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Preface

Everyone is familiar with the amazing performance of a modern smart-

phone, powered by a billion-plus nanotransistors, each having an active

region that is barely a few hundred atoms long. I believe we also owe a ma-

jor intellectual debt to the many who have made this technology possible.

This is because the same amazing technology has also led to a deeper un-

derstanding of the nature of current flow and heat dissipation on an atomic

scale which I believe should be of broad relevance to the general problems

of non-equilibrium statistical mechanics that pervade many different fields.

To make these lectures accessible to anyone in any branch of science or

engineering, we assume very little background beyond linear algebra and

differential equations. However, we will be discussing advanced concepts

that should be of interest even to specialists, who are encouraged to look

at my earlier books for additional technical details.

This book is based on a set of two online courses originally offered in 2012

on nanoHUB-U and more recently in 2015 on edX. In preparing the second

edition we decided to split it into parts A and B entitled Basic Concepts

and Quantum Transport respectively, along the lines of the two courses.

A list of available video lectures corresponding to different sections of this

volume is provided upfront. I believe readers will find these useful.

Even this Second Edition represents lecture notes in unfinished form. I plan

to keep posting additions/corrections at the companion website.
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Constants Used in This Book

Electronic charge −q = −1.6× 10−19 C (Coulomb)

Unit of Energy 1 eV = −1.6× 10−19 J (Joule)

Boltzmann Constant k = 1.38× 10−23 J ·K−1

∼ 25 meV@ 300 K

Planck’s Constant h = 6.626× 10−34 J · s
Reduced Planck’s Constant ~ = h/2π = 1.055× 10−34 J · s
Free Electron mass m0 = 9.109× 10−31 kg
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µ Electrochemical Potential (also eV

called Fermi level or quasi-Fermi level)
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G(E) Conductance at 0 K with µ0 = E S

λ Mean free path for backscattering m

LE Energy relaxation length m

Lin Mean path between ineleastic scattering m

τm Momentum relaxation time s

D Diffusivity m2 · s−1

µ Mobility m2 ·V−1 · s−1

ρ Resistivity Ω ·m (3D), Ω (2D)

σ Conductivity S ·m−1 (3D), S (2D)

σ(E) Conductance at 0 K with µ0 = E S ·m−1 (3D), S (2D)

A Area m2

W Width m

L Length m

E Energy eV

C Capacitance F (Farad)
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ε Permittivity F ·m−1

ε Energy eV

f(E) Fermi Function Dimensionless(
− ∂f
∂E

)
Thermal Broadening Function (TBF) eV−1

kT
(
− ∂f
∂E

)
Normalized TBF Dimensionless

D(E) Density of States eV−1

N(E) Number of States with Energy < E (equals Dimensionless

number of Electrons at 0 K with µ0 = E)

n Electron Density (3D or 2D or 1D) m−3 or m−2 or m−1

ns Electron Density m−2

nL Electron Density m−1

M(E) Number of Channels Dimensionless

(also called transverse modes)

ν Transfer Rate s−1

BTE Boltzamnn Transport Equation

NEGF Non-Equilibrium Green’s Function
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Chapter 1

Overview

Related video lecture available at course website, Scientific Overview.

“Everyone” has a smartphone these days, and each smart phone has

more than a billion transistors, making transistors more numerous than

anything else we could think of. Even the proverbial ants, I am told, have

been vastly outnumbered.

There are many types of transistors, but the most common one in use

today is the Field Effect Transistor (FET), which is essentially a resistor

consisting of a “channel” with two large contacts called the “source” and

the “drain” (Fig.1.1a).

ChannelSource Drain

V +- I
(a)

ChannelSource DrainInsulator

VG

V +- I
(b)

Fig. 1.1 (a) The Field Effect Transistor (FET) is essentially a resistor consisting of a
channel with two large contacts called the source and the drain across which we attach

the two terminals of a battery. (b) The resistance R = V/I can be changed by several

orders of magnitude through the gate voltage VG.

The resistance (R) = Voltage (V ) / Current (I) can be switched by

several orders of magnitude through the voltage VG applied to a third ter-

1

https://www.youtube.com/watch?v=zaTlwqW0QDA
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minal called the “gate” (Fig.1.1b) typically from an “OFF” state of ∼ 100

MΩ to an “ON” state of ∼ 10 kΩ. Actually, the microelectronics industry

uses a complementary pair of transistors such that when one changes from

100 MΩ to 10 kΩ, the other changes from 10 kΩ to 100 MΩ. Together they

form an inverter whose output is the “inverse” of the input: a low input

voltage creates a high output voltage while a high input voltage creates a

low output voltage as shown in Fig.1.2.

