small di�erence between sweep up and sweep down here.

Is this also due to a non-linear e�ect? No. This is a linear e�ect due to the fact that we are changing frequency at a

fairly rapid rate (change of 1 kHz in 0.1s) so that the system is not quite at steady state. If you were to repeat this

simulation but with a sweep time of 0.5s instead, there should be much better agreement at 44.3 kHz, but of course

that simulation will take �ve times longer to run. You might also notice that the jump-downs will be sharper (higher

slope) at the slow sweep rate, and might happen at slightly di�erent frequencies.
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FIG. 56: First harmonic phase versus frequency for 10 di�erent unconstrained amplitudes. The series of curves illustrates the
transition from the attractive regime to the repulsive regime (Frequency Sweep Example 1)

G. Force Distance Curves

This tool simulates approach and retraction curves between the tip of an unexcited cantilever and a sample.

The following assumptions are unique to the F-Z Curves tool:

1. The cantilever is unexcited (forcing function applied to the cantilever). Any tip de�ections would be caused by

interactions between the tip and sample only.

2. Interactions between the tip and the sample are modeled by any one of the models described in Section IVA.

3. The Z separation between the sample can be reduced or increased, but the cantilever does not move laterally.

4. Inertial forces caused by the Z motion are negligible (but viscous forces are included)

The curves may be triggered (approach to a speci�c de�ection and then reverse) or untriggered (approach to a speci�c

Z distance and then reverse).

This section provides an overview of the outputs of the F-Z Curves (FZC) tool in the form of several example

simulations.
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FIG. 57: First harmonic amplitude versus frequency for 5 di�erent sample Young's moduli (Frequency Sweep Example 2)
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FIG. 58: First harmonic amplitude versus frequency for sweep up versus sweep down (Frequency Sweep Example 3)
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TABLE V: Input parameters for F-Z Curves examples.

PARAMETER EXAMPLE 1 EXAMPLE 2

Operating conditions and cantilever properties
Operating mode Untriggered, Approach & Retract

Number of eigenmodes 1 1
Auto calculate ki (i > 1)? no no
ki (N/m) 0.87 0.87
Qi 33 33
fi (kHz) 44 44
Tip mass 0 0
Z approach velocity (nm/s) 200 200
Gamma (Z drag) 0 0
Initial Z separation (nm) 10 -5
Final Z separation (nm) -5 10

Tip-sample interaction properties
Tip-sample interaction model DMT contact JKR
Tip radius (nm) 10 10
Young's modulus of tip (GPa) 130 130
Poisson's ratio of the tip 0.3 0.3
DMT Calculation Options Enter Adhesion force and

Hamaker constant,
autocalculate intermolecular

distance

NA

van der Waals adhesion force (nN) 1.4167 1.4167
Hamaker constant (J) 3.4 · 10−20 NA
Young's modulus of sample (GPa) 1 1
Poisson's ratio of the sample 0.3 0.3

Simulation parameters
Number of points plotted 1000 1000
De�ection points per cycle 1000 1000
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1. Example 1: Approaching and retracting from a sample modeled using DMT contact

The primary experimental observable in this type of experiment is tip de�ection versus Z displacement, and this is

shown in Figure 59. Typically this de�ection is then multiplied by the cantilever static bending sti�ness to arrive at

tip-sample interaction force versus Z displacement. Since this is a simulation, we have the tip-sample force available

to us directly, see �gure 60. Note that there appears to be some ringing of the cantilever on snap-in. This is because

VEDA is simulating the entire cantilever dynamics in the time-domain, it is not a static solution. Two quantities

that are often of interest in force spectroscopy are tip-sample interaction force versus gap and indentation versus Z

displacement. In an experiment these would have to be reconstructed from the observed de�ection, but since this is

a simulation, we have them directly in Figures 61 and 62.
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FIG. 59: Observed cantilever tip de�ection versus Z-distance for the unexcited cantilever (modeled using DMT contact). (FZ
Curves Ex. 1)

2. Example 2: Approaching and retracting from a sample modeled using JKR

This example uses the exact same parameters as Example 1, except the sample is modeled using JKR contact

instead of DMT. Assuming you have already run example 1, go back to tab 2, change the interaction model to JKR

and then simulate again. Compare the results for the two di�erent interaction models. When you examine the

cantilever de�ection versus Z (Figure 63) you will note that during the approach, the cantilever tip snaps onto the

sample later using the JKR model than with the DMT contact model. The reason for this is the discontinuous jump

in the force seen in JKR, whereas the DMT contact model utilized an attractive van der Waals force even before the
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FIG. 60: Tip-sample interaction force versus Z-distance for the unexcited cantilever (modeled using DMT contact). (FZ Curves
Ex. 1)

cantilever tip contacts the sample.

3. Example 3: Approaching and retracting from a sample using Attard's model

This example demonstrates the use of Attard's model for viscoelasticity (Section IVB8). As this model is more

complex than other models, an additional visualization has been included: a movie showing the interaction of the tip

with the sample surface. This is located under �Surface Deformation Movie�

73



G Force Distance Curves III TOOLS

t i p − s a m p l e  g a p  ( n m )

0 2 4

F
o

rc
e

 (
n

N
)

0

2

FIG. 61: Tip-sample interaction force versus gap for the unexcited cantilever (modeled using DMT contact). (FZ Curves Ex.
1)
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FIG. 62: Tip indentation into sample versus Z-distance for the unexcited cantilever (modeled using DMT contact).(FZ Curves
Ex. 1)
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FIG. 63: Tip-sample interaction force versus Z-distance for the unexcited cantilever (modeled using JKR). (FZ Curves Ex. 2)
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FIG. 64: Observed cantilever tip de�ection versus Z-distance for the unexcited cantilever (modeled using JKR).(FZ Curves Ex.
2)
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FIG. 65: Tip indentation into sample versus Z-distance for the unexcited cantilever (modeled using JKR).(FZ Curves Ex. 2)
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FIG. 66: Observed cantilever de�ection vs Z distance for a soft sample modeled using Attard's model (Fz curves Ex 3)
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FIG. 67: Surface deformation movie. The top line is the tip and the bottom line is the sample. (Fz curves Ex 3)
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H. Force Viewer

In order to run a simulation, it is necessary to specify a tip-sample interaction model. Cartoons of representative

tip-sample interaction models are given in section IVA. It is often useful, however, to see the exact tip-sample force

vs. gap curve for a speci�c set of parameters. The F-Z curves tool can be used for this (e.g. Figure 61), however

the problem with that tool is that since it simulates the cantilever dynamics, some regions of the F-d curve are not

visible. That is, when the cantilever snaps-in or pulls-o�, it skips over a region in the F-d curve. The force-viewer

tool is utility that does not have this de�ciency. It plots the entire F-d curve independent of any cantilever dynamics.

1. Example 1: DMT Model

As an example, we shall plot the tip-sample interaction force for the parameter of F-Z curves Example 1. Open

the Force Viewer tool from the VEDA tools menu. Enter 5 nm for the starting gap, -0.9 for the �nal gap. On the

Tip-sample interaction tab, enter the parameters from Table V Example 1. Press simulate. You should get an output

like Figure 68. Compare this with Figure 61. The two �gures should be identical, except Figure 68 contains the entire

curve in the area where Figure 61 had a blank spot.

The force viewer also plots the interaction sti�ness, which is the �rst derivative of the interaction force. This is

useful for comparision to many small-amplitude spectroscopy theories which calculate interaction sti�ness (e.g. [35]).

Note that the sign convention on interaction sti�ness is typically taken such that a positive interaction sti�ness causes

a positive shift in resonance frequency. In other words, kint = − ∂
∂dFts(d). Versions of VEDA prior to 2.0.19 (Feb

2011) used the opposite sign convention (positive gradient causes negative frequency shift, which is not as commonly

used in the literature).

2. Example 2: Viscoelastic Material Models

The force viewer tool can also be used to explore non-conservative forces. In this case, the forces when approaching

the sample are di�erent than the forces retracting from the sample. In this example, we demonstrate using the

tip-sample force viewer to see the forces when a Prony series model is used.

We start with the DMA (Dynamic Mechanical Analysis) data of Read [36] for polypropylene. The raw data is

reproduced in Figure 69. This data is speci�ed as Eloss and Estorage versus frequency, which is typical for DMA data.

VEDA cannot directly utilize this type of data. Instead, we must �t the data to one of the constitutive models in

section IVA. In this case we use a Prony series (Generalized Maxwell) section IVB6. The Prony series consists of

a set of pairs of modulii Gj and relaxation times τj . To do the �t, we specify the τj a priori, and then use a least

squares �t to calculate the modulii Gj that best �t the data.

In this case we choose to use a seven term series (more terms will �t the data better, but obviously will take longer
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FIG. 68: Tip-sample force versus gap (modeled using DMT). Force Viewer Ex. 1

to simulate). We anticipate running a simulation with a 100 kHz cantilever which will have a contact time of a few

microseconds, so we choose the relaxation times equally spaced (on a logarhythmic scale) between 2 ms and 0.1 us,

which gives relaxation time spaced above and below the expected contact time. The �t is conducted using lsqcurve�t()

command in Matlab. You can use the �Fit Viscoelastic DMA data to Prony Series� tool to do these �ts on your own

data.

The results are shown in �gure 70. As you can tell, the Prony series �ts the data reasonable well between 100 Hz

and 1 MHz. A better �t could have been obtained with more terms, but this is not bad for an example.

Now we will see the forces that result from indenting this sample. Open the force viewer tool and select Example
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FIG. 69: DMA data from [36] for polypropylene. Force Viewer Ex. 2

2 from the drop down box. You'll note that the Non-conservative velocity option has been set to a sine wave with

duration 10 microseconds, and that the initial gap is set just above zero. This approximately simulates a contact time

of 10 us. On the tip-sample interaction tab, you'll note that the Prony series coe�cients have been �lled in at the

bottom under Non-conservative forces. Click to simulate a single tap with these parameters. Then, go back to tab 1

and decrease the time from 10 microseconds to 0.1 microsecond and re-run.

The results are shown in Figure 71
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FIG. 70: Prony series �t to dma data. Force Viewer Ex. 2
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FIG. 71: Simulation of a single tap on a polymer at two di�erent rates. Force Viewer Ex. 2

3. Example 3: Attard's model

Compare this model to the Force Distance Curves Tool Example 3 in section IIIG 3. The tip-sample interaction

parameters are identical. For the FZ curves tool, the Z distance is speci�ed, and the tip-sample gap is determined
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based on the dynamic de�ection of the cantilever. In the force viewer tool, the tip-sample gap is speci�ed a priori.

There is no cantilever. In the limit of an extremely sti� cantilever (i.e. zero cantilever de�ection) the two tools would

give the same result.

I. FM Approach Curves

1. Approach to a Si facet in UHV

In this example we simulate the approach of a silicon tip onto a (111) silicon facet. The majority of the parameters

are taken from [37]. The only di�erence is that Nony's controller scheme is slightly di�erent, so we have used controller

gains appropriate to VEDA's controller.

Launch the Frequency Modulated Approach Curves tool and enter the parameters shown in Table VI. The majority

of the parameters are similar to those in the Amplitude Modulated Approach Curves tool so we will only walk through

a few of the parameters.

The Frequency Modulation tab is unique to the FM tools. On it you will �nd the controller gains for the frequency

modulation controllers. Chose Direct Amp/Freq Control yes (see section IVF ). We have implemented the method

of [38] to automatically calculate gains for the PLL and amplitude controller. Leave this box checked to get a good

starting guess for the gains. After the simulation has run, you can see the gains that were calculated in the Misc.

Internal Values result, and use them as starting values if you want to tweak the controller performance.

The simulation parameters tab contains one di�erence from the AM tools. For the AM tools, it was possible to

plot most variables against either Z displacement or setpoint ratio. For FM, setpoint ratio does not exist because

amplitude is constant. Therefore, the options are Z displacement and min gap (also known as the �distance of minimum

approach� in the literature). Choose min gap for this simulation to compare with Nony's results.

Hit the simulate button and wait for the simulation to run. Note that this simulation does take several minutes to

run. If you are short on time, you can increase the approach speed to 20 nm/s. The results will be slightly o�, but

the general picture will be okay.

The �rst thing you should check in any frequency modulation approach curve is the the controller performance.

Examine the �rst harmonic amplitude and �rst harmonic phase. You will want to verify that the these two parameters

stay relatively constant during the approach. The phase is shown in Figure 72. In this case phase is constant to within

about 0.1 degree during the majority of the approach and starts to deviate at the very end (where the Morse potential

starts changing very rapidly). The amplitude controller also performs well, about 0.1 percent deviation over the entire

range. This controller performance should be acceptable. When you start to run your own simulations, always check

these two parameters. If the �rst harmonic amplitude or phase starts to deviate from a straight line, you'll need

to tune the controller parameters. If these drop signi�cantly, you may need to increase the gains. If they start a

growing oscillation, you may need to decrease the gains. You will need to reconsider the gains any time you change a
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parameter, but especially approach speed, quality factor, lock-in parameters, sampling rate, and natural frequencies

Now, examine the FM Feedback results. This contains the two main FM observables. The frequency shift is of

most interest. The shape of the frequency shift follows the tip-sample interaction force. In fact, the exact tip-sample

interaction force should be recoverable from the frequency shift (see [39]). The other channel is the drive amplitude,

which is sometimes called the �apparent dissipation� or sometimes just �dissipation.� In this case, the Morse potential

is a purely conservative interaction, so there is no actual dissipation there. However, the driving frequency is changing,

and the energy dissipation of a simple harmonic oscillator changes with the drive frequency. This is one contribution

to the apprent dissipation. A second component is the small phase error we noted before. A phase error indicates

that the PLL is not exactly tracking the natural frequency, and when driving o� resonance more energy is required.

To reduce this error, we could decrease the approach speed to give the PLL more time to react.
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FIG. 72: First harmonic phase versus min gap during the approach curve. The phase stays relatively constant during most of
the approach, indicating a good controller. Near the left side of the �gure, the change in phase indicates that the controller
cannot keep up as well in this region. FMAC Ex. 1
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1
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TABLE VI: Input parameters for Frequency Modulated approach curve examples.

PARAMETER EXAMPLE 1 EXAMPLE 2

Operating conditions, cantilever properties
Choose excitation source Acoustic magnetic
Choose frequency scheme Single Frequency Single Frequency
Number of eigenmodes 1 2
Unconstrained Amp. @ Nat. Freq.(nm) 7.0 1
Auto calculate ki (i > 1)? no yes
ki (N/m) 30 0.6
Qi 100 3,4
f1 (kHz) 150 10,70
fd (kHz) 150 10
Tip mass, (mtip/mc) 0 0
Approach velocity (nm/s) 2 5
Initial Z separation (nm) 9.5 3
Final Z separation (nm) 7.1 0.5
Choose Lock-in �lter order 4th order 2nd order
Lock-in time constant 50 us 1 ms
Sampling frequency (MHz) 0.5 1

Frequency Modulation
Direct Amp/Phase Control yes yes
Autocalculate Controller gains yes yes

Tip-sample interaction properties
Tip-sample interaction model Morse Potential + van der Waals Hertz
Tip radius (nm) 5 5
Hamaker constant(J) 1.865e-19 NA
Morse equilibrium position(nm) 0.2357 NA
Morse range(nm) 0.12 NA
Morse depth(J) 3.641e-19 NA
Young's modulus of sample 60
Poisson's ratio of the sample 0.3
Include hydration forces no yes
Lambda NA 0.245
Hydration scaling NA 1.2e7
Non-conservative solvation forces no yes
Scaling NA 1e-5
Decay NA 0.25

Simulation parameters
Number of points plotted 1000
De�ection points per cycle 1000
Choose x-axis variable Min gap
use defaults for all other parameters on this tab

2. Approach to mica in liquid

This example is under construction

J. FM Scanning

The FM scanning tool combines the functionality of the other scanning tools with the frequency modulation

discussed under FM Approach Curves. The only additions are that there is now a frequency shift setpoint on tab 2

(you can specify if this should be an attractive or repulsive shift).
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It is recommended to use autocalculation of the Amplitude and PLL gains when using this tool. If you wish to use

non-default gains, it is suggested that you use the FM Approach curves tool to �nd stable gains �rst, then move on

to this tool. Otherwise if you have stability problems, it will be di�cult to determine if the problem is with your Z

(topography) gains or with the FM gains.

There are currently no examples for the FM Scanning tool.

K. Contact Mode Scanning

The contact mode scanning tool simulates one of the earliest and simplest AFM imaging modes. The utility of

this tool is that allows understanding the operation of the controller without having to deal with the complexities of

dynamic AFM.

1. Example 1: Tip-sample geometry convolution

This example illustrates the tip-sample geometry convolution described in section IVH. Select example 1 from the

drop down menu. On the tip-sample interaction properties tab, note that we have picked a 5 nm tip radius. The

end of the tip is assumed to be spherical. Also, on the feature properties tab, we've picked a sinusoidal feature with

height 30 nm and width 35 nm and checked the box for tip-sample convolution.

Click simulate to begin the simulations. When it's done, the result should look like 74. The measured topography

(blue) resembles the actual sample geometry (red), but it is just slightly wider. This is a common problem with

measuring widths of small features.

Go back to the feature properties tab and reduce the feature width to 25 nm. Repeat the simulation for feature

widths of 15, 5, and 1 nm. When you're �nished the result should look some like Figure 75. Note that we've turned

o� the �sample height� plots to improve clarity (click on the triangle to reveal the legend, and uncheck all the red

lines). Note that as the feature width decreases, the measured geometry looks less and less like a sinusoid, and more

like a rectangle a circle of radius 5 nm on top (draw in dashed line for illustration). In this case, the sample is showing

us an image of the tip, instead of the tip showing us an image of the sample!

L. Peak force tapping tool

THIS SECTION IS STILL UNDER CONSTRUCTION

The peak force tapping tool simulates the scanning mode of the same name

(https://www.bruker.com/content/bruker/int/en/products-and-solutions/microscopes/materials-afm/afm-

modes/peakforce-tapping.html). In this mode, the Z piezo is oscillated at a frequency considerably lower

than the cantilever resonance, e.g. 2 kHz for a 100 kHz cantilever. E�ectively this collects a series of force-distance
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FIG. 74: Measured topography for a 5 nm tip radius compared with the actual sinusoidal feature of width 35 nm. The measured
topography resembles the feature, but is just slightly wider.

curves. For each curve, the de�ection is processed to extract the peak force, and then a feedback control is used to

adjust the mean Z position such that the peak force is constant over the scan.

Major assumptions of this tool:

• In a real AFM, only the de�ection is an experimental observable and the force must be reconstructed. This is

illustrated in Figure 76. In the quasi-static limit (excitation <�< resonance frequency), the cantilever behaves as

a simple spring F=kx and force is simply de�ection times sti�ness. For �nite excitation frequencies, there will

be some steady state dynamic response, but it is fairly easy to �lter it out and recover the tip-sample force. As

the excitation frequency becomes higher, this reconstruction becomes more di�cult. The feedback control in

the VEDA peak force tapping tool is directly on the simulated tip-sample force. In other words, it is assumed

that the force can be perfectly reconstructed from the observed de�ection. This will be true only for very low
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FIG. 75: Measured geometry for a 5 nm tip radius and a sinusoidal feature of successively decreasing widths. For very small
features, the measured geometry begins to resemble a circle with a radius of 5 nm - the feature is imaging the tip instead of
the tip imaging the feature

excitation frequencies.

