MNT-EC nanoHUB Presentation March 16, 2021 Handout

Feel free to contact me with any questions: Tanya (nanohub.engagement@gmail.com)

nanoHUB

Relevant Groups

- nanoHUB Beginners
- Group: Nanotechnology Workforce Development
- MNT Educator Community
- Chemistry ~ Simulation Tools

Tools and Related Resources

ab initio simulations with ORCA https://nanohub.org/tools/orcatool

CNT Bands https://nanohub.org/tools/cntbands-ext

CNT Band worksheet

Crystal Viewer version 2.3.4 Crystal Viewer Tool

- Quick and Easy Guide to Carbon Structure Simulations using Crystal Viewer Tool
- <u>Using nanoHUB to Introduce Elementary and Middle School Students to Models and Simulations</u>

Crystal Viewer version 3 Crystal Viewer Tool

- nanoHUB Simulation Activity Orientations of Common Single Crystal Substrates
- How to View (100), (110) and (111) Planes in Silicon Using Crystal Viewer 3.0
- How to View Atomic Planes in FCC, NaCl and Simple Cubic Structures using Crystal Viewer

Stanford Stratified Structure Solver https://nanohub.org/tools/s4sim

Resources: Exploring Thin Film Interference Colors through Simulation

Process Lab: Oxidation https://nanohub.org/resources/prolabox

• Exploration of the Oxidation Rate of Silicon Wafers via Simulation

Protein Contact Maps https://nanohub.org/tools/contactmaps

Jupyter Notebooks in your Personal nanoHUB Filespace

Jupyter Notebook https://nanohub.org/tools/jupyter Anaconda 6.0 (Octave, Python, R)

Jupyter Notebook with anaconda 5.1 https://nanohub.org/tools/jupyter51 (MatLab, Octave, Python, R)

Setting up Your nanoHUB File Structure in Jupyter Notebooks

This document is available at: https://tinyurl.com/nH2021Mar16

Published Jupyter Notebooks

("Read Only"; you can save a copy to your personal nanoHUB filespace)

Data Analysis of Normal Data Sets in Engineering https://nanohub.org/resources/engdata

Illustrative Mathematical Concepts https://nanohub.org/resources/illustmath

Matlab Data Analysis Using Jupyter Notebooks https://nanohub.org/resources/matlabdata

Teaching Engineering using Jupyter Notebooks https://nanohub.org/resources/33971

Demo of Loading and Visualizing Proteins from the RCSB Protein Data Bank https://nanohub.org/tools/proteindemo

ECG Data Analysis Using Machine Learning https://nanohub.org/resources/ml4ecg

Machine Learning for Materials Science: Part 1 https://nanohub.org/resources/mseml

Other nanoHUB Resources

Enhancing your Micro and Nano Technology Courses with Free nanoHUB Resources and Simulations

- Presentation slides

"Turning Fruit Juice into Graphene Quantum Dots" Supplementary Lesson Plans: Going Atomic

- Adds nanoHUB simulation activities to this NNCI activity

Examples of Documentation and Tutorials for Jupyter packages

Mendeleev Plotting (Periodic Table)

https://mendeleev.readthedocs.io/en/stable/notebooks/03_plotting.html

BioPython

https://biopython.org/

Tutorial:

http://biopython.org/DIST/docs/tutorial/Tutorial.html#sec9

This document is available at: https://tinyurl.com/nH2021Mar16