A billion such switches switching at GHz speeds (that is, once every

nanosecond) enable a computer to perform all the amazing feats that we

have come to take for granted. Twenty years ago computers were far less

powerful, because there were “only” a million of them, switching at a slower

rate as well.

1

10 K

100 M
Input
= 1

0

Output
~ 0

1

10 K

100 M

Output
~ 1

0

Input
= 0

Fig. 1.2 A complementary pair of FETs form an inverter switch.

Both the increasing number and the speed of transistors are conse-

quences of their ever-shrinking size and it is this continuing miniaturization

that has driven the industry from the first four-function calculators of the

1970s to the modern laptops. For example, if each transistor takes up a

space of say 10 µm × 10 µm, then we could fit 9 million of them into a chip

of size 3 cm × 3 cm, since

3 cm

10 µm
= 3000 → 3000× 3000 = 9 million

That is where things stood back in the ancient 1990s. But now that a

transistor takes up an area of ∼ 1 µm × 1 µm, we can fit 900 million (nearly

a billion) of them into the same 3 cm × 3 cm chip. Where things will go

from here remains unclear, since there are major roadblocks to continued

miniaturization, the most obvious of which is the difficulty of dissipating
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the heat that is generated. Any laptop user knows how hot it gets when it

is working hard, and it seems difficult to increase the number of switches

or their speed too much further.

This book, however, is not about the amazing feats of microelectron-

ics or where the field might be headed. They are about a less-appreciated

by-product of the microelectronics revolution, namely the deeper under-

standing of current flow, energy exchange and device operation that it has

enabled, which has inspired the perspective described in this book. Let me

explain what we mean.

1.1 Conductance

Current

L

A

A basic property of a conductor is its resistance R which is related to the

cross-sectional area A and the length L by the relation

R =
V

I
=
ρL

A
(1.1a)

G =
I

V
=
σA

L
(1.1b)

The resistivity ρ is a geometry-independent property of the material that

the channel is made of. The reciprocal of the resistance is the conductance

G which is written in terms of the reciprocal of the resistivity called the

conductivity σ. So what determines the conductivity?

Our usual understanding is based on the view of electronic motion

through a solid as “diffusive” which means that the electron takes a random

walk from the source to the drain, traveling in one direction for some length

of time before getting scattered into some random direction as sketched in

Fig.1.3. The mean free path, that an electron travels before getting scat-

tered is typically less than a micrometer (also called a micron = 10−3 mm,

denoted µm) in common semiconductors, but it varies widely with temper-

ature and from one material to another.
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Length units:
1 mm = 1000 µm
and 1 µm = 1000 nm

ChannelSource Drain  

0.1 mm

10 µm

1 µ m

0.1 µm

10 nm

1 nm

0.1 nm

Atomic
dimensions

Diffusive

Ballistic

L

Fig. 1.3 The length of the channel of an FET has progressively shrunk with every new

generation of devices (“Moore’s law”) and stands today at 14 nm, which amounts to ∼
100 atoms.

It seems reasonable to ask what would happen if a resistor is shorter than

a mean free path so that an electron travels ballistically (“like a bullet”)

through the channel. Would the resistance still be proportional to length

as described by Eq.(1.1a)? Would it even make sense to talk about its

resistance?

These questions have intrigued scientists for a long time, but even twenty

five years ago one could only speculate about the answers. Today the an-

swers are quite clear and experimentally well established. Even the tran-

sistors in commercial laptops now have channel lengths L ∼ 14 nm, corre-

sponding to a few hundred atoms in length! And in research laboratories

people have even measured the resistance of a hydrogen molecule.

1.2 Ballistic conductance

It is now clearly established that the resistance RB and the conductance

GB of a ballistic conductor can be written in the form

RB =
h

q2

1

M
' 25 kΩ× 1

M
(1.2a)

GB =
q2

h
M ' 40 µS×M (1.2b)
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where q, h are fundamental constants and M represents the number of

effective channels available for conduction. Note that we are now using the

word “channel” not to denote the physical channel in Fig.1.3, but in the

sense of parallel paths whose meaning will be clarified in the first two parts

of this book. In future we will refer to M as the number of “modes”, a

concept that is arguably one of the most important lessons of nanoelectronics

and mesoscopic physics.