1. Example 1: Peak force tapping on sinusoidal feature, modeled with Hertz contact

This is a basic example intended to demonstrate the operation of the Peak Force Tapping mode.

2. Example 2: Flat sample with two di�erent materials, using Attard's model

This example is similar to the Amplitude Modulated Scanning (basic) Example 2 in section III B 2, in that a �at

sample is modeled with two di�erent materials. Whereas that example used a Hertz based viscoelastic contact model,

in this example we demonstrate the use of Attard's viscoelastic contact model (section IVB8).

As Attard's model is more computationally demanding, the scan lines per second has been increased to 10 for

this example versus the previous one to keep the run time reasonable. This can be decreased if you want to more

realistically simulate a higher resolution scan.
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FIG. 76:

M. Jump mode tool

The tool formerly referred to as the �jump mode� tool (which actually just did a single triggered force curve) has

been combined into the Force distance curves tool (section IIIG)

N. Single point tool

Instead of performing an approach curve (or a scan), this tool simply computes a solution at a single point. This is

most useful when you want to examine the time histories for a particular Z distance but you do not wish to compute

an entire approach curve or scan.
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There are currently no examples for this tool
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IV. THEORY

In this section, we describe the basic theory behind the various VEDA tools. We develop a general multiple

degree-of-freedom (DOF) model for the AFM microcantilever interacting with a sample. This section begins with a

description of the tip-sample interaction force model, followed by models for cantilever dynamics, controller dynamics,

the DDASKR numerical integration scheme, and tip-sample geometry convolution.

A. Models for tip-sample interaction

VEDA currently o�ers several options for models for interaction forces between the tip and the sample, includ-

ing piecewise linear contact, Hertz contact, Derjaguin-Müller-Toporov (DMT), Derjaguin-Landau-Verwey-Overbeek

(DLVO) electrostatic double layer forces, Chadwick model for thin membranes and Kelvin-Voigt dissipation. With

the exception of the ad-hoc linear contact model, interaction models are based on a spherical tip interacting with an

elastic medium. The contact mechanics for these models is strictly valid for a spherical tip interacting with a �at,

isotropic, linearly elastic sample surface and will continue to hold so long as the features of the sample are su�ciently

larger than the tip radius. However, when interacting with nanostructures that are of the similar size as the tip, the

contact mechanics model is not adequate.

1. Piecewise linear contact

The piecewise linear contact model, the simplest of the models described here, is an ad-hoc model which is often

applied to small indentations of small shell-like structures such as viral capsids, hollow microtubules or carbon nan-

otubes. This model will be applicable when Van der Waals or electrostatic forces are negligible (e.g. in high ionic

concentration bu�er solutions). This model is useful for simple simulations and to compare sample sti�ness directly

to cantilever sti�ness. For a contact sti�ness (force gradient) krepts and tip-sample gap d, the piecewise linear contact

model is

Fts(d) =

{
0, d > 0
−krepts d, d 6 0

(2)

where d = 0 is the sample surface.

2. Piecewise linear attractive/repulsive contact

The piecewise linear attractive/repulsive model is the next more complex model. A linear attractive gradient is

added to the repulsive gradient. This model is useful for simple simulations and to compare sample sti�ness directly

to cantilever sti�ness, but when van der Waals or electrostatic forces are not completely negligible. For a contact
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FIG. 77: Tip-sample force versus gap for the piecewise linear contact model.

sti�ness (force gradient) kts, gap between the tip and sample d, attractive gradient ka, and maximum adhesion force

Fad, the piecewise linear attractive/repulsive contact model is

Fts(d) =

 0, d ≥ L0

ka(d− L0), 0 < d < L0

Fad − ktsd, d ≤ 0
(3)

where d = 0 is the sample surface. The adhesion force is given by Fad = kaL0, where L0 is the length of the attractive

gradient.
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FIG. 78: Tip-sample force versus gap for the piecewise linear attractive/repulsive contact model.
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3. Hertz contact

The Hertz contact model considers an elastic sphere indenting an elastic half-space [40], For a tip-sample gap d

(sample surface is located at d = 0), the model may be written as

Fts(d) =

{
0, d > 0
4
3E
∗
√
R(−d)

3/2
, d 6 0

(4)

E∗ =

[
1− ν2

tip

Etip
+

1− ν2
sample

Esample

]−1

. (5)

where, R is the radius of the tip, E and ν are elastic Young's moduli and Poisson's ratios and E∗ is the e�ective

elastic modulus between the tip and the sample system. This model is reasonable under conditions when van der

Waals, electrostatic, and chemical forces are negligible compared to the repulsive elastic interaction such as in high

ionic concentration bu�er solutions.

Technically, this model is actually not for a spherical tip, but for a paraboloid tip. The paraboloid is a good

approximation to a sphere when the tip radius is larger than the contact radius (i.e. when the indendation is not too

large).
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FIG. 79: Example Tip-sample force versus gap for the Hertz contact model. The example shown is for E∗=110 MPa and tip
radius R=10 nm

For a rigid tip, we could also write E∗ = Esample/{1−ν2
sample}, then for a linear elastic material [41] shear modulus

is expressed in terms of Young's modulus and Poisson's ratio as G = E/2(1 + ν). Thus an alternative form of the

Hertz force is
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Fts(d) =

{
0, d > 0

8G
3(1−ν)

√
R(−d)3/2, d 6 0

(6)

4. Hertz contact conical tip

The previous model is for a paraboloid tip (or a large sphere). For a conical tip with opening angle θ, the equation

becomes

Fts(d) =

{
0, d > 0
2E∗ tan(θ)

π (−d)2, d 6 0
=

{
0, d > 0
4G tan(θ)
(1−ν)π (−d)2, d 6 0

(7)

This is generally only valid for large θ (for small θ the material will plastically yield at the apex of the cone). Note

that some authors de�ne the angle θ as the angle between the cone surface and the sample (the exterior angle), while

we have choose the opening angle of the cone (the interior angle). The di�erence is whether tan(θ) appears in the

numerator or denominator.

5. Derjaguin-Müller-Toporov (DMT) contact model

The Derjaguin-Müller-Toporov (DMT) contact model [42] includes attractive, noncontact van der Waals forces

[40, 43] combined with Hertz contact forces [40] and is valid for low adhesion, relatively sti� contacts when operated

in air or vacuum and under very dry conditions. Even at low humidities, capillary condensation can occur between

the tip and sample which is not included in this model. The results therefore may not be applicable for extremely

compliant, highly adhesive contacts. For a tip-sample gap d, where d = a0 (the intermolecular distance) is the sample

surface, the DMT model can be written as

FDMT (d) =


−HR6d2 , d > ao

−HR
6a20

+ 4
3E
∗
√
R(a0 − d)3/2, d 6 a0

(8)

where H is the Hamaker constant, R is the radius of the tip, E and ν are elastic moduli and Poisson's ratios and

E∗ is the e�ective elastic modulus between the tip and the sample system de�ned in Eq. (4). For d > a0 the tip

experiences van der Waals forces. At d 6 a0 the van der Waals force saturates and Hertz contact forces begin.

6. Derjaguin-Landau-Verwey-Overbeek electrostatic double layer forces

For simulation in liquid environments where salt bu�er concentrations are low to moderate, we have taken the

model from [44], which combines Derjaguin-Landau-Verwey-Overbeek (DLVO) model for electrostatic double layer
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FIG. 80: Tip-sample force versus gap for the DMT contact model.

forces and DMT short-range forces (IVA5). For a tip-sample gap d = 0, where the sample surface is located at

d = a0, the conjunction of DMT and DLVO models can be written as

FDLV O+DMT (d) =


4πR
εε0KD

σTσSe
−KDd − HR

6d2 , d > a0

4πR
εε0KD

σTσSe
−KDa0 − HR

6a20
+ 4

3E
∗
√
R(a0 − d)3/2, d 6 a0

(9)

E∗ =

[
1− ν2

tip

Etip
+

1− ν2
sample

Esample

]−1

.

where H is the Hamaker constant, R is the radius of the tip, E and ν are elastic moduli and Poisson's ratio's and

E∗ is the e�ective elastic modulus between the tip and the sample system, 1/KD, ε0, ε, σT and σS are Debye length,

the permittivity of free space, the dielectric constant of the medium, the surface charge density of the tip, and the

surface charge density of the sample, respectively.

7. Johnson-Kendall-Roberts (JKR) contact model

The Johnson-Kendall-Roberts (JKR) model [45] predicts a hysteretic adhesion due to the necking of the sample.

JKR and DMT contact models, which both derive from Hertzian elastic theory, have been shown to be limiting cases

of Maugis theory [46]. While DMT applies to sti� samples with low adhesion, JKR applies to soft, compliant surfaces

and allows the sample to �neck� in the presence of an adhesive load. The JKR contact model is nonconservative and

includes a dependency of the history of the tip-sample contact. The JKR model can be written compactly through

the use of a mode variable m describing the state of the tip-sample contact [47]. Let m = 1 signify contact with the

sample and m = 0 otherwise. Accordingly, the JKR model can be expressed as
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FIG. 81: Tip-sample force versus gap for the DLVO contact model. Note that if Fad is used as an input, it is used to calculate
the intermolecular distance a0 considering the van der Waals forces only (neglecting the double layer forces). This is why Fad

appears as a relative measurement in the �gure (and not as the absolute adhesion force)

Fts(a,m) =

{
0, m = 0
4E∗a3

3R −
√

8πWJKRE∗a3, m = 1
(10)

whereWJKR = 2Fad/3πR is the work of adhesion, Fad is the adhesion force, a is the contact radius that is described

implicitly as

d = −a
2

R
+

√
2πWJKRa

E∗
(11)

where the critical gap dcrit =
√

2πWJKRacrit/E∗ − a2
crit/R is the distance at which the contact terminates, and

acrit = (πRtip2WJKR/8E
∗)1/3 is the corresponding contact radius. While approaching in noncontact (m=0), contact

occurs at d = 0 where the mode variable changes to m = 1. Upon retraction from the sample, tip-sample contact

persists until d > dcrit > 0. At this point, the tip and sample separate and there is an abrupt transition from contact

to noncontact. Note that the representation of the JKR model in Eq. 10 permits a trajectory which passes through

the dcrit boundary where the tip remains in noncontact with the sample while departing from the sample. This

dependence on the history of the gap between the tip and sample makes the mode variable necessary to describe this

model.

8. Chadwick theory for thin membranes

Chadwick theory [48] models the indentation of an elastic sphere interacting with a thin incompressible membrane

that is supported on a rigid substrate, when the thickness of the layer is small relative to the contact area. The
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FIG. 82: Tip-sample force versus gap for the hysteretic JKR contact model. While the tip is approaching the sample, interaction
forces are zero until contact is made at d = 0. While the tip is retracting from the sample, contact persists for d > 0 where the
sample necks in the presence of adhesive forces. At d = dcrit an abrupt transition from contact to noncontact occurs.

Chadwick model is expressed as

Fmembrane(d) =

{
0, d > 0
2πE∗Rd2

3h , d 6 0
(12)

where the membrane has a thickness h and the membrane surface is located at d = 0, R is the radius of the tip, E∗

is the e�ective elastic modulus between the tip and the sample system Equation (5). The model above assumes that

the membrane slips without friction on the substrate. Ref [48] gives an equation for the case when the membrane is

bonded to the substrate, but this is not implemented.

9. Hertz contact with bottom e�ect correction for thin samples, (Dimitriadis et al, Gavara & Chadwick)

The Hertz contact model section IVA3 assumes the sample is a half-space, which is suitable when the thickness

of the sample is very large. When the sample is extremely thin, the theory of section IVA8 is applicable. When the

sample thickness is an intermediate between these two, another theory is needed.

For a rigid spherical indenter, and an incompressible (ν = 0.5) sample, Ref [49] gives the following formula:

F (d) =

{
0, d > 0
16E

9 R1/2δ3/2[1 + 0.884χ+ 0.781χ2 + 0.386χ3 + 0.0048χ4], d 6 0
(13)

where χ =
√
Rδ/h, the membrane has a thickness h and the membrane surface is located at d = 0, R is the radius

of the tip.

The model above assumes that the membrane slips without friction on the substrate. This reference also gives an

equation for the case when the membrane is bonded to the substrate, but this is not implemented.
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FIG. 83: Tip-sample force versus gap for the Chadwick contact model.

For a conical indenter (again rigid tip and incompressible sample), Ref [50] gives the formula, also referred to as

the Bottom E�ect Cone Corrected model

F (d) =

{
0, d > 0
8E tan θδ2

3π [1 + 1.7795 2 tan θ
π2

δ
h + 16(1.77952) tan2 θ δ

2

h2 ], d 6 0
(14)

10. Lennard-Jones Potential + van der Waals

The Lennard-Jones Potential is commonly used to describe interatomic forces. It is often used in non-contact FM

AFM to describe short range forces between the atoms on the tip and atoms on the sample. Van der Waals forces

may be added to describe the long range forces between the atoms in the bulk of the tip and the bulk of the sample

(e.g. [51]) This interaction model is only adequate for the attractive regime. It does not model contact forces well.

Therefore it should only be used for non-contact FM AFM. It should not be used for tapping mode AFM or any

operation in repulsive regime. The force is given by

FLJ(d) = −HR6d2 + 12E0

r0

[(
r0
d

)13 −
(
r0
d

)7]
(15)

where H is the Hamaker constant, R is the tip radius, E0 is the binding energy, r0 is the equilibrium distance, and d

is the tip-sample gap.
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11. Viscoelastic contact models

The description of viscoelastic contact models grew so big that it was convenient to give it a separate subsection.

Please see section IVB.

12. Morse Potential

The Morse potential is similar to the Lennard-Jones potential and is also used in combination with van der Waals

for FM AFM [37]. The same conditions apply. The force is given by:

F (d) = −HR6d2 + 2U0

λ

[
exp( rc−dλ )− exp( 2rc−2d

λ )
]

(16)

where H is the Hamaker constant, R is the tip radius, U0 is the depth, rc is the equilibrium distance, λ is the range,

and d is the tip-sample gap. An example is shown in �gure 84.
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FIG. 84: Tip-sample force versus gap for the Morse potential.

13. Long range electrostatic forces (noncontact)

VEDA includes two di�erent models for the long range electrostatic force between a sphere and a plane. The �rst

is from [52].

F (d) = −4πε0
ε− 1

ε+ 1

R2
tip

d2
V 2
tip (17)
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where ε0 is the permittivity of free space, ε is the local dielectric constant, d the tip-sample distance, Rtip is tip

radius and Vtip is the potential di�erence between the tip and sample Vtip = VDC − φsurface + VAC cos(ωACt) where

VDC , φsurface , VAC , ωAC are the applied DC bias voltage, surface potential, applied AC bias voltage, and bias

frequency, respectively.

Note that this model has the same functional form (1/d2) as the van der Waals component of DMT contact.

However, DMT contact assumes that the van der Waals force saturates at some �nite distance away from the sample.

This model does not include any contact forces and the forces will not saturate. If the tip-sample gap ever becomes

zero, the simulation will halt with an error.

When using an applied AC bias voltage, you may wish to make use of the higher harmonics outputs to see the

cantilever oscillation amplitude at the frequency of the bias voltage oscillation (and twice that frequency). Remember

that the higher harmonics are speci�ed relative to the cantilever (e.g. piezo) driving frequency.

An example is shown in Figure 85 (for pure DC bias).

The second model is from [53]

Ftotal(d) =
4π

(π − θlever)2
εε0V

2
tip

(
ln

(
d− δ

2 + h

d+ δ
2

)
− sin

(
θtip
2

)
h− δ(

d− δ
2 + h

) d− δ
2

d+ δ
2

)
− HR

6d2
(18)

Where the lever is characterized by its length l, width w, and angle θlever with respect to the sample surface. The

tip is a truncated cone of height h and opening angle θtip that ends smoothly in a paraboloidal tip apex of radius r.

Additionally, δ is the height of the truncated part of the cone and is given by the relation δ = r

tan2
(
θtip
2

) , and the

�nal term is a van der Waals force on the tip.
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FIG. 85: Tip-sample force versus gap for the electrostatic model of [52], equation (17)
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14. Capillary forces

When a tip comes into contact with a sample in the presence of moist air, a liquid capillary can form between them.

When the tip retracts, the capillary neck breaks. This process causes a hysteretic, non-conservative force. The model

used in VEDA is from Kober et al. [54]. The hysteretic force in this model can be added on top of the other contact

models. The force is given by:

Fcap(d,m) =


0, m = 0
2∆E
D2

0
(d−D0), d ≥ a0,m = 1

Fad,cap, d < a0,m = 1

(19)

where d = a0 is the DMT intermolecular distance (set to 0 for Hertz model), d = D0 is the distance at which the

neck breaks, ∆E is the energy dissipated per hysteretic cycle, Fad,cap is the force jump when the capillary neck forms

Fad,cap = 2∆E
D2

0
(a0−D0) and m is a state variable de�ned as follows: When m = 0 the capillary neck is �o�� and when

m = 1 the capillary neck is �on�. When d < a0, then m is set to 1. When d > D0, then m is set to 0. At all other

times, m retains its value from the previously computed point.
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FIG. 86: Tip-sample force versus gap for the Capillary model. Note that the capillary forces are shown on top of a DMT
contact model, but could just as easily be added to Hertz, Linear contact, etc.

15. Molecular recognition forces: Worm like chain model

When a functionalized vibrating tip approaches to the sample surface of interest and ligand binds to speci�c

recognition sites, a molecular bonding force will be detected, modifying the microcantilever dynamics [55, 56]. When

the tip intermitently interacts with the sample surface and recognition occurs, a transient reduction in oscillation
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amplitude is observed with no change in actual sample topography. Speci�c recognition forces (forces between ligand

thetered at a tip and a sample surface recognition sites) will be modeled using the worm like chain (WLC) model

[57, 58]:

FWLC(d) =


0, d < 0

0, d ≥ 0,m = 0

−kBTLP

[
1

4
(

1− d
L0

)2 − 1
4 + d

L0

]
, d ≥ 0,m = 1

(20)

In which: d is the tip-sample gap (where d=0 is the sample surface), kB is the Boltzmann's constant, LP is the

persistance length, L0 is the contour length, T is the temperature, and m is a mode variable indicating if the chain is

attached to the tip or not. The transitions are that the chain form (m goes from 0 to 1) at d = 0, and the chain break

(m from 1 to 0) at at pre-speci�ed distance d = Lr. The distance Lr can be choosen such that the bond ruptures at

a particular force. This transition behavior is an approximation for ease of computation. In reality the bond rupture

will be controlled by a stochastic process where there is a certain probability of the bond breaking at a given force

level. This is a reasonable approximation because for many applications, the tip sample forces stay well below the

bond rupture force (i.e. the chain never breaks).

16. Solvation forces: conservative

Solvation forces have to do with an ordering of liquid molecules near a solid-liquid interface [43]. This can give rise

to a so-called oscillatory force with a period approximately equal to the molecule diameter, as well as a monotonic

background force known as a hydration force. An example oscillatory force is shown in Figure 87 and is given by a

simple decaying cosine [43].

In VEDA, we use the model of [59] which attempts to include the e�ect of a shaped tip by slicing the tip into

several parts and calculating the force on each part:

F (d) =

N∑
k=0

2πr2(zk)kBTρ cos

(
2π(zk + d)

σ

)
exp

(
−zk + d

σ

)
(21)

where zk denoted the height of the kth slice of the tip (we assume a spherical tip here), and σ is a decay length.