1.3 What determines the resistance

The ballistic conductance GB (Eq.(1.2b)) is now fairly well-known, but the

common belief is that it is relevant only for short conductors and belongs

in a course on special topics like mesoscopic physics or nanoelectronics. We

argue that the resistance for both long and short conductors can be written

in terms of GB (λ: mean free path)

G =
GB

1 +
L

λ

(1.3)

Ballistic and diffusive conductors are not two different worlds, but rather

a continuum as the length L is increased. For L � λ, Eq.(1.3) reduces to

G ' GB , while for L� λ,

G ' GBλ

L

which morphs into Ohm’s law (Eq.(1.1b)) if we write the conductivity as

σ =
GL

A
=
GB
A

λ =
q2

h

M

A
λ New Expression (1.4)

The conductivity of long diffusive conductors is determined by the number

of modes per unit area (M/A) which represents a basic material property

that is reflected in the conductance of ballistic conductors.

By contrast, the standard expressions for conductivity are all based

on bulk material properties. For example freshman physics texts typically

describe the Drude formula (momentum relaxation time: τm):

σ = q2 n

m
τm Drude formula (1.5)

involving the effective mass (m) and the density of free electrons (n). This is

the equation that many researchers carry in their head and use to interpret
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experimental data. However, it is tricky to apply if the electron dynamics

is not described by a simple positive effective mass m. A more general

but less well-known expression for the conductivity involves the density of

states (D) and the diffusion coefficient (D)

σ = q2 D

AL
D Degenerate Einstein relation (1.6)

In Part 1 of this book we will use fairly elementary arguments to establish

the new formula for conductivity given by Eq.(1.4) and show its equivalence

to Eq.(1.6). In Part 2 we will introduce an energy band model and relate

Eqs.(1.4) and (1.6) to the Drude formula (Eq.(1.5)) under the appropriate

conditions when an effective mass can be defined.

We could combine Eqs.(1.3) and (1.4) to say that the standard Ohm’s

law (Eqs.(1.1)) should be replaced by the result

G =
σA

L+ λ
→ R =

ρ

A
(L+ λ) (1.7)

suggesting that the ballistic resistance (corresponding to L � λ) is equal

to ρλ/A which is the resistance of a channel with resistivity ρ and length

equal to the mean free path λ.

But this can be confusing since neither resistivity nor mean free path

are meaningful for a ballistic channel. It is just that the resistivity of a

diffusive channel is inversely proportional to the mean free path, and the

product ρλ is a material property that determines the ballistic resistance

RB . A better way to write the resistance is from the inverse of Eq.(1.3):

R = RB

(
1 +

L

λ

)
(1.8)

This brings us to a key conceptual question that caused much debate and

discussion in the 1980s and still seems less than clear! Let me explain.

1.4 Where is the resistance?

Eq.(1.8) tells us that the total resistance has two parts

RB︸︷︷︸
length−independent

and
RBL

λ︸ ︷︷ ︸
length−dependent

It seems reasonable to assume that the length-dependent part is associated

with the channel. What is less clear is that the length-independent part

(RB) is associated with the interfaces between the channel and the two

contacts as shown in Fig.1.4.
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How can we split up the overall resistance into different components

and pinpoint them spatially? If we were talking about a large everyday

resistor, the approach is straightforward: we simply look at the voltage

drop across the structure. Since the same current flows everywhere, the

voltage drop at any point should be proportional to the resistance at that

point ∆V = I∆R. A resistance localized at the interface should also give

a voltage drop localized at the interface as shown in Fig.1.4.

Fig. 1.4 The length-dependent part of the resistance in Eq.(1.8) is associated with the
channel while the length-independent part is associated with the interfaces between the

channel and the two contacts. Shown below is the spatial profile of the “potential” which

supports the spatial distribution of resistances shown.