With one slice, the model reduces to the simple model of [43] above. Note that we have adopted the conservative part

of this model only. See below for the non-conservative part.

Similarly, [59] gives a hydration force of

F (d) =

N∑
k=0

2πr2(zk)ph exp

(
−zk + d

λ

)
(22)
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where λ is decay lengths. Versions of VEDA prior to 2.0.27 (Jan 2012) used this model. However, with some

algebra it can be shown that this sum does not converge. In other words, as the number of slices is increased, the

force increases without bound. Further, using the Derjaguin approximation [60], if the energy per unit area of two

�at surfaces is given by w(d) = exp(−d/λ), then the integrated force over the entire tip is proportional to exp(−d/λ)

regardless of the tip shape. Therefore, versions of VEDA starting from 2.0.27 use the following for the hydration

force:

F (d) = 2πr2ph exp

(
−d
λ

)
(23)

(i.e. the same equation as before but with N=1)

In the results of [59], λ and σ were found to be approximately the diameter of the liquid molecules (e.g. around

0.25 nm for water). However, [43] suggests that λ could be as much as 1 nm for hydophilic surfaces in water, and

as much as 2 nm for hydrophobic surfaces in water. The user is suggested to consult the literature for the speci�c

system you are interested in. ph is an empirically determined constant.

Normally, the solvation forces saturated at d = 0. However, this means that the gradient is discontinuous there,

which may be non-physical. When the �enforce continuous gradient� option is checked, the solvation forces continue

at act even below d = 0. This should only be used for sti� samples for which indentation is small. For soft samples

this option is not useful.
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FIG. 87: Tip sample interaction force versus gap for oscillatory forces
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17. Solvation forces: non-conservative

[59] suggested that the non-conservative solvation force was proportional the conservative solvation force at any

given separation. This leads to an oscillatory non-conservative force. However, more recent works such as [61] have

suggested that the non-conservative part of the solvation forces should be monotonic. For simplicity, we adopt only

a monotonic model. Speci�cally

Fts(d, ḋ) =

{
cḋe−

d
λ d > 0

cḋ d < 0
,

where c is an empirically determined scaling constant (kg/s) and λ is a decay length (on the order of the liquid

molecule diameter).

Previous versions of VEDA, (prior to 2.0.33 June 2012, and including the recent journal publication [23]) had the

viscosity decay smoothly to zero as the tip indents the sample. However, that was somewhat ad-hoc. The present

assumption that the viscosity saturates to a constant value at contact is more physically justi�able. The assumption

that even when the tip and sample are in contact, there is still a region just outside the contact area where liquid

molecules are being squeezed. It is similar to the assumption in the DMT model that attractive forces saturate when

the tip and sample contact. The di�erence between the previous model and the present model is trivially small for

sti� samples. This is because the indentations are typically small on sti� samples, and the velocities are small when

the tip and sample are in contact.

18. Magnetic dipole-dipole interactions

The magnetic dipole-dipole interactions are from [62]. The tip is modeled as a sphere, and the sample is modeled

as a spheric superparamagnetic material coated with a thin layer of non-magnetic material. The tip is assumed to

be directly above the particle (this makes the model most useful for approach curve simulations and not as useful for

scanning simulations).

Fts(d) =
−3µ0mpmt

π(d+R/2 + dm/2 + δ)4

where µ0 is the permeability of free space, mp is the magnetic model of the particle, R is the tip radius, dm is the

e�ective magnetic radius of the particle, and δ is the thickness of the nonmagnetic layer.

19. Tip-sample squeeze �lm damping

Reynold's squeeze �lm damping has been proposed to act in liquid AFM between tip and sample at small separation

distances [35]. It can be described by a damping coe�cient given by
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γ = 6πη
R2
tip

d
(24)

so that the force is simply

F = 6πη
R2
tip

d
ḋ (25)

This model obviously has a problem at d=0. In VEDA we therefore propose the following correction

Fts(d, ḋ) =


6πη

R2
tip

d ḋ, d > a0

6πη
R2
tip

a0
d
a0
ḋ, 0 < d < a0

0, d < 0

20. Surface Energy Hysteresis

Surface energy hysteresis is a catch-all term for a large number of physical processes that cause the energy of

forming a solid-solid interface to be greater that the energy of destroying the interface. For these processes, the total

energy dissipation will depend only on the total contact area formed, not on the tip velocity. Ref. [? ] suggests a tip

sample interaction model including surface energy hysteresis. The model was based on a DMT model. In the original

formulation, the attractive and repulsive parts are handled separately (the attractive part was called �long-range

dissipative interfacial interactions�). Using a slightly di�erent notation, they can be combined into one expression as

follows

Fts,app(d) =

{
−HRd2 d > a0
4
3E
∗
√
R(a0 − d)3/2 − HR

a20
, d < a0

Fts,ret(d) =

{
− (H+4πγa20)R

d2 d > a0
4
3E
∗
√
R(a0 − d)3/2 − HR

a20
− 4πRγ, d < a0

Fts(d, ḋ) =

{
Fts,app(d), ḋ < 0

Fts,ret(d), ḋ > 0

We note that this model includes only a single parameter γ, which is the change in surface energy (J/m2) between

approach and retract , to describe the strength of the hysteresis. Ref. [? ] had two parameters, one for d < a0 and a

separate one for d > a0. Although that is a more general case than our model, it means that the force described by

that model is not necessarily continuous at d = a0. We have restricted ourselves only to the case where the force is

continuous.
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This model has been shown to match several features of experimental energy dissipation measurements well, and

it is well suited to analysis (e.g. the method of averaging). However, for numerical simulation it can present a

problem. The switch between the approach and retract forces happens instantaneously. This means that the force

is discontinuous at the switch, which is clearly non-physical. This may cause di�culties for the di�erential equation

solver, and it can also introduce non-physical high frequency oscillation of the cantilever.

Therefore, we suggest a modi�cation which allows the force to be continuous everywhere. Initially, ḋ < 0 and

Fts(d) = Fts,app(d). If, at time t = t0 and d = d0, the velocity switches sign from ḋ < 0 to ḋ > 0, then the force for

time t > t0 is de�ned as Fts(d) = Fts,ret(d) + (Fts,app(d0)− Fts,ret(d0)) e−(d−d0)/λ, where λ is a decay length (we use

0.1 nm typically). In other words, when the velocity switches, the current trajectory is smoothly transitioned into the

new trajectory. The di�erence between the current and new trajectories decays exponentially.

The above de�nition is su�cient for single frequency AFM (e.g. tapping mode). However, for bimodal AFM,

it is possible that the velocity might reverse two (or more) times, and the second reversal might happen before

the transition to the new trajectory is complete. Therefore, we instead use this de�nition: If the velocity reverses

at time t = t0 and d = d0, then then let F ∗ be the force at time t0. Then the force for time t > t0 is de�ned as

Fts = Fts,m(d)+(F ∗ − Fts,m(d0)) e(−d−d0)/λ, andm equals either app or ret, depending on which direction the velocity

has switched to. This allows an arbitrary number of reversals at arbitrary distances, while still always maintaining

continuity of the forces.

21. Non-smoothness of the interaction force models

Note that all the tip-sample interaction models above describe interaction forces that are mostly continuous with

respect to the tip-sample gap d. However at the critical gap value (d = 0 or d = a0) when the repulsive force model

begins, the Fts vs. d curve becomes non-smooth. This is important because performing numerical simulations of tip

motion with non-smooth interactions creates the possibility of errors creeping in due to the choice of the numerical

integration scheme. In VEDA we do not arti�cially smooth out such forces but rather retain them in their ideal form

and instead rely on specialized numerical integration schemes to deal with such non-smooth forces.

B. Tip samples interaction: Viscoelasticity

An elastic material is one where the stress (forces) at time t depends only on the strain (displacements) at time t,

and does not depend on the rate of strain, or on any past history of the strain. For example, a steel spring could be

considered as an elastic body. A viscous material, on the other hand, is one in which the stresses are dependent on

only on the strain rate (velocity). For example, most common liquids such as water or oil. Many materials, however,

display some mixture of viscous and elastic response. That is, the stresses may depend both on the current strain as

well as the strain rate and the past history of the strain. This is called viscoelasticity.
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There are several di�erent continuum models for viscoelasticity, which can be combined with the tip-sample inter-

action models above in a few di�erent ways. The three common classical elements are shown in Figure 88.

In the next section, we describe viscoelasticity based on the linear contact model. Then, we give several sections

describing viscoelasticity based on the Hertz contact model.

a) b) c)

E

E1

E2

η

η

η

E

FIG. 88: The three classical viscoelastic elements. (a) the Kelvin-voigt model, a spring and a damper in parallel. (b) the
Maxwell model, a spring and a damper in series, (c) the three element model (delayed elasticity), a spring in series with a
Kelvin-voigt element

1. Viscoelasticity based on Linear Contact

The linear contact model was described in IVA1. In this model, the tip-sample interaction force is represented

by a simple spring. To extend this model to viscoelasticity, we simply add linear dashpots (and possibly some extra

springs). The dashpot can be combined in with the spring in several di�erent ways (i.e. series versus parallel). The

Kelvin-Voigt viscoelastic dissipation model assumes a spring in parallel with a damper. This model is applicable when

the relaxation time of the material is very short (compared to the tip-sample contact time).

A naive implementation of this model would be to simply add the spring and dashpot forces. Let η be the damping

coe�cient in N-s/m. Then the force is given by:

Fts(d) =

{
0, d > 0

−krepts d− ηḋ, d < 0
(26)

This referred to in VEDA as the �Ad-hoc kelvin-voigt� model (for linear contact) and this was the default model

prior to 2.0.22 (Aug 2011). However, there is a problem with this model: for very viscous samples the total force

can go negative, which is non-physical. The linear contact model does not include any attractive forces, so the tip

109



B Tip samples interaction: Viscoelasticity IV THEORY

should leave contact with the sample instead of the force going negative. Therefore, we introduce an extra condition

as follows:

Fts(d) =


0, d > 0

−krepts d− ηḋ, −krepts d− ηḋ > 0

0, otherwise

(27)

The condition on the second line prevents the force from being negative. For the linear attractive/repulsive model

(section IVA2), the condition is modi�ed to allow the force to go negative up to the adhesion force. This condition

is, admittedly, somewhat ad-hoc, but the linear model is ad-hoc to begin with. The Hertz contact based models

(described below) have a more rigorously developed viscoelastic theory.

The biggest problem with this model is that the viscous force is discontinuous. Immediately upon entering contact

the force can be huge. If you have convergence problems with this model, try to using another model (or Hertz

contact) instead

It may be instructive to compute the energy dissipated per cycle for this model in the case of permanent contact

with the sample. W =
¸
Fts(d, ḋ)dd =

´ 2π/ω

0
Fts(d, ḋ)ḋdt Assume a sinusoidal d = A cos(ωt). Then

W = −
2π/ωˆ

π/ω

η(ωA sin(ωt))2dt =
π

2
ηωA2. (28)

Note that this term includes ω. The energy loss per cycle depends on the frequency, thus this is classi�ed as a rate

dependent dissipation model.

For linear contact, we can also formulate the response for the three element model. This consists of two springs and

one dashpot arranged as in 88. We can derive the force as follows: Let the compression of spring 1 be d1 and force in

spring 1 be k1d1. Then let then compression of the spring-dashpot pair be d2 and the force is F2 = k2d2 + ηḋ2. Then,

the two contraints on the system are the overall displacement of the system d = d1 + d2 and the force in each set is

the same F = F1 = F2. Using these conditions, we arrive at a governing di�erential equation

k1d(t) = (k1 + k2)d2(t) + ηḋ2 (29)

which can be solved for d2

d2 (t) =
k1

η
e−

t(k1+k2)
η

ˆ t

0

d (τ) e
(k1+k2)τ

η dτ (30)

From this and F2 = k2d2 + ηḋ2, the force can be found. This model has the advantage that the force is not

discontinuous upon contact, unlike the Kelvin-voigt model. For a sinusoidal excitation d(t) = A sin(ωt), this is solved
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to yield d2(t) = k1A (−ηω cos(ωt) + (k1 + k2) sin(ωt)) /
(
k2

1 + 2k1k2 + k2
2 + ω2η2

)
, which leads to the loss tangent

being tan δ = k1ηω
k1k2+k22+ω2η2

.

It is also possible to use other viscoelastic consitutive equations with the linear contact model (e.g. maxwell,

generalized maxwell) but we have not done so here.

2. Hertz contact based viscoelasticity, Kelvin-Voigt

For the Hertz (and related) tip-sample interaction models, the force calculation is more complex than for linear

contact. The elastic Hertz formulas in section IVA3 were derived by calculating the area of contact between the tip

and the sample that would occur for a given indentation. From the contact area, a contact force can be computed.

Therefore to calculate the viscoelastic response, we must take the contact area into account. We start with the simple

Kelvin-voigt model and then extend to other models in subsequent sections.

Before describing the full Kelvin-voigt model, we also brie�y mention the ad-hoc Kelvin-voigt model. This was

the model used in VEDA prior to version 2.0.22 (Apr 2010), and it has been used in the literature several times

(for example [63, 64]). The model is deriving by assuming that the viscoelastic material's contact area and sample

deformation are related to the identation by the exact same formula as in the purely elastic problem. This leads to

the combined elastic plus viscous force being

Fts(d, ḋ) =

{
0, d > 0
4
3E
∗
√
R(−d)3/2 − ηḋ

√
−Rd, d 6 0

(31)

However, there are two problems with this model. First, if ḋ and η are large, then it is possible for Fts to be

negative. But the Hertz contact model should not include any attractive forces, so this is non-physical. Put another

way, as the tip withdraws, the deformed sample does not return to its original condition instantly, but it takes some

time to relax because of the viscoelasticity. If the tip withdraws too fast, then it may completely pull away from the

sample before d = 0. However, the ad-hoc model cannot account for this. Essentially, if the tip pulls away quickly,

the ad-hoc model is applying an attractive force to slow it down and forcing it to withdraw only as fast as the sample

can relax.

The reason that the model has this error is the assumption that the contact area and indentation were related

by the same formulas as in the elastic case. The correct formula take into account a di�erent relation between

them. According to the so called �correspondance principle� if the solution to an elastic problem is known, then

the solution to the corresponding viscoelastic solution is found by replacing the shear modulus G with a viscoelastic

operator appropriate to the material [41]. Therefore, in the standard contact mechanics theory [65, 66], the solution

for viscoelastic contact is found by taking the Hertz formula F = 4
3E
∗
√
Rd3/2 = 8

3(1−ν)G
√
Rd3/2 and replacing G

with a convolution integral
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F (t) =
8

3(1− ν)

√
R

tˆ

0

ψ(t− τ)
d

dτ
d3/2(τ)dτ (32)

where ψ is the stress relaxation operator for the linear viscoelastic material in question. This operator describes

the stress in the material if a step change in strain is applied. For the Kelvin-voigt model, this is:

ψ(t) = G+ ηδ(t) (33)

where δ is the Dirac delta. That is to say, a step change in strain is a delta function in strain rate, and in the

Kelvin-voigt model the visous portion of the stress is directly proportional to strain rate. Another way to say this is

that the stress relaxes instantly after the load is applied. The delta function in (33) makes the convolution integral

(32) particularly simple to evaluate. We have merely F (t) = 4
3E
∗
√
Rd3/2− 2η

1−ν ḋ
√
−Rd. This is similar to the ad-hoc

model. However, there is one caveat. This theory only applies when the contact area is increasing (i.e. when the tip

is going down into the sample).

When the contact area is decreasing (tip is withdrawing), the theory of [67] must be used. The �rst step is to �nd

the value of t1 that satis�es the formula

ˆ t

t1(t)

ψ(t− τ)
∂

∂τ
d(τ)dτ = 0 (34)

When this formula is satis�ed, the contact area (i.e. radius of the circle of contact) at time t1 and time t will be

the same. For Kelvin-Voigt, we substitute (33) in and use the properties of Dirac delta [note: A commonly given

de�nition of the Dirac delta is
´∞
−∞ δ(x)dx = 1. In this case we are integrating over a smaller interval so we need the

de�nition
´∞

0
δ(x)dx = 1/2] to �nd:

G (d(t)− d(t1)) +
1

2
ηḋ(t) = 0 (35)

and then re-arrange:

d(t1) = d(t) +
1

2

η

G
ḋ(t) (36)

Thus, we can �nd t1 by simply looking backwards through the indentation history to �nd the time at which this

value of indentation occured. Now that we know t1, we can �nd the force from (32), except we must change the limits

of integration to
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F (t) =
8

3(1− ν)

√
R

t1ˆ

0

ψ(t− τ)
d

dτ
d3/2(τ)dτ (37)

Therefore, we can write the entire force model as:

F (d, ḋ, t) =


0 m = 0 (not in contact)

8
3(1−ν)

√
R
´ t
t0
ψ(t− τ) d

dτ d
3/2(τ)dτ, m = 1, ḋ < 0 (indentation increasing)

8
3(1−ν)

√
R
´ t1
t0
ψ(t− τ) d

dτ d
3/2(τ)dτ, m = 1, ḋ > 0 (indentation decreasing)

Where m is a mode variable that keeps track of if the tip is in contact or not. The non-contact to contact transition

(m = 0 to m = 1 ) happens when tip-sample gap transitions when d < 0 . The contact to non-contact transition

(m = 1 to m = 0 ) happens when either d > 0 or t1 < t0 , where t0 is the time at which the non-contact to contact

transition occurred,

Now, for Kelvin-voigt, we know that t1 < t, so the Dirac delta simpli�es and we have merely F (t) = 4
3E
∗
√
Rd(t1)3/2.

But, we already know d(t1) from (36). Therefore, it is not necessary that we actually �nd t1. We can use

F (t) =
4

3
E∗
√
R(d(t) +

1

2

η

G
ḋ(t))3/2

Thus, the entire force model is:

Fts(d, ḋ) =


0, m = 0
4
3E
∗
√
R(−d)3/2 − 2

(1−ν)ηḋ
√
−Rd, m = 1, ḋ < 0

4
3E
∗
√
R(−d− 1

2
η
G ḋ)3/2 m = 1, ḋ > 0,


The tip �rst contacts the sample (m = 0 to m = 1 transition) the �rst time that d < 0 , and contact is broken

(m = 1 to m = 0 transition) when either d > 0 or −d− 1
2
η
G ḋ < 0 . An example force curve is shown in Figure 89.

These models assume that the sample can be approximated by a semi-in�nite half-space. Also, the tip is assumed

to be rigid (i.e. the modulus of the tip is assumed to be much higher than the modulus of the sample).

Viscoelastic forces are not applicable to models not based on Hertz contact (e.g. Morse or Lennard-Jones potential

models).

Finally, we have not yet described how to take into account any attractive forces. In VEDA we include only a

simple ad-hoc implementation of a DMT like attractive force model with the viscoelastic models. The assumptions

are that 1) there is no energy dissipation when the tip is no touching the sample. 2) the sample does not neck. 3) the

attractive forces saturate at a �xed value (Fad = −HR/(6a2
0)) below d = a0. In this case we can simply add the van

der Waals forces directly to the viscoelastic forces.

Fts(d, ḋ) =


0, m = 0
4
3E
∗
√
R(−d)3/2 − 2

(1−ν)ηḋ
√
−Rd, m = 1, ḋ < 0

4
3E
∗
√
R(−d− 1

2
η
G ḋ)3/2 m = 1, ḋ > 0,

+

{
−HR6d2 , d > ao
−HR

6a20
, d 6 a0

}
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If the sample necks (i.e. deforms even when tip and sample are not in contact), then this model will not be applicable.

In that case a DMT contact is not applicable and a JKR type contact is more relevant. However, Viscoelasticity in

conjunction with JKR contact is based on an entirely di�erent set of theory which is signi�cantly more complicated,

and is not available currently in VEDA.

For reference, we also give the creep compliance function for Kelvin-voigt

φ(t) =
1

G
{1− e−t/T } (38)

Gap

F
or

ce

Viscoelasticity

FIG. 89: Example Tip-sample force versus gap for a Kelvin-voigt viscoelastic model

3. Viscoelasticity conical tip

The previous section was for a parabolic (�spherical�) tip. For a conical tip, Eq (34) still holds, but in analogy to

section IVA4, Eq (32) must be replaced with

F (t) =
4 tan(θ)

(1− ν)π

tˆ

0

ψ(t− τ)
d

dτ
d2(τ)dτ =

8 tan(θ)

(1− ν)π

tˆ

0

ψ(t− τ)dḋdτ (39)

4. Maxwell viscoelasticity

The Maxwell model for viscoelasticity is a spring in series with a dashpot. This model is applicable when the

relaxation time of the material is very long (compared to the tip-sample contact time). In this case the stress

relaxation function is [65]
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ψ(t) = Ge−t/T (40)

where T = η/G is the relaxation time of the material.

In this case, the convolution integral of equation (32) is not easy to evaluate in closed form and must be done

numerically. Also, we must �nd t1 explicitly. This makes the evaluation of the Maxwell model signi�cantly slower

than the Kelvin-voigt model. However, the constant G can be pulled out the equation and then rewritten in terms of

reduced modulus

F (t) =
4

3
E∗
√
R

tˆ

0

exp(
τ − t
T

)
d

dτ
d3/2(τ)dτ (41)

and simpli�ed

F (t) = 2E∗
√
R

tˆ

0

exp(
τ − t
T

)
√
dḋdτ (42)

We can also �nd [41] for this model

Gstorage = Gω2T 2

1+ω2T 2 , Gloss = GωT
1+ω2T 2 , tan δ = 1

ωT = G
ηω

which is the opposite loss tangent behavior as Kelvin-voigt.

5. Three element model

The standard three element model is a spring in series with a Kelvin-voigt element. The stress relaxation function

is [65]

ψ(t) =
G1

G1 +G2
{G2 +G1 exp(−t/Tσ)} (43)

where Tσ = η/(G1 +G2) is the stress relaxation time. The creep compliance is [68][69]

φ(t) =
1

G1
+

1

G2
∗ {1− exp(−t/Tε)} (44)

where Tε = η/G2 is the creep retardation time. When Tσ is very short (compared to the contact time), this model

reduces to the Kelvin-voigt model. When Tσ is very long, this model reduces to the maxwell model. When Tσ is on

the same order as the contact time, this model exhibits behavior that the Kelvin-voigt and maxwell models cannot

capture.
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Useful relationships for the three-element model are:

Gstorage(ω) =
G1G2

G1 +G2
+

G2
1

G1 +G2

τ2ω2

1 + τ2ω2
(45)

Gloss(ω) =
G2

1

G1 +G2

τω

1 + τ2ω2
(46)

tan δ(ω) =
ωτG1

G2 +G2τ2ω2 +G1τ2ω2
(47)

The maximum tan δ is

tan δ(ω) =
sqrt(G1 +G2)G2G1

2(G1 +G2)G2
(48)

The formulas can also be written as

ψ(t) = G∞ + (G0 −G∞) exp(−t/T ) (49)

where

G0 = ψ(0) =
G1

G1 +G2
{G2 +G1 exp(0)} =

G1(G1 +G2)

G1 +G2
= G1

, and

G∞ = lim
t→∞

ψ(t) =
G1

G1 +G2
{G2 +G1 exp(−t/T )} =

G1G2

G1 +G2

Going the other way

G2 =
G∞G0

G0 −G∞

Also

Tε = Tσ
G0

Ginf
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Useful relationships in the frequency domain are:

Gstorage(ω) = G∞ + (G0 −G∞)
τ2ω2

1 + τ2ω2
(50)

Gloss(ω) = (G0 −G∞)
τω

1 + τ2ω2
(51)

6. Generalized Maxwell Model. Prony Series

The three element model still lacks su�cient generality to describe all materials. In reality, there is not one

relaxation process, but multiple relaxation processes occuring simultanously [70]. To describe this, the Generalized

Maxwell model includes multiple Maxwell elements in parallel. The stress relaxation function is:

ψ(t) = G∞ +
∑
j

Gj exp(−t/Tj) (52)

where G∞ is the modulus after the material is fully relaxed. The summation is known as a Prony series. An

alternative description is

ψ(t) = G0 −
∑
j

Gj{1− exp(−t/Tj)} (53)

Where G0 is the initial modulus before any relaxation ( G0 = G∞+
∑
j

Gj ) We implement the �rst form in VEDA.

Useful relationships for the Prony series are (http://polymerfem.com/polymer_�les/Prony_Series_Conversion.pdf)

Gstorage(ω) = G∞ +
∑
j

Gjτ
2
j ω

2

1 + τ2
i ω

2
(54)

Gloss(ω) =
∑
j

Gjτjω

1 + τ2
i ω

2
(55)

The creep compliance function for the generalized Maxwell model is not easy to write down in closed form, but

it can found [71]. There is also a generalized Kelvin-voigt model, consisting of a number of elements in series. For

generalized kelvin-voigt, the creep compliance function can be easily written directly, but the stress relaxation function

is di�cult to �nd (but not impossible). Because the formulation of the equations here requires the stress relaxation

function, we do not implement a generalized Kelvin-voigt model in VEDA. If you need to simulate a model described

by generalized Kelvin-voigt, we suggest that you �nd the stress relaxation function for it, and then convert to an

equivalent generalized Maxwell model.
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7. Dynamic elastic modulus

The properties of viscoelastic materials are often described using a concept called �dynamic elastic modulus�. The

traditional Young's modulus is replaced with a �storage modulus� that describes conservative response and a �loss

modulus� that describes energy dissipation. Unfortunately, there is currently no good way to directly use these storage

and loss modulii in VEDA. If you have storage and loss modulus data versus frequency for a material of interest,

you must �t the data to a Prony series and then perform the simulation using the Generalized maxwell model. More

details will be added to this section in future releases.

8. Spatial discretization models (Attard)

The above several subsections dealt with the extension of the elastic Hertz contact problem to a viscoelastic material.

This theory is satisfactory in many cases, however, there are two big limitations:

• The numerical calculations are only reasonable for the situation where the contact area increases monotonically

to a single maximum and then decreases monotonically to zero. This usually the case for standard tapping

mode. However, for bimodal AFM, the contact area may have any number of minima and maxima during a

single tap. Although [67] has provided analytical expressions for these situations, they are too complicated to

be practically useful (requiring numerical integration followed by numerical di�erentation followed by numerical

integration).

• There is no good way to couple attractive forces into the solution. Some authors have extended the JKR contact

model to viscoelastic materials, but again there may be issues with non-monotonic contact areas.

Therefore, in addition to the Hertz-based models, we have also implemented another viscoelastic model into VEDA.

This model is based on the work of [72, 73]. This is an entirely di�erent approach. It is more akin to a �nite element

or boundary element method than a contact mechanics problem. We discrete the sample surface with a mesh, and

then solve for the de�ection and pressure at each point explicitly. This removes all assumptions about the relations

between contact area, indentation, and force, and allows the use of arbitrary attractive forces.

We start with an axisymmetric elastic halfspace. If the pressure distribution P (r) is speci�ced, then the vertical

deformation u(r) can be computed from:

u(r) =
−1

πE∗

ˆ
P (s)

|r− s|
ds (56)

where 1/E∗ is the reduced elasticity (Attard has used 2/E∗ for reduced elasticity instead). Let the separation

between the tip and the surface be given by h(r) = d+ r2

2R − u(r), where d is the tip-sample gap at the center of tip,
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r2/2R speci�es a parabolic tip shape. Let p(z) be a potential (such as lennard-jones) specifying the pressure between

two in�nite plates at a separation of z. Then, eq 56 becomes

u(r) =
−1

πE∗

ˆ
p(h(s))

|r− s|
ds =

−1

πE∗

ˆ
p(d+ s2

2R − u(s))

|r− s|
ds (57)

This is a non-linear integral equation for u (the pressure depends on the deformation, but the deformation depends

on the pressure). It could be solved by Newton-Rhapson or another numerical method. For a viscoelastic problem,

apply the correspondence principle:

u(r, t)− u(r, 0) =

ˆ t

0

−1

πE(t− t′)

ˆ
ṗ(h(s, t′))

|r− s|
dsdt′ (58)

Whereas the elastic case involved the solution of an integral equation that is non-linear in u, the viscoelastic case

involves solving a di�erential-integral equation that is linear in u. Taking a time derivative on both sides gives

u̇(r, t)− u̇(r, 0) =
−1

π

ˆ t

0

(
d

dt

1

E(t− t′)

)(ˆ
ṗ(h(s, t′))

|r− s|
ds

)
dt′ +

−1

πE(0)

ˆ
ṗ(h(s, t))

|r− s|
ds (59)

Assume that 1/E(t), which is the creep compliance, represents a three element model:

1

E(t)
=

1

E∞
+
E∞ − E0

E∞E0
e−t/τ

then 1/E(0) = 1/E0 and d
dt (1/E(t− t′)) = − 1

τ
E∞−E0

E∞E0
e−t/τ , from which we get

u̇(r, t)− u̇(r, 0) =
−1

π

ˆ t

0

(
−1

τ

E∞ − E0

E∞E0
e−t/τ

)(ˆ
ṗ(h(s, t′))

|r− s|
ds

)
dt′ +

−1

πE0

ˆ
ṗ(h(s, t))

|r− s|
ds (60)

Then, comparing back to eq 58, we recognize a pattern. Add and subtract 1/E∞

u̇(r, t) =
1

πτ

ˆ t

0

(
E∞ − E0

E∞E0
e−t/τ +

1

E∞
− 1

E∞

)(ˆ
ṗ(h(s, t′))

|r− s|
ds

)
dt′ +

−1

πE0

ˆ
ṗ(h(s, t))

|r− s|
ds (61)

which yields

u̇(r, t) =
1

πτ

ˆ t

0

(
1

E(t)
− 1

E∞

)(ˆ
ṗ(h(s, t′))

|r− s|
ds

)
dt′ +

−1

πE0

ˆ
ṗ(h(s, t))

|r− s|
ds (62)

Therefore we can rearrange and rename:

u̇(r, t) =
−1

τ
(u(r, t)− u∞(r, t))− 1

πE0

ˆ
ṗ(h(s, t))

|r− s|
ds
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u∞(r, t) =
−1

πE∞

ˆ
p(h(s, t))

|r− s|
ds

where u∞ represents the surface position that would result if the pressure distribution were �xed at its current

value and then the sample is allowed to relax for an in�nite amount of time. But we also have

ṗ(h(r, t)) = p′(h(r, t))
(
ḋ(t)− u̇(r, t)

)
and also considering the formula (14) from [74], we have

u̇(r, t) =
−1

τ
(u(r, t)− u∞(r, t))− 1

E0

ˆ
p′(h(s, t))

(
ḋ(t)− u̇(s, t)

)
k(r, s)sds (63)

where k(r, s) is given by

k(r, s) =

{
4
πrK(s2/r2), s < r
4
πsK(r2/s2), s > r

(64)

where K(m) is the complete elliptical integral of the �rst kind with modulus m. Note that Eq. 64 is the same as

formula (15) from [74] except a typo has been corrected. We precompute k to save time. Because the combination

k(r, s)s always appears together, we precompute it together. So de�ne κ(r, s) = k(r, s)s

u̇(r, t) =
−1

τ
(u(r, t)− u∞(r, t))− 1

E0

ˆ
p′(h(s, t))

(
ḋ(t)− u̇(s, t)

)
κ(r, s)ds (65)

Attard implies that he uses an iterative solver. In practice this seems to be slow (at least, for the typical problem

sizes we have considered of 50 - 200 radial points) . Iterative solvers could potentially be faster for larger problems..

If we discretize the integral in 63 into N points, (with ∆rj accounting for non-uniform spacing, and accouting for

trapezoidal integration)

u̇i = −1

τ
(u(ri, t)− u∞(ri, t))−

1

E0

N∑
j=1

(∆rj)p
′(h(rj , t))

(
ḋ(t)− u̇(rj , t)

)
κ(ri, rj) (66)

Note that there is a singularity in k(r, s) at r = s. However, the integral has a �nite area. Therefore the value of

κ(ri, rj) at i = j can be calculated according to [75]. De�ning the matrix J as

Jij =
2

E0
(∆rj)p

′(h(rj , t))κ(ri, rj)− δij
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where δ is kroneker delta, and de�ning the vector b

bi =
1

τ
(u(ri, t)− u∞(ri, t)) +

1

E0

∑
j

(∆rj)p
′(h(rj , t))ḋ(t)κ(ri, rj)

where u∞ can also be discretized u∞ = − 1
E∞

∑N
j=1(∆rj)p(h(rj , t))κ(ri, rj)

Then we get the simple linear equation

bi = Jij u̇i (67)

which is easily solved directly.

After inverting the matrix, we have a system of ordinary di�erential equations, which can be solved using the same

di�erential equation solver as used for the cantilever dynamics. Inversion of the matrix will obviously take some time,

but as long as the number of points is kept small, the problem can be solved in a reasonable time.

The solution time of Eq 67 can be further reduced by performing a Fourier transform and truncating the highest order

terms. Speci�cally, let u(ri, t) =
∑M
k=1 ak(t)cos(πkri/R), where R is the radial extent of the computational domain,

and M is the number of Fourier basis function (M ≤ N), so then u̇(r, t) =
∑M
k=1 ȧk(t)cos(πkri/R). Substituting into

the above, we obtain

bi = Jij

N∑
k=1

ȧk(t)cos(kri/R)

or

bi = JijCikȧk (68)

where Cik = cos(πkri/R) is the Fourier transform matrix. IfM = N , then Eq 68 is solvable by Gaussian Elimination

just as Eq 67. However, for time savings, we desire M < N . Therefore Eq 68 is over constrained, and we solve it in

the least squares sense

CTikbi = CTikJijCikȧk (69)

This approach is similar to that described in [33], but is better conditioned numerically.

For further time savings, the model is not solved when the tip is so far away from the sample that the force is nearly

zero. By default, the cuto� is 4 nm. This is user adjustable.

For all other VEDA models, when output plots refer to �tip sample gap�, it is referenced to the equilibrium position

of the undeformed sample surface. This was appropriate as the deformation of the sample surface was not tracked as
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indepedent variable. For Attard's model, the deformation of the surface is tracked independently. Plots that refer to

�gap� still refer to the undeformed surface, not the deformed surface. The deformed position at the center of the tip

(i.e. u(0, t)) is output separately.

Finally, for this model, movies of the tip interacting with the sample can be produced to visual the interaction.

These are available in Force Distance Curves tool, and when time histories are selected in another of the other tools.

C. Models for cantilever dynamics

This section is devoted to modeling the dynamics of the continuous cantilever beam as it interacts with a sample.

A continuous beam is represented by an in�nite DOF system, where each DOF corresponds to an eigenmode of the

beam. Any numerical simulation of a cantilever beam involves an approximate truncated DOF model where only a

�nite number of eigenmodes are retained. In conventional dAFM in air or vacuum where the excitation frequency

is near the resonance of the �rst eigenmode, a single DOF (point-mass) model is appropriate [76]. However, soft

cantilevers in liquid environments [44], internal resonance [27�31, 77], or bimodal excitation [78, 79] will require two

or more DOFs. In what follows, we �rst discuss the characteristics of the equivalent point-mass model [80] for a single

eigenmode, followed by classic Bernoulli-Euler beam theory for a cantilever beam with tip mass and solve for the

dispersion relationship for the eigenvalues and normal eigenmodes. Using the normal eigenmodes as a basis, we show

how the standard Galerkin discretization method can produce the equivalent point-mass model or a more general

multiple DOF model.

1. The equivalent point-mass model

Figure 90 illustrates the concept of the equivalent point-mass model. A single eigenmode of the cantilever beam

can be represented as an equivalent point-mass model describing the dynamics of the tip interacting with a sample

[26]. The continuous cantilever beam has a linear mass density ρc, elastic modulus Ec, area moment of inertia Ic and

length Lc. For the i
th eigenmode ui(x, t) = Φi(x)qi(t), the equivalent point-mass model has an equivalent mass mi

and sti�ness ki. Depending on the excitation source (i.e., acoustic or magnetic), there is also a speci�c equivalent

forcing. The damping of the point-mass oscillator is characterized by a measured quality factor.

Before proceeding with a rigorous mathematical derivation, let us consider a simple physical concept. For the time

being, all we need to know about continuous vibrations is that vibrations of a continuous beam may be decomposed

into eigenmodes; each of which represents one DOF of an in�nite DOF system. Accordingly, each eigenmode can be

represented as an equivalent point mass model [80]. In doing so, we must ensure that the kinetic T and potential V

energy of the eigenmode ui(x, t) = Φi(x)qi(t) are equal respectively equal to the kinetic and potential energy of the

point-mass model for a given state (ui(Lc, t), u̇i(Lc, t)) of the probe tip. From the condition on the kinetic energy on

the ith eigenmode is
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FIG. 90: (a) Schematic of a continuous AFM microcantilever with acoustic (piezo) excitation and (b) the equivalent point-mass
model. The continuous microcantilever distributed mass, ρc, Young's modulus, Ec, area moment, Ic, and length, Lc. The
point-mass has equivalent sti�ness, ki, and equivalent mass, mi, and is driven by an equivalent base motion yi. Both oscillators
have identical kinetic and potential energy for a given state of tip motion (q, q̇). Furthermore, in both models, the tip-sample
interaction force, Fts(d), is identical.

1

2

ˆ Lc

0

ρc[u̇i(x, t)]
2dx+

1

2
mtip[u̇i(Lc, t)]

2 =
1

2
mi[u̇i(Lc, t)]

2 (70)

where ρc is the linear mass density and mi is the equivalent mass. Substituting ui(x, t) = Φi(x)qi(t) into Eq. 70, we

�nd

mi = ρc

ˆ Lc

0

[
Φi(x)

Φi(Lc)

]2

dx+mtip (71)

Eq. 70 holds for any arbitrary scaling of Φi(x), however, logically we can de�ne a unique scaling of the eigenfunction

such that Φi(x) = Φi(x)/Φi(Lc) (i.e., the eigenfunctions are normalized such that the de�ection at the tip is unity

in every mode). Consequently, the generalized coordinates qi now correspond to the de�ection of the tip in the ith

eigenmode and the equivalent mass is unique.

Similarly, the potential energy can be written as

V =
1

2

ˆ Lc

0

EcIc[u
′′
i (x, t)]2 dx =

1

2
ki[ui(Lc, t)]

2 (72)

Substituting ui(Lc, x) = Φi(x)qi(t) into Eq. 72

ki = EcIc

ˆ Lc

0

[
Φ
′′
i (x)

]2
dx (73)

One can use the principle of virtual work to derive the equivalent forcing.