What makes this discussion not so straightforward in the context of

nanoscale conductors is that it is not obvious how to draw a spatial poten-

tial profile on a nanometer scale. The key question is well-known in the

context of electronic devices, namely the distinction between the electro-

static potential and the electrochemical potential.
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The former is related to the electric field F

F = −dφ
dz

since the force on an electron is qF , it seems natural to think that the

current should be determined by dφ/dz. However, it is well-recognized that

this is only of limited validity at best. More generally current is driven by

the gradient in the electrochemical potential :

I

A
≡ J = −σ

q

dµ

dz
(1.9)

Just as heat flows from higher to lower temperatures, electrons flow from

higher to lower electrochemical potentials giving an electron current that

is proportional to −dµ/dz. It is only under special conditions that µ and φ

track each other and one can be used in place of the other. Although the

importance of electrochemical potentials and quasi-Fermi levels is well es-

tablished in the context of device physics, many experts feel uncomfortable

about using these concepts on a nanoscale and prefer to use the electro-

static potential instead. However, I feel that this obscures the underlying

physics and considerable conceptual clarity can be achieved by defining

electrochemical potentials and quasi-Fermi levels carefully on a nanoscale.

The basic concepts are now well established with careful experimen-

tal measurements of the potential drop across nanoscale defects (see for

example, Willke et al. 2015). Theoretically it was shown using a full quan-

tum transport formalism (which we discuss in part B) that a suitably de-

fined electrochemical potential shows abrupt drops at the interfaces, while

the corresponding electrostatic potential is smoothed out over a screening

length making the resulting drop less obvious (Fig.1.5). These ideas are

described in simple semiclassical terms (following Datta 1995) in Part 3 of

this volume.

1.5 But where is the heat

One often associates the electrochemical potential with the energy of the

electrons, but at the nanoscale this viewpoint is completely incompatible

with what we are discussing. The problem is easy to see if we consider an

ideal ballistic channel with a defect or a barrier in the middle, which is the

problem Rolf Landauer posed in 1957.

Common sense says that the resistance is caused largely by the barrier

and we will show in Chapter 10 that a suitably defined electrochemical
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Electrochemical
Potential

Electrostatic
Potential

qV

µ1 µ2

Fig. 1.5 Spatial profile of electrostatic and electrochemical potentials in a nanoscale
conductor using a quantum transport formalism. Reproduced from McLennan et al.

1991.

qV

- V  +

“hole”

Fig. 1.6 Potential profile across a ballistic channel with a hole in the middle.

potential indeed shows a spatial profile that shows a sharp drop across the

barrier in addition to abrupt drops at the interfaces as shown in Fig.1.6.

If we associate this electrochemical potential with the energy of the

electrons then an abrupt potential drop across the barrier would be ac-

companied by an abrupt drop in the energy, implying that heat is being

dissipated locally at the scatterer. This requires the energy to be trans-

ferred from the electrons to the lattice so as to set the atoms jiggling which

manifests itself as heat. But a scatterer does not necessarily have the de-
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grees of freedom needed to dissipate energy: it could for example be just a

hole in the middle of the channel with no atoms to “jiggle.”

In short, the resistance R arises from the loss of momentum caused in

this case by the “hole” in the middle of the channel. But the dissipation

I2R could occur very far from the hole and the potential in Fig.1.6 cannot

represent the energy. So what does it represent?

The answer is that the electrochemical potential represents the degree

of filling of the available states, so that it indicates the number of electrons

and not their energy. It is then easy to understand the abrupt drop across

a barrier which represents a bottleneck on the electronic highway. As we

all know there are traffic jams right before a bottleneck, but as soon as we

cross it, the road is all empty: that is exactly what the potential profile in

Fig.1.6 indicates!

In short, everyone would agree that a “hole” in an otherwise ballistic

channel is the cause and location of the resulting resistance and an elec-

trochemical potential defined to indicate the number of electrons correlates

well with this intuition. But this does not indicate the location of the

dissipation I2R.

The hole in the channel gives rise to “hot” electrons with a non-

equilibrium energy distribution which relaxes back to normal through a

complex process of energy exchange with the surroundings over an energy

relaxation length LE ∼ tens of nanometers or longer. The process of dissi-

pation may be of interest in its own right, but it does not help locate the

hole that caused the loss of momentum which gave rise to resistance in the

first place.

1.6 Elastic Resistors

Once we recognize the spatially distributed nature of dissipative processes

it seems natural to model nanoscale resistors shorter than LE as an ideal

elastic resistor which we define as one in which all the energy exchange

and dissipation occurs in the contacts and none within the channel itself

(Fig.1.7).

For a ballistic resistor RB , as my colleague Ashraf often points out, it

is almost obvious that the corresponding Joule heat I2R must occur in the

contacts. After all a bullet dissipates most of its energy to the object it

hits rather than to the medium it flies through.