In the following sections, we will provide a full derivation of a general multiple DOF model starting from classical

Bernoulli-Euler beam theory. This process is guided by the principle that each eigenmode must be represented by an

equivalent point-mass model in the �nal discretized multiple DOF model.
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2. Bernoulli-Euler beam model

The classical Bernoulli-Euler beam model is applicable to small de�ections of slender, uniform beams. Here, we

develop a model for the dynamics of the AFM probe from Bernoulli-Euler beam theory. In this section we have

assumed:

1. The AFM probe is a diving-board type cantilever that can be modeled in theory as a slender, uniform, and

rectangular beam.

2. De�ection amplitudes of the cantilever tip are very small relative to the cantilever length.

3. A probe tip located at the free-end of the cantilever has a small but �nite mass and negligible rotational inertia.

This assumption hinges on the fact that most tips are conical or pyramidal, and should have relatively small

rotational inertia about their bases.

4. All of the damping comes from hydrodynamic forces, and internal damping of the cantilever is negligible.

The most general partial di�erential equation (PDE) governing the small de�ections of the cantilever beam for either

an acoustic (base) excitation or a magnetic excitation [81] according to classical Bernoulli-Euler beam theory for small

de�ections in a ground-�xed (inertial) frame is as follows

ρcẅ(x, t) + Fhydro(ẇ(x, t)) + EcIcw
′′′′(x, t) = Fts(d, ḋ)δ(x− Lc) + Fmag(t), (74)

where x is the axial coordinate along the cantilever's longitudinal axis, Lc is the length, dots represent temporal

derivatives, primes are derivatives with respect to x, Fhydro is the hydrodynamic force and ρc, Ec, Ic are the linear

density, elastic modulus and area moment of inertia respectively. The absolute de�ection, w(x, t) = Z(t)+y(t)+u(x, t),

is composed of the separation from the sample, Z(t), the acoustic excitation y(t), and the de�ection in the non-inertial

frame attached to the base u(x, t), Fmag represents a uniformly distributed magnetic excitation. If the cantilever is

acoustically excited, Fmag is set to zero. Otherwise, y(t) = 0 if the cantilever is magnetically excited. The tip-sample

interaction force Fts(d, ḋ) (see Sec. IVA), and δ(·) is the Dirac delta distribution.

The boundary conditions are:

u(0, t) = 0 , u′(0, t) = 0 , u′′(Lc, t) = 0 , (75)

EcIcu
′′′(Lc, t) = mtipẅ(Lc, t) = mtip(ü(Lc, t) + ÿ(t) + Z̈(t)). (76)

Typically in dAFM, a photodiode measures the bending angle u′(L, t) and infers the de�ection u(L, t) relative to

the base, therefore, we proceed to model the dynamics of the cantilever in the non-inertial, moving frame attached to
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the cantilever's base. The equation of motion (Eq. 74) in the non-inertial frame attached to the moving base is:

ρcü(x, t) + Fhydro(u̇(x, t) + ẏ(t) + Ż(t)) + EcIcu
′′′′(x, t) = Fts(d, ḋ)δ(x− Lc)− ρcÿ(t) + Fmag(t). (77)

Regarding Fhydro, we assume that the Reynold's number is low so that force due to u̇(x, t), ẏ(t), Ż(t) can be treated

by linear superposition. Also because of the low Reynold's number, we expect the damping force to have a linear

dependence velocity. Now Ż(t) will typically have much lower frequency content than u̇(x, t) or ẏ(t), so we allow

di�erence coe�cients. Thus, Fhydro(u̇(x, t) + ẏ(t) + Ż(t)) = γf u̇(x, t) + γf ẏ(t) + γdŻ(t). An empirical correlation for

γd can be found in [82] while γd will be discussed later.

Henceforth, allow

F (x, t) = −ρcÿ(t)− γf ẏ(t)− γdŻ(t) + Fmag(t) (78)

to represent the excitation of the driving force per unit length of the cantilever. Note while the velocity of the

Z-piezo motion Ż(t) is nonzero when scanning and its acceleration Z̈(t) is also nonzero while scanning, it is reasonable

to assume Ż(t)� ẏ(t) and Z̈(t)� ¨y(t). Therefore, in the scanning tool we neglect hydrodynamic and inertial forces

due to Z(t). In the F-Z Curves and the approach curves tools, γdŻ(t) is included while ρcZ̈(t) is neglected (for those

tools Z̈(t) would only be non-zero at the very beginning and end of the approach anyway). In the frequency sweep

tool, Z is constant so these e�ects are not relevant.

3. The dispersion relationship and normal eigenmodes

Our goal is to truncate the in�nite DOF model represented by the PDE in Eq. 79 single or multiple DOF model

describing the dynamics of the dAFM probe tip in the non-inertial frame. The truncation is achieved by a Galerkin

discretization of the governing PDE using the normal eigenmodes as a basis.

We can derive the dispersion relationship and normal eigenmodes of the cantilever by neglecting the nonconservative

forces (i.e., damping or tip-sample interactions) and external forcing. Under such conditions, Eq. 79 reduces to

ρcü(x, t) + EcIcu
′′′′(x, t) = 0. (79)

The solution process for solving Eq. 79 follows the standard separation of variable approach. In doing so, we make

the substitution u(x, t) = Φ(x)q(t) into Eq. 79, yielding

q̈(t)

q(t)
= −EcIc

ρc

Φ′′′′(x)

Φ(x)
. (80)

The only way for Eq. 80 to hold for all time and x is for the right and left sides to be constant which we will call ω2.

This yields two ordinary di�erential equations (ODEs) for the temporal and spatial components of u(x, t). The ODE

describing the temporal component q(t) becomes

q̈(t) + ω2q(t) = 0, (81)
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which has a solution of general form

q(t) = A sinωt+B cosωt. (82)

The spatial component Φ(x) is governed by

Φ′′′′(x)−
(
α

Lc

)4

Φ(x) = 0, (83)

where α is de�ned for convenience by

α4 ≡ ρcω2L4
c/EcIc (84)

The solution to Eq. 83 has a general form

Φ(x) = c1 sin

(
αix

Lc

)
+ c2 cos

(
αix

Lc

)
+ c3 sinh

(
αix

Lc

)
+ c4 cosh

(
αix

Lc

)
(85)

The general form of Φ(x) is decided by the boundary conditions. Since we are considering the unforced problem in

this section, the boundary conditions 75 reduce to:

u(0, t) = 0 , u′(0, t) = 0 , u′′(Lc, t) = 0 , u′′(Lc, t) = 0 , EcIcu
′′′(Lc, t) = mtipü(Lc, t). (86)

Substituting u(x, t) = Φ(x)q(t) into Eq. 86 and realizing q̈ = −ω2q(t) (Eq. 81), we �nd

Φ(0) = 0 , Φ′(0) = 0 , Φ′′(Lc) = 0 , EcIcΦ
′′′(Lc) + ω2mtipΦ(Lc) = 0. (87)

Substituting the general form of Φ(x) (Eq. 85) in the �rst and second boundary conditions, we quickly �nd c2 = −c4

and c1 = −c3. Eliminating c3 and c4 from the remaining two boundary conditions, and then using Eq. (84) we are

left with two equations and two unknowns:[
sinα+ sinhα, cosα+ coshα

cosα+ coshα−mtipα(sinα− sinhα), − sinα+ sinhα−mtipα(cosα− coshα)

](
c1
c2

)
=

(
0
0

)
(88)

where mtip = mtip/mc is the non-dimensional tip mass where mc = ρcLc is the mass of the cantilever beam.

The nontrivial solutions to Eq. 88 are found by taking the determinant of the matrix which yields the dispersion

relationship:

cosα coshα+ 1 +mtipα(cosα sinhα− sinα coshα) = 0. (89)

Eq. 89 supports a countably in�nite number of solutions αi, each of which correspond to an eigenmode. The

general solution takes the form u(x, t) =
∑∞
i=1 Φi(x)qi(t) where the eigenfrequencies of the i

th eigenmode are given by

α4
i = ρcω

2
iL

4
c/EcIc and the eigenfunction Φi(x) is found by eliminating c2 using the �rst three boundary conditions

in Eq. 88, which leaves an arbitrary scaling c1 for the entire eigenfunction. Choosing c1 = 1, we have

Φi(x) = sin

(
αix

Lc

)
− sinh

(
αix

Lc

)
− σi

[
cos

(
αix

Lc

)
− cosh

(
αix

Lc

)]
(90)
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where σi = sinαi+sinhαi
cosαi+coshαi

. Note that the eigenfunction in Eq. 90 is identical to the simple cantilever beam (without

tip mass). The e�ect of the particle mass located at the free-end has only modi�ed the eigenvalues αi according to

Eq. 89.

While mtip is fairly small (around 10% for many commercial levers), these values of tip mass can still have a

profound e�ect on higher eigenmodes in dAFM applications. As tip mass is added to the cantilever, the outer-most

node of higher eigenmodes gradually move towards the tip. When a node is close to the free-end, large amounts

of kinetic and potential energy are present for small de�ections of the tip in that eigenmode. This results in large

sti�nesses and masses of the higher eigenmodes [80]. The �rst eigenmode, which contains no nodes, is not a�ected

signi�cantly by the tip mass.

4. The Galerkin discretization

Now that we know the eigenfunctions Φi(x), we can use them as a basis for a Galerkin discretization of Eq. 79. In

particular, we will use the unique scaling of the eigenmode Φi(x) to ensure that energy is preserved when taking the

inner product. Note that the cantilever beam with tip mass is a self-adjoint system with orthogonal eigenmodes [83]

ˆ Lc

0

Φi(x)Φj(x)dx =

{
−m̄tip, for i 6= j
µi, for i = j

(91)

where µi is the portion of the cantilever equivalent mass resulting from the beam mass (not including the tip mass).

If the tip mass is zero, µi = 1/4; however, if it is nonzero, the higher eigenmodes are a�ected, and therefore µi are

a�ected.

The Galerkin discretization is performed by substituting u(x, t) =
∑∞
j=1 Φj(x)qj(t) into Eq. 79, and taking the

inner product with Φi(x) as follows

ˆ Lc

0

Φi(x)

ρc ∞∑
j=1

Φj(x)q̈j(t) + γf

∞∑
j=1

Φj(x)q̇j(t) + EcIc

∞∑
j=1

Φ
′′′′
j (x)qj(t) = F (x, t)

 dx. (92)

or

ρc

∞∑
j=1

ˆ Lc

0

Φi(x)Φj(x)dxq̈j(t)+γf

∞∑
j=1

ˆ Lc

0

Φi(x)Φj(x)dxq̇j(t)+EcIc

∞∑
j=1

ˆ Lc

0

Φi(x)Φ
′′′′
j (x)dxqj(t) =

ˆ Lc

0

Φi(x)F (x, t)dx.

(93)

Also substitute the sum into the boundary conditions (87)

Φ(0) = 0 , Φ′(0) = 0 , Φ′′(Lc) = 0

EcIc

∞∑
j=1

Φ(Lc)
′′′
j (x)qj(t) = mtip(

∞∑
j=1

Φ(Lc)j(x)ω2
j qj(t) + ÿ(t) + Z̈(t)) (94)

We integrate the sti�ness term by parts [83]
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∞∑
j=1

(
EcIc

ˆ Lc

0

Φ
′′′′
j (x)Φi(x)dx

)
=

∞∑
j=1

(
EcIcΦ

′′′
j (x)Φi(x)|Lc0 − EcIcΦ

′′
j (x)Φ

′
i(x)|Lc0 + EcIc

ˆ Lc

0

Φ
′′
i (x)Φ

′′
j (x)dx

)
(95)

From the boundary conditions (Eq. ??), Φ
′′
j (x)Φ

′
i(x)|Lc0 =

����Φ
′′
j (Lc)Φ

′
i(Lc) − Φ

′′
j (0)���Φ

′
i(0) = 0. Also, from the bound-

ary conditions (Eq. ??):
∑∞
j=1

(
EcIcqi(t)Φ

′′′
j (x)Φi(x)|Lc0

)
=
∑∞
j=1

(
EcIcqi(t)

[
Φ
′′′
j (Lc)Φi(Lc)− Φ

′′′
j (0)���Φi(0)

])
=

mtip

(∑∞
j=1 q̈j(t) + ÿ + Z̈

)
. Note the last term in Eq. 95 is the equivalent sti�ness (Eq. 73), which can be shown to

be diagonal. Substitute these results into Eq. 93

∞∑
j=1

(
ρc

ˆ Lc

0

Φi(x)Φj(x)dx+mtip

)
q̈j(t) + γf

∞∑
j=1

ˆ Lc

0

Φi(x)Φj(x)dxq̇j(t) + EcIc

ˆ Lc

0

[Φ
′′
j (x)]2dxqj(t) =

ˆ Lc

0

Φi(x)F (x, t)dx−mtip

(
ÿ + Z̈

)
(96)

Then the orthogonality relation in Eq. 91 can be used to simplify the mass terms:

(
ρc

ˆ Lc

0

Φ
2

i (x)dx+mtip

)
q̈i(t) + γf

∞∑
j=1

ˆ Lc

0

Φi(x)Φj(x)dxq̇i(t) + EcIc

ˆ Lc

0

[Φ
′′
i (x)]2dxqi(t) =

ˆ Lc

0

Φi(x)F (x, t)dx−mtip

(
ÿ + Z̈

)
. (97)

At this point, note that the damping terms still have o�-diagonal elements if mtip is non-zero. Thus the damped

eigenmodes are not diagonal in the basis of undamped eigenmodes. Equivalently speaking, the modal equations we

have developed are coupled. However, in VEDA, we neglect the o� diagonal terms and work with uncoupled equations.

This is valid for the following reasons: in air, the damping is very small, and therefore it has little overall e�ect on

the eigenmodes, and the undamped and damped eigenmodes are nearly identical. In liquid, the o�-diagonal terms

are small compared to the on-diagonal terms, therefore we can neglect them. Finally, we obtain the desired result(
ρc

ˆ Lc

0

Φ
2

i (x)dx+mtip

)
q̈i(t) +

(
γf

ˆ Lc

0

Φ
2

i (x)dx

)
q̇i(t) +

(
EcIc

ˆ Lc

0

[Φ
′′
i (x)]2dx

)
qi(t) =

ˆ Lc

0

Φi(x)F (x, t)dx−mtip

(
ÿ + Z̈

)
(98)

We can rearrange Eq. ?? to include experimentally observable parameters, such as ωi and the quality factor Qi, to

obtain

q̈i(t)

ω2
i

+
q̇i(t)

ωiQi
+ qi(t) =

Fts(d, ḋ)

ki
+
Fi(t)

ki
(99)

where Fi is the equivalent forcing or excitation of the ith eigenmode (which includes the tip mass inertial loading)

and d = Z + y(t) +
∑N

1 qi(t) is the instantaneous gap between the tip and the sample and N is the number of

eigenmodes (DOFs) retained in the model. The dependence of the tip-sample interaction on the tip-sample gap d
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and its rate ḋ couples the response of all eigenmodes 1 through N together. For example, consider a two-eigenmode

model (N = 2) for a magnetically excited cantilever (y(t) = 0) and a conservative tip-sample interaction potential of

the type Fts = Fts(d) where d = Z + q1 + q2 [44]. In this case, the two-eigenmode model can be expressed as

q̈1(t)

ω2
1

+
q̇1(t)

ω1Q1
+ q1(t) =

Fts(Z + q1 + q2)

k1
+
F1(t)

k1

q̈2(t)

ω2
2

+
q̇2(t)

ω2Q2
+ q2(t) =

Fts(Z + q1 + q2)

k2
+
F2(t)

k2
(100)

The form of Fi(t) will vary depending on the source (magnetic or acoustic) and the frequency scheme (single or

multifrequency excitation). This is discussed in Sec. IVC7.

5. The non-dimensional multiple degree-of-freedom model

For the purposes of the simulation, it becomes essential to nondimensionalize Eq. 99 by characteristic length and

time scales to avoid a loss of precision during numerical integration. We nondimensionalize time according to τ = tΩ,

where Ω is an arbitrary scaling frequency. For good numerical practices, Ω is chosen to make characteristic time scales,

such as oscillation period, on the order of unity. Common choices for the scaling frequency are ωd or ω1. Similarly, the

spatial coordinates are nondimensionalized by according to q = q/Λ, where Λ is an arbitrary length scale chosen to

make characteristic length scales, such as amplitude, on the order of unity. One common choice is Λ = A0, where A0

is the unconstrained amplitude. Allowing primes to denote d/dτ , the nondimensional equation of motion is expressed

as

q′′i (τ) +
Ωi
Qi
q′i(τ) + Ω2

i qi(τ) =
Ω2
i

ki

[
F ts(d, d

′
) + F i(τ)

]
(101)

where Ωi = ωi/Ω and d = d/Λ. For convenience, we have also the scaled forces F i = Fi/Λ and F ts = Fts/Λ.

6. The photodiode signal

Since most commercial AFMs utilize the photodiode optical-lever technique, which measures the bending angle and

attempts to infer the cantilever de�ection, our simulations designed to reproduce the photodiode signal. After properly

calibrating the cantilever based on the �rst eigenmode de�ection, as explained in [44], the photodiode de�ection signal

is

up(τ) =

N∑
i=1

χiqi(τ) (102)

where χi = Φ
′
i(x)/Φ

′
1(x)|x=1. Note we have assumed that the laser is focused at the free end. Also, note that the

higher eigenmodes are naturally ampli�ed by this measurement. When the user speci�es an unconstrained amplitude

A0, it is referring to the amplitude of up(τ). If instead the true de�ection is desired (such as would be obtained with
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an interferometer measurement instead of a photodiode), the user can specify this in the GUI (�output type� near the

bottom of the �operating conditions and cantilever properties� tab).

As a side note, a standard experimental method is to calibrate χ using a static F-z curve. This gives the static

bending χs whereas in dynamic AFM we typically need the 1st eigenmode mode χ1. For zero tip mass, χ1 ≈ 1.09χs,

and χs ∝ 3
2L (rad/m) where L is the length of the cantilever. This relation is for an in�ntessimal laser spot size

exactly at the free end.

7. Excitation sources and schemes

In this section, we discuss various models for the excitation F i including magnetic excitation, acoustic excitation,

photothermal excitation, and brie�y multiple frequency excitations. In liquid environments, where quality factors

are small, the source of cantilever excitation becomes particularly important. For standard operation in ambient or

vacuum, the excitation source is not critical.

An excitation by an external magnetic �eld is the simplest to model. Two di�erent types of magnetic excitation in

common use. One is referred to as Lorentz force actuation [84] (such as Asylum's i-Drive). This works by running

an time-varying electrical current through a wire loop on the cantilever. When a constant external magnetic �eld is

applied, this generates a uniform force distribution on the cantilever such that f(x, t) = fmag cosωdt. Then from the

general form of the equivalent forcing, we �nd that the modal force on the ith eigenmode has the form

F
mag

i (τ) = Fmagβi cos Ωdτ (103)

where Fmag = fmagLc/Λ, fmag is load distribution, ωd is the drive (excitation) frequency and βi =
´ 1

0
Φi(x)x. The

�rst few values of βi are 0.391, -0.217, 0.127, -0.091 for i =1,2,3,4.

The other common method is to make the cantilever a permanent magnet. This could be either with a thin coating

of a magnetic material (such as Agilent's MAC mode), or a small magnetic particle glued to the cantilever. Then

a time-varying external magnetic �eld is applied. The most common case is when the external magnetic �eld is

perpendicular to the axis of magnetization of the cantilever [85, 86]. In this case the magnetic �eld e�ectively creates

a torque on the cantilever, which leads to the same modal force on each eigenmode. In other words

F
mag

i (τ) ∝ Fmag cos Ωdτ (104)

The di�erence between these two types of magnetic excitation is small compared to the di�erence between magnetic

and other modes. Note: Versions of VEDA prior to Feb 2012 did not correctly distinguish these two types of excitation.

There was just a �magnetic� excitation which was a uniform force.

From Eq. 101, the transfer function for either of these types of magnetic forcing is given by

Gmagi (jΩd) ≡
Ai(jΩd,i)

F i(jΩd,i)/ki
=
[
1− Ω

2

d,i + jΩd,i/Qi

]−1

(105)
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Up(Lc, jΩd,i) = Fmag

N∑
i=1

χiβiG
mag
i (jΩd,i)/ki. (106)

and

Fmag = A0

{∣∣∣∣∣
N∑
i=1

χiβiG
mag
i (jΩd,i)

∣∣∣∣∣
}−1

(107)

The forcing term is:

Ω2
i

ki
F i(τ) =

Ω2
i

ki
Fmagβi (108)

For an acoustic (base) excitation, the force is:

F
AC

i (τ) = − ki
Ω2
i

(
βi +mtip

µi +mtip

)
y,ττ (τ)− kiβi

ΩiµiQi
y,τ (τ). (109)

where µi =
´ 1

0
Φ

2

i (x)dx, βi =
´ 1

0
Φi(x)dx and x = x/Lc. Considering harmonic excitation y(τ) = Abase cos Ωdτ , where

Ωd = ωd/Ω is the drive (excitation) frequency, the force becomes For an acoustic excitation, the transfer function is

GACi (jΩd,i) =
A(jΩd,i)

y(jΩd,i)
=

Ω
2

d,i

(
βi+mtip
µi+mtip

)
− jΩd,i

Qi

(
βi
µi

)
1− Ω

2

d,i + jΩd,i/Qi
(110)

where Ωd,i = ωd/ωi. In the case of multiple frequency excitations Ω
(j)

d,i = ω
(j)
d /ωi. Also, de�ne NAC

i to be the

numerator or GACi , then an acoustic forcing term is given by

Ω2
i

ki
F i(τ) = AbaseΩ

2
i |NAC

i (jΩd,i)| cos
[
Ωdτ − ∠NAC

i (jΩd,i)
]

(111)

where ∠NAC
i (jΩd) = atan2

[
−Im{NAC

i (jΩd)},Re{NAC
i (jΩd)}

]
. The base amplitude is calculated from the speci�ed

unconstrained amplitude A0 by

Abase = A0

{∣∣∣∣∣
N∑
i=1

χi(Lc)G
AC
i (jΩd,i)

∣∣∣∣∣
}−1

. (112)

The hydrodynamic force due to Z piezo motion, assuming a constant velocity Ż(t) = vaprch (see section IVC2), is

FZi =

ˆ Lc

0

Φi(x)dx
(
−γdŻ

)
= vaprchβiγd (113)

The equivalent forcing is:

F
Z

i =
Ω2
i

Λki
vaprchβiγd =

Ω2
i

ki
vaprchΩβiγd (114)

where vaprch = vaprch/ΩΛ.

Multiple frequency excitations are also possible. The theoretical considerations are the same as described for each

frequency excitation, and an unconstrained amplitude at each frequency must be speci�ed. For instance, a two

frequency (ωd1, ωd2) magnetic excitation will take the form

F
mag

(τ) =

(
F

(1)
magΩ2

i

kiΛ

ˆ Lc

0

Φi(x)dx

)
cos Ω

(1)
d τ +

(
F

(2)
magΩ2

i

kiΛ

ˆ Lc

0

Φi(x)dx

)
cos Ω

(2)
d τ (115)
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For modes in which the drive frequency is �xed (e.g. tapping mode), the above excitation schemes are su�cient

to capture most of the relevant dynamics. However, for modes in which the drive frequency can vary (e.g. frequency

modulation), there are additional considerations. For acoustic excitation, the base motion y(τ) may not be constant

with frequency, but may have a depedence y(τ) = Abase(Ωd) cos Ωdτ (where Abase is complex valued - the amplitude

and phase may change with frequency). In VEDA, we include a simple model whereby Abase(Ωd) is given by a single

degree of freedom oscillator - the user gives a natural frequency and quality factor.

We also include a model for photothermal excitation which has a frequency dependence as well. Photothermal

excitation is quite complex [87, 88]. We include only a very simpli�ed model here. First, we assume that the laser

spot is positioned in a location on the cantilever where it excites mainly the �rst eigenmode and the excitation of

the other eigenmodes is negligible. Second, we assume that both the magnitude and phase of the excitation force

change linearly with frequency. That is, we assume F pt1 = Fptc1(Ω̄d,1 − 1) cos(Ωdτ + c2(Ω̄d,1 − 1)), where c1 and c2

are constants, and F pti = 0 for i = 2, 3, 4 · · ·

8. Self-excitation models (BETA testing)

We include a simpli�ed version of the self-excitation con�guration used by [89]. This feature should be considered

a beta test. There may be bugs or errors in it.

The self-excitation is usable in Amplitude Modulated approach curves (advanced), amplitude modulated scanning

(advanced), and the new �Amplitude modulated single Z� tool. To use the feature, for the box �choose frequency

scheme�, change it from �single frequency� to �self-excitation�.

I suggest that you make use of the time history outputs (on �simulation parameters� tab). This will allow you to

see the cantilever de�ection and applied force as a function of time so that you can see how I am doing the gain and

saturation, and how the cantilever responds to the force.

Because this is still in beta testing, there are a few limitations:

1) We only implemented the self-excitation for magnetic drive. For acoustic (piezo) drive it is more complicated

because we must keep track of both the base position and the forces. For air (high Q), the magnetic drive and the

acoustic drive will give the same answer anyway so it does not matter. For liquids, acoustic and magnetic is very

di�erent.

2) [89] suggests that the phase delay between the motion of the base and the modal forcing on the cantilever provides

a natural phase delay and that a phase shifter is not strictly necessary. However, per above, we use only a magnetic

force that is assumed to act instantly. Therefore it may be necessary to introduce a phase delay. However, we have

actually not implemented a true phase shifter, but a rather a simple time delay. That is, we read the cantilever

motion, wait a speci�ed amount of time, and then output the force. For air (high Q), the cantilever motion will be

dominated by a single harmonic anyway, so this delay is �ne. For liquids (low Q), the cantilever motion may include
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higher harmonics. In this case the time delay might not represent your physical system.

3) Finally, the output is reported using a lock-in ampli�er model that has a center frequency as the �driving

frequency�, even though the self-excitation may stabilize on a solution that is not exactly at the �rst natural frequency.

Therefore you may need a wide bandwidth on the lock-in ampli�er to get the correct amplitude signal (and the phase

signal might not be de�ned very well). In the future, we might want to use an RMS measurement of amplitude, or

use a Phase-locked-loop to track the self-excitation frequency.

So essentially, the current implementation should work fairly well for simulations in air. For simulations of liquid

(Q < 10) it may not work as well.

9. Extensions to triangular and other non-standard geometries

While the discretized models in this section are derived for rectangular beams, the results provide a reasonable

approximation for triangular cantilevers and other geometries under standard operating conditions and as long as

the quality factors are su�ciently large (Q1 & 20) - a condition that is typically met for cantilevers oscillating in

ambient conditions. By standard operating conditions, we mean that a single drive frequency is tuned to the natural

frequency of the fundamental eigenmode (ωd = ω1), and the natural frequencies of higher eigenmodes do not lie

within integer multiples of the fundamental. In this case, if Q1 & 20, only the fundamental eigenmode will contribute

signi�cantly to the cantilever dynamics. The motion of the base of the cantilever should be very small in the case of

acoustic excitation, and one can show the di�erence between magnetic and acoustic excitation sources is negligible.

Also, the photodiode de�ection up(t) is approximately the response of the fundamental eigenmode q1(t). Finally, for

non-rectangular geometries, calibration of the sti�ness k1 may require thermal calibration methods to insure accurate

predictions [80, 90].

D. Models for lock-in ampli�ers and noise

In dynamic AFM (both amplitude modulated and frequency modulated), the controller's objective is to maintain

a constant tip amplitude as the AFM cantilever probes the sample in the presence of tip-sample interaction forces.

To do this, an accurate measurement of the amplitude is needed.

In commercial AFMs, the amplitude of the photodiode signal is generally measured using a lock-in ampli�er. A

lock-in multiplies the photodiode signal with the drive (reference) signal or possibly a higher harmonic of the drive

signal. Since both of these signals are approximately sinusoidal, resulting in a signal of the form (A sin(ωt))2 sin(ωt) =

A− A sin(2ωt). Then a low pass �lter is used to remove the 2ω component leaving only the constant A component.

The choice of the low-pass �lter time constant involves a trade-o� between a quick time-domain response of the �lter

and noise rejection. With a long �lter time constant, the �lter will average over many drive cycles and thus give a clean

signal. However, it will take the �lter longer to respond to a change in the signal. With a short �lter time constant,
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the �lter will average over fewer drive cycles and thus response is much quicker, but noise and even nonlinearities,

such as the higher harmonics, may distort the measurement. In the current version of VEDA, you can choose from

either a 1st, 2nd or 4th order Butterworth �lter with various choices of time constant. Random noise can also be

added directly to the de�ection signal to simulate measurement shot noise.

Another way to compute the amplitude is by a Fourier transform over a speci�ed number of oscillation cycles and

then extracting the amplitude at the drive frequency. This method usually has better noise rejection than the lock-in

method. Therefore, comparing the amplitude and phase as measured by the fourier integral to the amplitude and

phase as measured by the lock-in can often serve as an indicator of whether the choosen lock-in model is good. But

there are two situations where the fourier integral method performs worse than a lock-in. The integral needs to be

computed over an integer number of drive cycles to avoid spectral leakage. For �xed frequency tools this is not a

problem, but for frequency modulation where the frequency can changes at every step it is not always possible to get

an integer number of drive cycles. Additionally, in certain oscillation regimes (e.g. chaos) it is impossible. In this

cases the Fourier integrals may be unreliable.

For the tools which use feedback control, VEDA will plot both the Fourier transform amplitude and the lock-in

amplitude. But, only the lock-in amplitude is used for feedback control (this is a di�erence from previous versions,

which did not have a lock-in model and thus used the Fourier analysis for feedback control). The basic versions of

some tools plot only one method or the other to avoid unecessarily complicating the ouput for begining users.

E. Models for AM controller dynamics

In Amplitude Modulated (AM) AFM, when the response amplitude deviates from the desired amplitude, the Z

displacement is adjusted accordingly and recorded as the sample topography.

For scanning simulations, we choose a simple proportional-integral (PI) controller to maintain the desired amplitude.

A block diagram of the feedback scheme is shown in Figure 91 This is the typical controller used in most commercial

AFM instruments today. More speci�cally, the feedback parameter is the amplitude error, e, which is de�ned as:

e = A1/A0 −Asp (116)

where A1 and Asp are the current amplitude of the primary harmonic and the set-point amplitude ratio respectively.

Based on the amplitude error, the Z displacement from the sample is adjusted according to:

∆Z(tn) =

(
−KP e(tn)− KI

fs

i=n∑
i=1

e(ti)

)
(117)

where, KP and KI are the proportional and integral gain constants, fs is the sampling frequency, and tn = n/fs.

Note, the controller used in versions 2.0.6 and forward is slightly di�erent than previous controllers. You will need

slightly di�erent gains to achieve the same response (the previous controller had an extra integrator block in Figure
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91 so that �proportional� control was e�ectively integral control, and �integral� controller was e�ectively a double

integral control.)
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FIG. 91: Feedback control block diagram used in AM simulation

F. Models for FM controller dynamics

The controller scheme for frequency modulated (FM) AFM is signi�cantly more complicated. A block diagram is

shown in Figure 92. Three separate controllers are used. First, a Phase Locked Loop (PLL) is used to adjust the drive

frequency. As the tip interacts with the sample, attractive forces will e�ectively make the system softer and lower the

resonant frequency. Repulsive forces will e�ectively make the system sti�er and increase the resonant frequency. The

PLL changes the drive frequency to follow the resonant frequency so that the cantilever is always driven at resonance.

Then, an second controller is used to increase the driving force (either magnetic force for magnetic drive or base

amplitude for acoustic drive) to maintain a constant amplitude. Finally, a Z controller adjusts the height in order to

keep the frequency shift from the PLL constant.

Some commercial AFMs use a di�erent scheme. Since φ is nearly 90 degrees when the controller is operating

properly, and since cos(φ) ≈ φ and sin(φ) ≈ 1 when φ is nearly 90 degrees, Y ≈ A and X ≈ Aφ. Thus, some AFMs

use the X and Y channels in the feedback controllers, skipping the step of computing true amplitude and phase. This

generally does not make much di�erence to the results for properly tuned controllers. VEDA allows simulating both

conditions.
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FIG. 92: Feedback control block diagram used in FM simulation

G. Numerical integration scheme

In this section, we describe the numerical integration algorithms, which allow a relative tolerance of 10−9, that are

implemented in all VEDA simulation tools, and why such an approach is necessary. As described earlier, the tip-

sample interaction models discussed in Section IVA describe non-smooth interaction forces. Smoothing the interaction

forces or using conventional integration routines to integrate the non-smooth forces cannot predict accurately the tip

vibration response. In order to accurately integrate the non-smooth interaction forces, a DDASKR routine with a

root-�nding algorithm based on DASPK di�erential algebraic equations (DAEs) software package (DASPK, UCSB) is

used [91�95]. Conventional integration routines cannot accurately and e�ciently deal with the non-smooth interaction

forces. Figure 93 compares schematically the DDASKR integration routine and the conventional integration routines.

In Figure 93, the upper region represents the van der Waals regime (noncontact) and the lower region represents the

contact regime, where the tip of the cantilever is said to be in contact with the sample surface according to the DMT

contact model (Eq. 8).

Among the conventional integration routines, �xed time-step integration routines (Figure 93) integrate using the

interaction model in noncontact from A to F, even though F is already in the contact region, and then use the contact

interaction model to integrate from F to G. Adaptive time-step integration routines tend to reduce the time-step close

to the boundary. Figure 93 indicates that adaptive time-step routines integrate from A to D with the noncontact

interaction model, and then integrate from D to E with the contact model. Adaptive time-step routines still cannot
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FIG. 93: Comparison between DDASKR and conventional integration routines.

detect the position of the boundary in order to integrate around the boundary. Unless extremely small time-steps are

chosen, conventional integration routines cannot accurately integrate the non-smooth interaction forces.

The DDASKR routine uses a root �nding algorithm to detect the sample boundary, allowing for easy implementation

of non-smooth or discontinuous interaction forces. The DDASKR routine can detect the boundary between two regions

(contact and noncontact), and implement the noncontact interaction model to integrate from A to the boundary

position B, then apply the contact interaction model to integrate from B to C.

H. Tip-sample geometry convolution

Scanning simulations also include the option to simulate image artifacts due to the �nite size of the probe tip.

However, we stress that such approximations consider only geometry [18] and do not account for di�erences in the

tip-sample interaction potential itself or any resulting nonconservative interactions. Figure 94 illustrates the actual tip-

sample surface h and geometrically convolved surface h∗. For continuous functions h∗ may be determined algebraically;

however, since the scanning tool includes the option of a sharp discontinuous step, the convolved surface is found by

iteration. Not surprisingly, we �nd that the tip geometry has a substantial e�ect on the measured topography for

sample features on the same order or smaller than the tip radius.

I. Energy outputs

To analyze AFM dynamics (e.g. to understand the meaning of phase contrast), it is often convenient to work with

the energy balances and compute the energy coming in and out of the oscillating cantilever through di�erent channels.

In order to compute this in the VEDA simulations, we begin with the equations of motion with all terms having units

of force ((99) with terms re-arranged).
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FIG. 94: Geometric approximation for imaging artifacts due to �nite probe tip sizes. For the actual sample height, h, at a
position x, a convolved sample height, h∗, is observed at position x due to a contact with the sample at position x∗.

kiq̈i
ω2
i

+
kiq̇i
ωiQi

+ kiqi = Fts(d, ḋ) + Fi(t)

then, in order to compute the work done by the di�erent forces, we take a path integral around one de�ection cycle

˛
kiq̈i
ω2
i

· dqi +

˛
kiq̇i
ωiQi

· dqi +

˛
kiqi · dqi =

˛
Fts(d, ḋ) · dqi +

˛
Fi(t) · dqi (118)

We can parameterize the path integral by time, with T as the period of one drive cycle:

ˆ T

0

kiq̈i
ω2
i

q̇idt+

ˆ T

0

kiq̇i
ωiQi

q̇idt+

ˆ T

0

kiqiq̇idt =

ˆ T

0

Fts(d, ḋ)q̇idt+

ˆ T

0

Fi(t)q̇idt (119)

Or

ˆ T

0

kiq̈i
ω2
i

q̇idt+ Emed,i +

ˆ T

0

kiqiq̇idt =

ˆ T

0

Fts(d, ḋ)q̇idt+ Edrive,i

where Emed,i =
´ T

0
kiq̇i
ωiQi

q̇idt, and Edrive,i =
´ T

0
Fi(t)q̇idt. The above can be rewritten as

1

2

ˆ T

0

ki
ω2
i

d

dt
q̇2
i dt+ Emed,i +

1

2

ˆ T

0

ki
d

dt
q2
i dt =

ˆ T

0

Fts(d, ḋ)q̇idt+ Edrive,i

From which we can immediately recognize the kinetic and potential energy terms for each eigenmode:
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ˆ T

0

d

dt
Ekin,idt+ Emed,i +

ˆ
d

dt
Epot,idt =

ˆ T

0

Fts(d, ḋ)q̇idt+ Edrive,i

Using the fundamental theorem of calculus

Ekin,i(T )− Ekin,i(0) + Emed,i + Epot,i(T )− Epot,i(0) =

ˆ T

0

Fts(d, ḋ)q̇idt+ Edrive,i

and renaming

∆Ekin,i + Emed,i + ∆Epot,i = ∆Etot,i + Emed,i =

ˆ T

0

Fts(d, ḋ)q̇idt+ Edrive,i

Then we give the term Eprop,i =
´ T

0
Fts(d, ḋ)q̇idt the name �energy propagation�, which represents the work done

by the tip-sample interaction forces on the ith eigenmode. So then the �nal energy balance for the ith mode is:

∆Etot,i + Emed,i = Eprop,i + Edrive,i

For periodic motion at steady state, the eigenmode will have no overall change in energy during the drive cycle:

∆Etot,i = 0. So merely:

Emed,i = Eprop,i + Edrive,i (120)

In some cases, a term of interest is the total energy lost due to tip-sample dissipation. This is de�ned as Ets =

−
´ T

0
Fts(d, ḋ)ḋdt. For magnetic excitation (and assuming Ż � 1), ḋ =

∑
q̇i from which we can rewrite Ets =

−
∑
i

Eprop,i. Thus it is sometimes convenient to re-write the energy balance as:

Emed,i +
∑
j 6=i

Eprop,j + Ets = Edrive,i (121)

But for acoustic mode, ḋ = ẏ+
∑
q̇i, so there is an additional term Ebs =

´ T
0
Fts(d, ḋ)ẏdt which we refer to as �base

sample work�. Then Ets = −
∑
i

Eprop,i − Ebs and the energy balance for acoustic mode is:

Emed,i +
∑
j 6=i

Eprop,j + Ets + Ebs = Edrive,i (122)

Finally, for comparison to published work it is often useful to plot Anczykowski's formula [96] for energy dissipation

in tapping mode, which is:
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P =
1

2

kω0

Qcant
[A0A sin(φ)−A2 ω

ω0
] (123)

Note that this formula was originally described as calculating the tip-sample energy dissipation. In actuality it

computes energy lost from the �rst harmonic, which could also be energy going to other harmonics / eigenmodes.