There is experimental evidence that real nanoscale conductors do ac-

tually come close to this idealized model which has become widely used
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ChannelSource Drain

V +- I

Heat

Heat
No exchange

of energy

Fig. 1.7 The ideal elastic resistor with the Joule heat V I = I2R generated entirely in

the contacts as sketched. Many nanoscale conductors are believed to be close to this
ideal.

ever since the advent of mesoscopic physics in the late 1980s and is often

referred to as the Landauer approach. However, it is generally believed

that this viewpoint applies only to near-ballistic transport and to avoid

this association we are calling it an elastic resistor rather than a Landauer

resistor.

What we wish to stress is that even a diffusive conductor full of “pot-

holes” that destroy momentum could in principle dissipate all the Joule

heat in the contacts. And even if it does not, its resistance can be calcu-

lated accurately from an idealized model that assumes it does. Indeed we

will use this elastic resistor model to obtain the conductivity expression in

Eq.(1.4) and show that it agrees well with the standard results.

But surely we cannot ignore all the dissipation inside a long resistor

and calculate its resistance accurately treating it as an elastic resistor?

We believe we can do so in many cases of interest, especially at low bias.

The underlying issues can be understood qualitatively using the simple

circuit model shown in Fig.1.8. For an elastic resistor each energy channel

E1, E2, E3 is independent with no flow of electrons between them as shown

on the left. Inelastic processes induce “vertical” flow between the energy

channels represented by the vertical resistors as shown on the right. When

can we ignore the vertical resistors?

If the series of resistors representing individual channels are identical,

then the nodes connected by the vertical resistors will be at the same po-

tential, so that there will be no current flow through them. Under these

conditions, an elastic resistor model that ignores the vertical resistors is
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quite accurate.

- V  +

E2

E3

E1

µ1 µ2 µ2µ1

(a) (b)

Fig. 1.8 A simple circuit model: (a) For elastic resistors, individual energy channels
E1, E2, E3 are decoupled with no flow between them. (b) Inelastic processes cause

vertical flow between energy channels through the additional resistors shown.

But vertical flow cannot always be ignored. For example, Fig.1.9a shows

a conductor where the lower energy levels E2, E3 conduct poorly compared

to E1. We would then expect the electrons to flow upwards in energy on

the left and downwards in energy on the right as shown in Fig.1.9b, thus

cooling the lattice on the left and heating the lattice on the right, leading

to the well-known Peltier effect discussed in Chapter 13.

The role of vertical flow can be even more striking if the left contact

connects only to the channel E1 while the right contact connects only to

E3. No current can flow in such a structure without vertical flow, and the

entire current is purely a vertical current. This is roughly what happens in

p-n junctions which is discussed a little further in Section 12.1.

The bottom line is that elastic resistors generally provide a good de-

scription of short conductors and the Landauer approach has become quite

common in mesoscopic physics and nanoelectronics. What is not well rec-

ognized is that this approach can provide useful results even for long con-

ductors. In many cases, but not always, we can ignore inelastic processes

and calculate the resistance quite accurately as long as the momentum re-

laxation has been correctly accounted for, as discussed further in Section

3.3.

But why would we want to ignore inelastic processes? Why is the theory

of elastic resistors any more straightforward than the standard approach?
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µ2

µ1

E1

E3

µ2µ1

E1

E3

(a) (b)

Fig. 1.9 Two examples of structures where vertical flow between energy channels can

be important:(a) If the lower energy levels E2, E3 conduct poorly, electrons will flow up
in energy on the left and down in energy on the right as shown. (b) If the left contact

couples to an upper energy E1 while the right contact couples to a lower energy E3, then

the current flow is purely vertical, occurring only through inelastic processes.

To understand this we first need to talk briefly about the transport theories

on which the standard approach is based.

1.7 Transport theories

Flow or transport always involves two fundamentally different types of pro-

cesses, namely elastic transfer and heat generation, belonging to two dis-

tinct branches of physics. The first involves frictionless mechanics of the

type described by Newton’s laws or the Schrödinger equation. The second

involves the generation of heat described by the laws of thermodynamics.

The first is driven by forces or potentials and is reversible. The second

is driven by entropy and is irreversible. Viewed in reverse, entropy-driven

processes look absurd, like heat flowing spontaneously from a cold to a hot

surface or an electron accelerating spontaneously by absorbing heat from

its surroundings.