If you actually want to see tip-sample energy dissipation, VEDA computes that directly. Use this formula only for

comparison to published work that has used this formula.

Finally, it is also useful to have measures of the conservative stored energy. The typical quantity used in the AFM

literature is called the virial. The virial for the ith eigenmode is calculated as follows [32]

Vi =
1

T

ˆ T

0

Fts(d, ḋ)qi(t)dt

This is similar to the energy dissipation equation except that the velocity has been replaced by displacement. Also,

the 1/T term indicates that this is the time-averaged conservative work over the cycle, as opposed to the dissipation

where we are reporting the sum total dissipation over the cycle. In VEDA we numerically calculate the virial for each

eigenmode and then report the summed virial for all eigenmodes.

Note: earlier versions of VEDA had a bug which caused the reported value of dissipation to be higher than the

actual value by a factor of 2π. This bug was corrected in version 2.1.11 (September 2014)

V. HOW GET HELP

If you encounter a bug, the following options are available:

• Open a support ticket on nanohub (https://nanohub.org/support/ticket/new) which will be directed to the

VEDA development team

• Report the issue on the VEDA mailing list (https://engineering.purdue.edu/ECN/mailman/listinfo/veda-list)

If you have a question on how to use a particular tool or feature, the following options are available:

• Ask a question on the VEDA mailing list (https://engineering.purdue.edu/ECN/mailman/listinfo/veda-list)

• Ask the question on the nanohub Questions page https://nanohub.org/resources/veda/questions

If you have an idea for a new tool or feature, the following options are available:

• Suggest the idea on the VEDA mailing list (https://engineering.purdue.edu/ECN/mailman/listinfo/veda-list)

• Suggest the idea on the nanohub Wishlist page: http://nanohub.org/resources/14139/wishlist
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VI. CHANGELOG

• Version 2.2.2 May 2021. This version �xed crashes in the Force Viewer and Force Distance curves tools related

to viscoelastic material models. A new example was also added to the Force Viewer tool

• Version 2.2.1, April 2021

� The former �jump mode� tool has been combined with the �force distance curves� tool. The �jump mode�

tool really only did a single triggered force curve anyway. The new tool has the option to pick triggered or

untriggered curves.

� The Force Distance Curves tool now chooses the number of simulation time steps more intelligently, and

speed should be improved for complex models like Attard's model.

� Rounded triangle and sine waves are now options for the Force Distance Curves tool

� The Peak Force Tapping tool is signi�cantly improved and no longer considered in �beta testing�.

� Time history outputs in scanning tools are now labeled with the actual exact X value when the time history

started (which in some situations may be slightly di�erent than the requested value).

� Sample topography is now included in the time history output for scanning tools.

� Movies of the sample deformation are now available for Attard's model for Force Distance Curves tool,

and AM Approach Curve Steady State Solution tool (when time histories are enabled). These movies were

previously available only in the Force Viewer tool.

• Version 2.2.0, 9 December 2020. The major development in this version was the introduction of a new tool

Amplitude Modulated Approach Curves using a Steady State solution, described in Section III E, which uses

a completely di�erent numerical approach than the rest of the VEDA tools. The motivation behind this tool

was to allow simulations with the Attard model (section IVB8), which are prohibitively slow using the normal

tools. However, it can be used with any tip-sample interaction model. The assumptions behind this tool make

it only valid for high Q environments (air & vaccuum).
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VIII. APPENDIX: INPUT PARAMETERS AND OPTIONS

Here we provide a reference for all input parameters and options VEDA simulations. All parameters have unique

de�nitions but may appear in multiple tools. Most parameters are introduced in Section IV.

Attractive force gradient: The slope of the attractive force. This is used only in the linear attractive/repulsive

mode.

Auto Calculate intermolecular distance?: If this box is checked, the intermolecular distance parameter a0 used

in the in DMT and DMT+DLVO models will be automatically calculated from the van der Waals Adhesion

force, the tip radius, and the Hamaker constant. If this box is unchecked the van der Waals Adhesion force will

be calculated from the intermolecular distance, the tip radius, and the Hamaker constant. In either case, the

relevant relation is Fad = HR
6d2 .

Auto calculate alpha? If this box is checked, the dispersion (section IVC3) for an Euler-Bernoulli beam are cal-

culated from the given tip mass. When it is unchecked, you can enter your own values. Use the default unless

you are certain you know what you are doing.

Auto calculate ki (i > 1)?: If this box is checked, the sti�nesses for the higher eigenmodes will be auto calculated

from the sti�ness for the 1st eigenmode, based on the theoretical formulas for a rectangular cantilever (taking

into account the tip mass). If this box is not checked, you must enter a sti�ness for each mode.

Auto calculate Slope calibration?: If this box is checked, the slope calibrations for higher eigenmodes will be

auto calculated based on the theoretical formulas for rectangular cantilevers (including tip mass). If this box

is unchecked, you need to enter slope calibrations for each eigenmode. (Note: most users should leave this box

checked).

Choose amplitude ratio(s): The amplitude ratio(s) A1/A0 at which to save and plot time history data (de�ection,

tip-sample force, eigenmodes, phase space). A1 is the amplitude of the primary harmonic of the excitation

frequency and A0 is the unconstrained amplitude (far from the sample). These A1/A0 values must be comma-

separated, and the number of values entered must be equal to the number of time histories to collect. This

option is only available if the Include time histories box is checked.

Choose frequency scheme: Choose between a single frequency excitation (conventional) and two frequency exci-

tation (bimodal).

Choose X-axis variable: Choose whether to plot simulation and time-history data against Z-distance or against

amplitude ratio (A1/A0)
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Choose excitation source: The method used in vibrating the cantilever. Excitation choices include acoustic (base)

excitation and magnetic excitation as discussed in Section IVC7.

Choose higher harmonics: The higher harmonics of the drive frequency for which to plot the amplitude and

phase. These higher harmonics must be comma-separated. The number of comma-separated values must be

equal to the number of higher harmonics requested.

Critical gap, D0 (nm): The gap at which the hysteretic capillary force goes to zero. This item is used only with

the capillary forces.

Debye length (mum): The Debye length of the ionic �uid within which the dAFM experiment is performed. For

deionized water, this value is 1 µm [43]. This parameter is only used with the DMT (Derjaguin-Müller-Toporov)

[42] + DLVO (Derjaguin-Landau-Verwey-Overbeek) [97] tip-sample interaction model.

De�ection points per cycle: The number of points to be plotted in each time-history graph. The default of 1000

should be su�cient for most simulations, however, this can be veri�ed after running a simulation by viewing

the time history data (See Example 1). If the tip-sample interaction history is not acceptably smooth, the user

should increase this parameter.

Dielectric constant: The dielectric constant of the solution in which the cantilever is immersed. This parameter is

only used with the DMT (Derjaguin-Müller-Toporov) [42] + DLVO (Derjaguin-Landau-Verwey-Overbeek) [97]

tip-sample interaction model.

Direct Input of Base Amp / Mag Force : When this box is unchecked, the base amplitude (acoustic drive) or

modal forces (other drives) are calculated based on the cantilever parameters and unconstrained amplitudes you

entered. When this box is checked, you can directly enter the base amplitude or modal force. Don't use this

unless you are sure you know what you are doing.

Drive Freq (kHz): Excitation or drive frequency. Normally, this frequency is identical to the �rst natural frequency

of the cantilever in conventional setups.

Energy dissipated, dE (eV): This is the energy loss during one oscillation cycle using the capillary force model.

Example tip-sample interaction properties This drop down box will automatically populate the tip-sample

interaction properties with example properties.

Excitation scheme: (used only in the frequency sweep tool) Choose Linear Ramp Frequency Sweep to generate a

continuously changing frequency. Choose Stair Step Frequency Sweep to break the frequency range up into a

series of discrete frequency points, one per output point. For a large number of output points, these two are

143



VIII APPENDIX: INPUT PARAMETERS AND OPTIONS

approximately equivalent. The stairstep is most appropriate for comparing to the results of an experiment that

uses a stairstep excitation. The linear ramp is most appropriate for comparing to an analytical theory.

f (kHz): Natural frequency of the chosen cantilever eigenmode.

f1 (kHz): Natural frequency cantilever's fundamental eigenmode.

fi (kHz): Cantilever natural frequencies (eigenmode frequencies). Each comma-separated natural frequency corre-

sponds to a cantilever eigenmode (in order). The number of comma-separated values must equal the number of

eigenmodes.

fd (kHz): Excitation or drive frequency. Normally, this frequency is identical to the �rst natural frequency of the

cantilever in conventional setups. For a two frequency (bimodal) simulation, enter in two comma delimited

values for the �rst and second (higher frequency) excitations.

fdstart (kHz): The starting excitation (drive) frequency of a frequency sweep (used only in the Frequency Sweep

tool).

fdstop (kHz): The end frequency of the frequency sweep. Note, for sweep up entering fdstart < fdstop and for a

sweep down enter fdstart > fdstop.

Feature height (nm): The height of the feature can be either negative or positive corresponding to a protrusion

or depression in the substrate. For the sinusoid, this parameter refers to the peak-to-peak amplitude.

Final Z separation (nm): The �nal distance from the substrate to the cantilever base. This parameter is only

available when the Specify Z range box is checked. In order to run a retraction simulation, enter values for

Zinitial and Zfinal such that Zinitial < Zfinal.

Hamaker constant (J): The Hamaker constant of the tip-sample interaction. The Hamaker constant is used to

predict attractive van der Waals forces between the tip and the sample. This parameter depends on the tip

material, the sample material, and the surrounding media [43]. This parameter is only used with the DMT

contact (Derjaguin-Müller-Toporov) [42] and DLVO+DMT tip-sample interaction models.

Impact: Check the box to include one or more impact Poincare plots in the output. A Poincare plot which plots

state-space variables of the cantilever vibration against each other. An impact plot contains data points which

are generated each time the tip and sample just reach contact.

Include capillary forces?: Check this box to include non-conservative capillary forces according to Kober et al.'s

model [54]. Enter values for Critical gap and Energy dissipated to use this feature.

Include geometric convolution: Check the box to include e�ects of the tip-sample geometry convolution.
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Include time histories: Check the box if you would like to generate time-history plots (de�ection, tip-sample force,

eigenmodes, phase space) at speci�c amplitude ratios. Normally the tools plot peak force values and extract

amplitudes and phase directly from the simulated data. Users may wish to access the time history data as well.

Using this option, the user is allowed to plot a sample of the cantilever de�ection and tip-sample interaction

histories and eigenmode responses. Enabling this feature requires the number of cycles and the desired [Choose]

amplitude ratio(s).

Include visco-elastic forces?: To include non-conservative, viscoelastic tip-sample interaction forces choose the

desired constitutive model from the drop-down list. Choices include Kelvin-Voigt, Maxwell, etc. Each model

requires di�erent properties, which are listed immediately below this box.

Initial Z separation (nm): The initial Z displacement from the substrate to the cantilever base. This parameter

is only available when the Specify Z range box is checked. In order to run a retraction simulation, enter values

for Zinitial and Zfinal such that Zinitial < Zfinal.

Integral gain: This controller setting determines the Z displacement proportional to the integral or cumulative

amplitude error, which eliminates steady state errors (Eq. 117). A suitable value for this parameter may vary

according to the cantilever, tip-sample force properties, and lock-in time constant.

Intermolecular distance (nm): The intermolecular distance of the sample material. This parameter is only used

with the DMT contact (Derjaguin-Müller-Toporov) [42] and DMT+DLVO tip-sample interaction models.

Jump Feedback level (nm): The observed cantilever de�ection at which the Z piezo will reverse.

k (N/m): Cantilever sti�ness of the fundamental eigenmode.

ki (N/m): Cantilever eigenmode sti�ness. Each comma-separated value for sti�ness corresponds to a cantilever

eigenmode (in order). The number of comma-separated values must equal the number of eigenmodes.

Length of feature (nm): This refers to the length of the base of the geometrical feature being imaged by the

AFM.

Length of trapezoid top (nm): This parameter is enabled when the user selects the trapezoid feature.

Lock-in time constant (mus): This parameter determines the nearest integer number of cycles over which the

amplitude error signal is computed by Fourier transform. This parameter is included to mimic the action of a

lock-in ampli�er with most commercial instruments.

Membrane thickness (nm): The thickness of a membrane loosely-bound to a sti� substrate. This parameter is

only used with the Chadwick tip-sample interaction model.
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Nat Freq (kHz): Cantilever natural frequency of the �rst eigenmode.

Number of cycles: The number of periods for which to save and plot time-history data (de�ection, tip-sample

force, eigenmodes, phase space). Although, it should be noted that the number of cycles included in the time

history sample will a�ect computation time. This option is only available if the �Include sample of time histories�

box is checked.

Number of eigenmodes: The number of cantilever eigenmodes to be included in the simulation.

Number of higher harmonics: The number of higher harmonics of the �rst natural frequency for which to plot

the amplitude and phase. This option is only available when the �Plot a higher harmonic?� box is checked.

Number of Poincare plots: Enter the number of desired Poincare sections. For each Poincare section, a unique

abscissa and ordinate set of state-space variables should be chosen.

Number of points plotted: This is the number of points contained in each plot. This values of this parameter

may be increased if the user is interested in abrupt features in the results.

Number of time histories: The number of sets of time history plots to generate corresponding to speci�ed am-

plitude ratios A1/A0. This option is only available if the Include sample of time histories box is checked.

Output plots: This is a group of options that is given in some of the advanced tools. This gives the user the option

of disabling some of the standard output plots. Disabling unwanted plots can slightly speed up computation

time. Most users will not need this option and can leave all of the boxes checked.

Plot a higher harmonic?: Check the box if you would like to plot the amplitude and phase of higher harmonics

of the drive frequency.

Poincare sections In some of the advanced tools, the user is given the option of generating Poincare plots. These

are turned o� by default. Two types of Poincare plots are available: stroboscopic (one point per drive cycle) and

impact (one point every time the tip impacts the sample). For each plot, the user must enter the state-space

variables for the axes. Odd numbers are the displacements of each eigenmode (1 = �rst eigenmode, 3 = second

eigenmode, etc) while even numbers are the velocities of each eigenmode. Entering 0 for x-axis will plot total

tip-sample displacement and 0 for y-axis will plot total relative tip-sample velocity.

Poisson's ratio of the sample: The Poisson's ratio of the sample. This parameter is used in all tip-sample inter-

action models except for the two linear contact models. The Poisson's ratio is a material property that relates

a uni-axial strain induced in a speci�c direction due to a stress applied in the orthogonal direction.

Poisson's ratio of the tip: The Poisson's ratio of the cantilever tip material. This parameter is used in all tip-

sample interaction models except for the two linear contact models.
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Proportional gain: This controller setting determines the Z displacement proportional to the amplitude error

signal (Eq. 4). A suitable value for this parameter may vary according to the cantilever, tip-sample force

properties, and lock-in time constant.

Q: The quality factor of the fundamental eigenmode. The quality factor is a measure of the �sharpness� of the

resonance peak.

Qi: Cantilever eigenmode quality factor. Each comma-separated quality factor corresponds to a cantilever eigenmode

(in order). The number of comma-separated values must equal the number of eigenmodes. In theory, if the

user knows the quality factor for the �rst eigenmode they can predict higher modes depending on the source

of dissipation, however, this is not always straightforward. For information on how to approximate the quality

factor theoretically of higher eigenmodes, please see [98]. The quality factors of di�erent eigenmodes can be

measured easily from either the thermal spectrum or tuning curves of the cantilever. The quality factor of the

cantilever eigenmode is an indication of the damping acting on the probe. Originally, the quality factor was

de�ned as the gain at resonance. However, many authors have chosen to adapt the approximation Q ≈ 1/2ζ,

which is done in VEDA.

Sample sti�ness (N/m): The e�ective sti�ness of the tip-sample contact. This parameter is only used with the

Linear contact tip-sample interaction model. The sample sti�ness is used to determine the tip-sample interaction

force when the cantilever tip and the sample are in contact.

Sample viscosity (Pacdot s): The viscosity of the sample. A nonzero sample viscosity is the only cause for any

energy dissipation considered by this simulation tool. This parameter can be used with all tip-sample interaction

models. The non-conservative, viscoelastic, tip-sample interactions are predicted by the Kelvin-Voigt model. To

enable this interaction, check the 'Include visco-elastic forces' check box.

Sampling frequency: The sampling frequency determines the number of points of tip oscillation waveform com-

puted per cycle of oscillation.

Scan lines per second: The rate at which the AFM moves across the sample.

Lines per second · scan Length = scan velocity.

Scan size (length) (nm): The entire length of the substrate, including the geometric feature.

Select a geometric feature: Choose the geometry of the feature to be scanned using the AFM. Options include

a step change in height (a rectangle), a trapezoid, a sinusoid, or a cylinder (half-circle).

Set point ratio: The ratio of the �rst harmonic of the cantilever de�ection signal while tapping to the unconstrained

amplitude.
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Signal/Noise ratio (dB): Enter the ratio of the initial cantilever amplitude to noise amplitude in dB

(S/N (dB) = 20 · log10(S/N)).

Slope Calibration 2 - Slope Calibration n: Comma-separated values for the slope calibration (Chi) starting

with the 2nd eigenmode.

Specify material properties: Check the box to specify separate material properties of the feature (which can be

di�erent than the rest of the substrate (sample).

Specify Z range: Check the box if you would like to specify the initial and �nal Z displacements of the base. In

order to run a retraction simulation, enter values for Zinitial and Zfinal such that Zinitial < Zfinal. Enabling

this feature requires an initial Z displacement and a �nal Z displacement. Leave the box unchecked to have

VEDA guess a starting and �nal Z displacement (the guess is usually fairly good for most tip-sample interaction

models, but may not be good for models with long range forces such as DLVO)

Stroboscopic: Check the box to include 1 or more stroboscopic Poincare plots in the output. A Poincare plot

which plots state-space variables of the cantilever vibration against each other. A stroboscopic plot contains

data points which are generated at regular periods in the cantilever oscillations.

Surface charge density (sample) (C/m2): The surface charge density of the sample. This parameter is only used

with the DMT (Derjaguin-Müller-Toporov) [42] + DLVO (Derjaguin-Landau-Verwey-Overbeek) [97] tip-sample

interaction model.

Surface charge density (tip) (C/m2): The surface charge density of the cantilever tip. This parameter is only

used with the DMT (Derjaguin-Müller-Toporov) [42] + DLVO (Derjaguin-Landau-Verwey-Overbeek) [97] tip-

sample interaction model.

Sweep time (s): The time duration of the frequency sweep from the starting frequency to the stopping frequency

(used only in the Frequency Sweep tool).

Tip mass: The mass of the cantilever contact tip as a fraction of the rectangular beam mass (without the tip).

Tip radius (nm): The radius of the cantilever tip which contacts the sample. This parameter is used in all tip-

sample interaction models except the two linear models. The manufacturer typically speci�es the radius of the

probe tip of the cantilever.

Tip-sample interaction model: The model used to simulate the interaction forces between the cantilever tip

and the sample. Several models are available: Linear contact, Linear attractive/Repulsive contact, Hertz con-

tact, DMT contact (Derjaguin-Müller-Toporov) [42], DMT + DLVO (Derjaguin-Landau-Verwey-Overbeek) [97]

interactions, JKR contact, and Chadwick contact. See section IVA for discussion of the di�erent models.
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Unconstrained Amplitude (nm): The unconstrained amplitude (far from the sample) of the photodiode de�ec-

tion signal up(t) for the primary drive (excitation) frequency. In the case of the single-frequency (conventional),

this is the only unconstrained amplitude. In the case of two-frequency (bimodal), a second unconstrained

amplitude is speci�ed.

Unconstrained Amplitude (2nd drive frq) (nm): (For two-frequency (bimodal) schemes only) The uncon-

strained amplitude (far from the sample) photodiode de�ection signal up(t) for the secondary drive (excitation)

frequency. Used only in two-frequency (bimodal) schemes.

Unconstrained Amp. @ Nat. Freq.(nm): (Used only in the frequency sweep tool) The unconstrained amplitude

(far from the sample) photodiode de�ection signal up(t) when driven at the �rst natural frequency (NOT the

start frequency of the frequency sweep).

Use setpoint: (frequency sweep only) If this box is unchecked, you need to enter a Z displacement for the frequency

sweep. If this box is checked, then VEDA will pick a Z displacement based on approaching to a particular

setpoint. Notes: 1) the setpoint ratio is calculated based on the �rst natural frequency, regardless of the

starting frequency, and 2) for some combinations of operating conditions, the program may not be able to �nd

a Z displacement that satis�es the setpoint. This may happen if the cantilever snaps-in to the surface. In this

case you will need to set the Z displacement manually.

van der Waals Adhesion force (nN): The adhesion force is the force that is required to remove the tip of the

cantilever from the sample surface. It is also known as the �pull-o�� force. This positive quantity can be found

experimentally from a static force-distance curve:

Fad = |kcw∗|

where, kc is the static bending sti�ness of the cantilever, and w∗ is the de�ection of the tip at the �pull-o��

location as the cantilever is withdrawn from the surface. The adhesion force can also be calculated from the

surface energy γ, which is known for many tip-sample material combinations [5, 43] :

Fad = 4πRtipγ

where Rtip is the radius of the probe tip.

X-axis: Concerning the Poincare plots, these are comma-separated values representing the abscissa variable for each

of the plots. For the tip-sample gap, choose 0. Otherwise the odd numbers correspond to the de�ections of each

of the eigenmodes of the cantilever. For instance, 1 corresponds to q1, 3 corresponds to q2, and 5 corresponds

to q3.
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Y-axis: Concerning the Poincare plots, these are comma-separated values representing the ordinate variable for

each of the plots. For the derivative of the tip-sample gap with respect to time, choose 0. Otherwise the even

numbers correspond to the velocities of each of the eigenmodes of the cantilever. For instance, 2 corresponds to

q′1, 4 corresponds to q
′
2, and 6 corresponds to q′3.

Young's modulus of sample (GPa): The elastic modulus of the sample. This parameter is used in all tip-sample

interaction models except the linear contact model. The Young's modulus (or elastic modulus) of the sample

is material property that will a�ect the magnitude of the contact forces the most. The Young's modulus of

the tip is usually much larger than that of the sample, making the Young's modulus of the sample the critical

parameter in determining contact sti�ness.

Young's modulus of tip (GPa): The elastic modulus of the cantilever tip material (for silicon (Si), E ≈ 130

GPa). This parameter is used in all tip-sample interaction models except Linear contact. The Young's modulus

(or elastic modulus) of the is material property that will a�ect the magnitude of the contact forces, however,

the Young's modulus of the tip is typically much larger than that of the sample, making the Young's modulus

of the sample the critical parameter.

Z approach velocity (nm/s): The Z approach velocity refers to the average speed at which the base of the micro-

cantilever approaches the sample. More concisely |Ż(t)|. A reasonable approximation of this parameter in the

experimental setup is found simply by taking the distance of approach (the di�erence between the and dividing

by the time of approach. An appropriate approach speed has much to do the with settling time of the probe

τ = ω/2Q and the lock-in time constant.

Z displacement (nm): The gap between the sample and the base of the cantilever. If the base is excited (acoustic

excitation) then Z displacement refers to the average gap between the base of the cantilever and the sample.

See the schematic in Section II.
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IX. APPENDIX: INSTALLING AND USING VEDA ON YOUR LOCAL MACHINE

VEDA has been designed to run in your web browser through www.nanohub.org, a website run by the Network for

Computational Nanotechnology. Some advanced users, however, may wish to install VEDA on their local machines.

The advantages of this are: 1) ability to run VEDA without Internet access (at a conference perhaps), 2) ability to

load and save input and output �les, 3) ability to perform multiple batch runs (e.g. several of the author's publications

have included data from several hundred runs that were done in a batch process). Also, VEDA is open source so some

users may wish to make custom modi�cations

The following is an instruction on how to install and use VEDA on your local machine.

A. Installing Rappture on your machine

Step 1) VEDA requires the Rappture libraries, which are designed for Intel x86 Linux (and 32bit PPC or Intel Mac

OS X). Therefore the full version VEDA will only run on Linux or MacOS and cannot be run on Windows. Some

limited functionality is available on Windows, but it requires some extra e�ort. See Appendix X for details. The

remainder of this chapter will focus on Linux or MacOS.

Go to https://nanohub.org/infrastructure/rappture/wiki/Downloads and follow the provided installation instruc-

tions to install Rappture on your machine (recommend to use the binary distribution, only download the source code

distribution if the binaries do not work for you).

B. Installing VEDA on your local machine: pre-compiled binaries

Once rappture is installed, now you can install VEDA. There are two options. The easy way is to use the pre-

compiled binaries. These are provided for only for Intel x86 Linux. They are statically linked, so they should work

with almost any Linux distribution. If the pre-compiled binaries don't work, see the next section for compilation

instructions. Follow these steps:

• To download, go to https://nanohub.org/resources/veda, click on �supporting documents� (not download - that

takes you to the source code), and download veda-binaries.zip (or a similarly named �le).

• Unzip in a convenient location

• Add the VEDA bin/ directory to your path.

• To run the GUIs, change to the rappture/ directory. Each tool has a separate sub-directory. Switch to the

subdirectory of the tool you want to run (e.g. fzcurves) and run the command 'rappture' (assuming that the

rappture binaries got added to your path in the previous step). Rappture will �nd the tool.xml �le in that

directory and load it. You can then enter your parameters exactly as on the website.
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• Alternatively, type 'rappture -tool FILENAME', where FILENAME is the complete path to one of the tool.xml

�les (e.g. 'rappture -tool /apps/veda/rappture/adac/tool.xml')

C. Installing VEDA on your local machine: Compiling from source

Read this section only if you can't use the pre-compiled binaries (described above) for some reason.

1) You will need a FORTRAN 90 compiler. Intel FORTRAN and gfortran (v 4.2 or later) are fully tested and

supported. g95 should probably work as well, but we will not guarantee it to work. Most linux distributions will have

a gfortran package available (e.g. �apt-get install gfortran�) but if not download it from http://gcc.gnu.org/fortran/

. GNU make is also required. Also you'll need development versions of a few libraries if you don't typically compile

programs on your machine (libstdc++6-4.3-dev, libexpat1-dev, zlib1g-dev)

2) Download the latest VEDA source code from https://nanohub.org/resources/adac (the download link is fairly

small, and is hidden right under the �launch tool� button). Uncompress the �le to some convenient directory on your

machine.

• Alternatively, if you have subversion, you can check out the sources directly with �svn checkout

https://nanohub.org/tools/veda/svn/trunk veda� (this will put the sources in a folder called �veda�). The ad-

vantage of this method is that you can quickly update when newer versions are released with just �svn update�,

instead of downloading and unzipping a �le every time.

3) Within the VEDA directory, change to the src/ directory and execute 'make F77=gfortran install� if using gfortran,

or 'make F77=g95 install' if using g95, or just 'make install' if using Intel fortran. This will compile the binaries and

install them in the bin/ directory.

D. Using VEDA on your local machine

First, let us introduce the concept of how VEDA interacts with the rappture libraries. The data �ow as used on

www.nanohub.org is like this:

1) The tool.xml speci�es all GUI elements 2) rappture reads the tool.xml �le, displays the GUI, takes your user

input, and then generates a driver.xml �le. driver.xml has the exact same structure as tool.xml, except that speci�c

values are �lled in for each parameter instead of the default values. 3) The driver.xml �le is then sent to the az_ddaskr

executable. This program reads the the driver.xml, performs the actual computation, and then outputs a run.xml

�le. 4) rappture reads the run.xml �le and displays the data. This is illustrated graphically in Figure 95.

You can follow this process exactly on your local machine if you want. Simply change directories to the directory

that contains the tool you want and type �rappture�. The GUI will automatically come up and display that tool. Note

that the directories all have abbreviated names. The tools associated with each directory are listed in Table VII.
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Directory Tool

adac Amplitude Modulated Approach Curves (advanced)
dac Amplitude Modulated Approach Curves (basic)

�xedpoint Single Point
forceViewer Tip-sample force viewer
fzcurves Force Distance Curves
jump Jump Mode (i.e. triggered F-z curves)

scan_contact Contact Mode Scanning
scanbasic Amplitude Modulated Scanning (basic)
scanning Amplitude Modulated Scanning (advanced)
freqsweep Frequency Sweep (basic)
freqadv Frequency Sweep (advanced)
fmac Frequency Modulated Approach Curves
fmscan Frequency Modulated Scanning
forcemod Force Modulation Scanning (beta testing)

peakforcebasic Peak Force Tapping (beta testing)

TABLE VII: The directory names under rappture/ and the corresponding tool names

But you have more options. For example, you can

A) Save the run.xml �le and view it later. If you do multiple runs, you'll notice that a bunch of �les will be

created with names like run1271692464.xml. You can pick out the ones you want, rename them to something more

memorable, (e.g. run-carbonnanotube1.xml) and move to another directory if you want. Then to see the �le later,

using rappture's rerun comment (e.g. �rerun run-carbonnanotube1.xml�). This just lets you view the data, you can't

use it as a starting point for future simulations. That is, if you press Input to go back to the parameters list, and

type in some new parameters, and then hit Simulate, it still only shows the original computation.

Note: the rappture version rappture-Linux-i686-20081010 had a couple of signi�cant bugs in the rerun program.

Make sure that you use rappture-Linux-i686-20091009.tar.gz or later

B) Save the driver.xml �le and use it as a starting point for future simulations. Normally rappture deletes the

driver.xml �les after the simulation is �nished. There are three options to get a driver �le. First, if you hit �Abort�

while a simulation is running, rappture won't delete the driver �le. Look in the directory for a �le named something

like driver14516.xml. You can later restart that simulation using �rappture -tool driver14516.xml�. Second, you can

take an existing driver.xml �le and edit it in a text editor (replace the values between the <current></current>

tags) Finally, there is a little script that will create a driver �le from a run �le. It is in the VEDA src directory and

the usage is �run_to_driver.pl < run1271692464.xml > driver1.xml� (you need to have Perl installed for this).

C) View the results without using the rappture GUI. The run.xml is, as the name implies, an XML �le, so any

standard XML parser can read the data �le. Example matlab scripts are provided in the bin/ directory (you will need

the �sed� package installed for this script). You could come up with a similar program for Java or C++ or what have

you.

D) Once you have a driver �le that has the parameters you like, you don't actually need the GUI anymore. For

example, if you have a �le driver1.xml, you can run �az_ddaskr driver1.xml� and it will run the computation and

generate a run �le. You can later view the run �le with �rerun� if you wish.
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E. Running batch simulation / parameter studies

Running batch simulations is one option that is available when you run VEDA on your local machine that is not

available on the nanohub website.

1. Running multiple jobs in serial on a single machine.

The �le param-explore.pl in the bin/ directory automates the process of generating and running multiple jobs. (you

need to have Perl installed for this to work).

It starts from a template �le you provide, and then generates and runs them one at a time as illustrated in Figure

96. This is suitable for running multiple jobs on a single machine one at a time.

You will need to generate two �les. The �rst is the runs �le. This should be a text �le with each line containing

the full parameter set for one run. Each line should be a comma separated list of parameter=value. For example, to

make 4 runs with di�erent values of two parameters you might use this �le:

PARAM_E = 100, PARAM_nu = 10

PARAM_E = 100, PARAM_nu = 100

PARAM_E = 10, PARAM_nu = 10

PARAM_E = 10, PARAM_nu = 100

The names of the parameters are completely arbitrary. They can be any name you want. The use of the pre�x

PARAM is not necessary, but recommended to make it easy to recognize what is a parameter in your template �le.

The second �le that you need is the template �le is an xml driver �le except that some of the inputs have been

replaced by tags. For example, there is a line in the driver �le that normally looks something like this

<number id="Etip">

<about>

<label> Young's modulus of tip (GPa)</label>

</description> </about>

<default>130</default>

<current>90</current>

</number>

You want to edit this �le and replace the number inside the <current> line with your tag from the runs �le. For

example:

<number id="Etip">

<about>
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<label> Young's modulus of tip (GPa)</label>

</description> </about>

<default>130</default>

<current>PARAM_E</current>

</number>

As the param-explore.pl �le goes through the runs, it will replace PARAM_E in this �le with the values that you

have given it in the runs �le. Note, this is a literal text substitution. Make sure that the tag names you pick don't

occur anywhere else in the �le. E.g. If you pick something like 'o' for your parameter instead of 'PARAM_E', the

param-explore.pl would replace every 'o' with a number, e.g.

<number id="Etip">

<ab100ut>

<label> Y100ung's m100dulus 100f tip (GPa)</label>

</description> </ab100ut>

<default>130</default>

<current>100</current>

</number>

which is probably not what you want. Hence the suggestion to use a unique pre�x like PARAM_. Also, the script

will do simple math on any line where a replacement is made. e.g. if TAG_Z=10, then <current>TAG_Z +

10</current> would be replaced with <current>20</current>.

Once you have these two �les, just type

param-explore.pl runs.txt template.xml ~/bin/az_ddaskr

replacing 'runs.txt' with the name of your runs �le, template.xml with the name of your template �le, and replacing

~/bin/az_ddaskr with the pathname of where you installed the VEDA executable. This will then run all of the �les,

and generate sequentially numbered output �les: output1.out, output2.out, output3.out, etc. Once they have all been

generated, you can post-process them using the GUI (e.g. �rerun output*�), or by reading them into matlab (use the

rappture_reader_multi.m matlab script in the bin/ directory).

2. Running multiple jobs in parallel on several machines

For multiple machines in parallel, follow the instructions above, with one exception. We want to generate all of the

driver.xml �les on one machine, but we don't want to run yet. Therefore, in the param-explore.pl script, instead of

the VEDA executable, give it a dummy executable. For example

param-explore.pl runs.txt template.xml touch
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FIG. 95: The �ow of data between the various �les and programs.
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FIG. 96: The �ow of data when used batch simulations. The multiple VEDA runs may optionally be managed by a batch
queueing system (such as Condor or PBS)

param-explore will then generate all of the driver.xml �les, but not actually run them. You can then use any standard

batch system (e.g. Condor from http://www.cs.wisc.edu/condor/) to execute VEDA on the resulting driver.xml �les.

VEDA is statically linked against the rappture libraries, so you need only copy the az_ddaskr �le to the compute

nodes, you do not need to install rappture on them.

X. APPENDIX: USING VEDA ON A WINDOWS MACHINE

This appendix details the steps necessary to run VEDA on a Windows machine. Currently, the GUI features are

not available, so all input is by hand editing the xml input �les, and all post-processing has to be by reading the

results �les into another program such as Matlab or Excel.

A. Compiling the rappture libraries on Windows

We have successfully compiled rappture on windows using the Cygwin package. It may be possible to use other

compilers, but we have not tried them. Below is how we did it (note that these instructions are written assuming

some knowledge of how to compile programs)

• Install Cygwin from www.cygwin.com
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• In addition to the basic install, select the following packages: binutils, expat, libexpat-devel, gcc-core, gcc-fortran,

gcc-g++, libncurses-devel, make, time, zlib-devel (the installer will automatically select any dependencies).

• Download the latest source code from https://nanohub.org/infrastructure/rappture/wiki/Downloads (get just

the rappture-src package, we have not yet tested the rappture-runtime package).

• Ignore the compilation instructions on the rappture web page. we won't be building the full package, just the

libraries.

• open a cygwin bash shell window and change to the directory where you downloaded the rappture archive.

Unzip it and change into to the directory

• you'll need to make a few hacks to the 'con�gure' script. Speci�cally, replace the line �#de�ne

HAVE_GETTIMEOFDAY 1� with �#undef HAVE_GETTIMEOFDAY�.

• Then execute the following commands:

� export CFLAGS=-D_WIN32

� ./con�gure �disable-gui �without-tclsh �without-�mpeg

� cd src/core

� make

� cd ../core2/

� make

� cd ..

� mkdir /apps/rappture/lib

� cp core/librappture.a core2/librappture2.a /apps/rappture/lib

We got errors such as �make: o: Command not found�, and �recipe for target 'librappture' failed'. These can be

ignored as long as the librappture.a and librappture2.a �les are created.

B. Compiling VEDA on Windows

The directions for compiling VEDA on Linux in section IXC apply with the following additional notes:

• We recommend you install the cygwin 'gcc-fortran' package, which installs gfortran. We are not able to get g95

compiler to work with cygwin. The Intel fortran compiler has not yet been tested on cygwin.
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tool_to_driver.pl
hand edit resulting filePrograms

Files driver.xml
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“az_ddaskr.exe driver.xml”

runXXXX.xml

read into matlab
rappture_reader_single.m

FIG. 97: The data �ow when using VEDA on Windows without the GUI. Compare to �gure 95.

C. Using VEDA on Windows

Using VEDA on Windows follows most of the general principles for running it on Linux, as described in sectiosn

IXD and IXE. The di�erence is that the GUI is not available to you. Therefore, you'll need to make three changes

1. As described above, normally the rappture GUI takes a tool.xml �le and generates a driver.xml. Since the GUI

is not available, you will need to do this yourself. Use the tool_to_driver.pl �le found in the bin/ directory.

(i.e. �tool_to_driver.pl < tool.xml > driver.xml�. This will generate a driver �le will all of the parameters set

to their default value. You will need Perl installed to make this work (can be installed from www.perl.org)

2. To change values from their defaults, you will need to hand edit the driver.xml �le. If you are familar with the

GUI layout of the tools, it should be easy to locate the various settings within the driver.xml �le by searching

for key words. You will want to edit the values in the <current> tags (not the <default> tag).

3. You will not be able to use the GUI to post-process your results. We recommend reading the values into matlab

using the rappture_reader_single.m �le located in the bin/ directory.

This data �ow is illustrated schematically in Figure 97.
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