Normally the two processes are intertwined and a proper description of

current flow in electronic devices requires the advanced methods of non-

equilibrium statistical mechanics that integrate mechanics with thermody-

namics. Over a century ago Boltzmann taught us how to combine Newto-

nian mechanics with heat generating or entropy-driven processes and the

Classical
Dynamics BTE+ =

resulting Boltzmann transport equation (BTE) is widely accepted as the
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cornerstone of semiclassical transport theory. The word semiclassical is used

because some quantum effects have also been incorporated approximately

into the same framework.

A full treatment of quantum transport requires a formal integration

of quantum dynamics described by the Schrödinger equation with heat

generating processes.

Quantum
Dynamics NEGF+ =

This is exactly what is achieved in the non-equilibrium Green’s function

(NEGF) method originating in the 1960s from the seminal works of Martin

and Schwinger (1959), Kadanoff and Baym (1962), Keldysh (1965) and

others.

1.7.1 Why elastic resistors are conceptually simpler

The BTE takes many semesters to master and the full NEGF formalism,

even longer. Much of this complexity comes from the subtleties of combin-

ing mechanics with distributed heat-generating processes.

Channel

The operation of the elastic resistor can be understood in far more

elementary terms because of the clean spatial separation between the force-

driven and the entropy-driven processes. The former is confined to the

channel and the latter to the contacts. As we will see in the next few

chapters, the latter is easily taken care of, indeed so easily that it is easy

to miss the profound nature of what is being accomplished.

Even quantum transport can be discussed in relatively elementary terms

using this viewpoint. For example, Fig.1.10 shows a plot of the spatial

profile of the electrochemical potential across our structure from Fig.1.6

with a hole in the middle, calculated both from the semiclassical BTE

(Chapter 9) and from the NEGF method (part B).

For the NEGF method we show three options. First a coherent model

(left) that ignores all interaction within the channel showing oscillations
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- V +
“barrier”

qVa)

b)

c)

f

f

Fig. 1.10 Spatial profile of the electrochemical potential across a channel with a barrier.

Solid red line indicates semiclassical result from BTE (part A). Also shown are the
results from NEGF (part B) assuming (a) coherent transport, (b) transport with phase

relaxation (c), transport with phase and momentum relaxation. Note that no energy

relaxation is included in any of these calculations.
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indicative of standing waves. Once we include phase relaxation, the con-

structive and destructive interferences are lost and we obtain the result in

the middle which approaches the semiclassical result. If the interactions

include momentum relaxation as well we obtain a profile indicative of an

additional distributed resistance.

None of these models includes energy relaxation and they all qualify

as elastic resistors making the theory much simpler than a full quantum

transport model that includes dissipative processes. Nevertheless, they all

exhibit a spatial variation in the electrochemical potential consistent with

our intuitive understanding of resistance.

A good part of my own research has been focused in this area developing

the NEGF method, but we will get to it only in part B after we have “set

the stage” in this volume using a semiclassical picture.

1.8 Is transport essentially a many-body process?

The idea that resistance can be understood from a model that ignores in-

teractions within the channel comes as a surprise to many, possibly because

of an interesting fact that we all know: when we turn on a switch and a

bulb lights up, it is not because individual electrons flow from the switch

to the bulb. That would take far too long.

R L

C

Switch Light Bulb

Fig. 1.11 To describe the propagation of signals we need a distributed RLC, model
that includes an inductance L and a capacitance C which are ordinarily determined by
magnetostatics and electrostatics respectively.

The actual process is nearly instantaneous because one electron pushes

the next, which pushes the next and the disturbance travels essentially

at the speed of light. Surely, our model that localizes all interactions at

arbitrarily placed contacts (Fig.3.5) cannot describe this process?

The answer is that to describe the propagation of transient signals we
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need a model that includes not just a resistance R, but also an inductance

L and a capacitance C as shown in Fig.1.11. These could include transport

related corrections in small conductors but are ordinarily determined by

magnetostatics and electrostatics respectively (Salahuddin et al. 2005).

In this distributedRLC transmission line, the signal velocity determined

by L and C can be well in excess of individual electron velocities reflecting a

collective process. However, L and C play no role at low frequencies, since

the inductor is then like a “short circuit” and the capacitor is like an “open

circuit.” The low frequency conduction properties are represented solely

by the resistance R and can usually be understood fairly well in terms of

the transport of individual electrons along M parallel modes (see Eqs.(1.2))

or “channels”, a concept that has emerged from decades of research. To

quote Phil Anderson from a volume commemorating 50 years of Anderson

localization (see Anderson (2010)):

“ . . . What might be of modern interest is the “channel” concept which

is so important in localization theory. The transport properties at low fre-

quencies can be reduced to a sum over one-dimensional “channels” . . . ”

1.9 A different physical picture

Let me conclude this overview with an obvious question: why should we

bother with idealized models and approximate physical pictures? Can’t we

simply use the BTE and the NEGF equations which provide rigorous frame-

works for describing semiclassical and quantum transport respectively? The

answer is yes, and all the results we discuss are benchmarked against the

BTE and the NEGF.

However, as Feynman (1963) noted in his classic lectures, even when

we have an exact mathematical formulation, we need an intuitive physical

picture:

“.. people .. say .. there is nothing which is not contained in the equa-

tions .. if I understand them mathematically inside out, I will understand

the physics inside out. Only it doesn’t work that way. .. A physical under-

standing is a completely unmathematical, imprecise and inexact thing, but

absolutely necessary for a physicist.”

Indeed, most researchers carry a physical picture in their head and it is

usually based on the Drude formula (Eq.(1.5)). In this book we will show

that an alternative picture based on elastic resistors leads to a formula
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(Eq.(1.4)) that is more generally valid.

Unlike the Drude formula which treats the electric field as the driving

term, this new approach more correctly treats the electrochemical poten-

tial as the driving term. This is well-known at the macroscopic level, but

somehow seems to have been lost in nanoscale transport, where people cite

the difficulty of defining electrochemical potentials. However, that does not

justify using electric field as a driving term, an approach that does not work

for inhomogeneous conductors on any scale.

Since all conductors are fundamentally inhomogeneous on an atomic

scale it seems questionable to use electric field as a driving term. We argue

that at least for low bias transport, it is possible to define electrochemi-

cal potentials or quasi-Fermi levels on an atomic scale and this can lend

useful insight into the physics of current flow and the origin of resistance.

We believe this is particularly timely because future electronic devices will

require a clear understanding of the different potentials.

For example, recent work on spintronics has clearly established experi-

mental situations where upspin and downspin electrons have different elec-

trochemical potentials (sometimes called quasi-Fermi levels) and could even

flow in opposite directions because their dµ/dz have opposite signs. This

cannot be understood if we believe that currents are driven by electric fields,

-dφ/dz, since up and down spins both see the same electric field and have

the same charge. We can expect to see more and more such examples that

use novel contacts to manipulate the quasi-Fermi levels of different group

of electrons (see Chapter 12 for further discussion).

In short we believe that the lessons of nanoelectronics lead naturally

to a new viewpoint, one that changes even some basic concepts we all

learn in freshman physics. This viewpoint represents a departure from the

established mindset and I hope it will provide a complementary perspective

to facilitate the insights needed to take us to the next level of discovery and

innovation.
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What determines the resistance

19



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 20



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 21

Chapter 2

Why electrons flow

It is a well-known and well-established fact that when the two terminals of

a battery are connected across a conductor, it gives rise to a current due

to the flow of electrons across the channel from the source to the drain.

ChannelSource Drain

V +- I
If you ask anyone, novice or expert, what causes electrons to flow, by

far the most common answer you will receive is that it is the electric field.

However, this answer is incomplete at best. After all even before we connect

a battery, there are enormous electric fields around every atom due to the

positive nucleus whose effects on the atomic spectra are well-documented.

Why is it that these electric fields do not cause electrons to flow, and yet a

far smaller field from an external battery does?

The standard answer is that microscopic fields do not cause current

to flow, a macroscopic field is needed. This too is not satisfactory for

two reasons. Firstly, there are well-known inhomogeneous conductors like

p-n junctions which have large macroscopic fields extending over many mi-

crometers that do not cause any flow of electrons till an external battery is

connected.

Secondly, experimentalists are now measuring current flow through con-

ductors that are only a few atoms long with no clear distinction between

the microscopic and the macroscopic. This is a result of our progress in na-

noelectronics, and it forces us to search for a better answer to the question,

21
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“why electrons flow.”

2.1 Two key concepts

Related video lecture available at course website, Unit 1: L1.2.

To answer this question, we need two key concepts. First is the density

of states per unit energy D(E) available for electrons to occupy inside the

channel (Fig.2.1). For the benefit of experts, I should note that we are

adopting what we will call a “point channel model” represented by a single

density of states D(E). More generally one needs to consider the spatial

variation of D(E), as we will see in Chapter 7, but there is much that can

be understood just from our point channel model.

ChannelSource Drain

µ0 E

€ 

D(E)

Fig. 2.1 The first step in understanding the operation of any electronic device is to

draw the available density of states D(E) as a function of energy E, inside the channel

and to locate the equilibrium electrochemical potential µ0 separating the filled from the
empty states.

The second key input is the location of the electrochemical potential, µ0

which at equilibrium is the same everywhere, in the source, in the drain, and

in the channel. Roughly speaking (we will make this statement more precise

shortly) it is the energy that demarcates the filled states from the empty

ones. All states with energy E < µ0 are filled while all states with E > µ0

are empty. For convenience I might occasionally refer to the electrochemical

https://www.youtube.com/watch?v=MysNlmHtonc
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potential as just the “potential”.

µ1

µ2

E

q V

€ 

D(E)

ChannelSource Drain

V +- I

Fig. 2.2 When a voltage is applied across the contacts, it lowers all energy levels at the
positive contact (drain in the picture). As a result the electrochemical potentials in the

two contacts separate: µ1 − µ2 = qV .

When a battery is connected across the two contacts creating a potential

difference V between them, it lowers all energies at the positive terminal

(drain) by an amount qV , −q being the charge of an electron (q = 1.6 ×
10−19 C) separating the two electrochemical potentials by qV as shown in

Fig.2.2:

µ1 − µ2 = qV (2.1)

Just as a temperature difference causes heat to flow and a difference in

water levels makes water flow, a difference in electrochemical potentials

causes electrons to flow. Interestingly, only the states in and around an

energy window around µ1 and µ2 contribute to the current flow, all the

states far above and well below that window playing no part at all. Let me

explain why.

2.1.1 Energy window for current flow

Each contact seeks to bring the channel into equilibrium with itself, which

roughly means filling up all the states with energies E less than its elec-

trochemical potential µ and emptying all states with energies greater than

µ.
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Consider the states with energy E that are less than µ1 but greater

than µ2. Contact 1 wants to fill them up since E < µ1, but contact 2 wants

to empty them since E > µ2. And so contact 1 keeps filling them up and

contact 2 keeps emptying them causing electrons to flow continually from

contact 1 to contact 2.

Consider now the states with E greater than both µ1 and µ2. Both

contacts want these states to remain empty and they simply remain empty

with no flow of electrons. Similarly the states with E less than both µ1 and

µ2 do not cause any flow either. Both contacts like to keep them filled and

they just remain filled. There is no flow of electrons outside the window

between µ1 and µ2, or more correctly outside ± a few kT of this window,

as we will discuss shortly.

This last point may seem obvious, but often causes much debate because

of the common belief we alluded to earlier, namely that electron flow is

caused by the electric field in the channel. If that were true, all the electrons

should flow and not just the ones in any specific window determined by the

contacts.

2.2 Fermi function

Let us now make the above statements more precise. We stated that roughly

speaking, at equilibrium, all states with energies E below the electrochem-

ical potential µ are filled while all states with E > µ are empty. This

is precisely true only at absolute zero temperature. More generally, the

transition from completely full to completely empty occurs over an energy

range ∼ ± 2 kT around E = µ where k is the Boltzmann constant (∼ 80

µeV/K) and T is the absolute temperature. Mathematically, this transition

is described by the Fermi function :

f(E) =
1

exp

(
E − µ
kT

)
+ 1

(2.2)

This function is plotted in Fig.2.3 (left panel), though in an unconventional

form with the energy axis vertical rather than horizontal. This will allow

us to place it alongside the density of states, when trying to understand

current flow (see Fig.2.4).

For readers unfamiliar with the Fermi function, let me note that an

extended discussion is needed to do justice to this deep but standard result,

and we will discuss it a little further in Chapter 15 when we talk about the
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↑

E − µ

kT

→ f (E) → kT −
∂ f
∂ E

⎛
⎝⎜

⎞
⎠⎟

Fermi function,
Eq.(2.2)

Normalized thermal
broadening function,

Eq.(2.3)

Fig. 2.3 Fermi function and the normalized (dimensionless) thermal broadening func-
tion.

key principles of equilibrium statistical mechanics. At this stage it may help

to note that what this function (Fig.2.3) basically tells us is that states with

low energies are always occupied (f = 1), while states with high energies

are always empty (f = 0), something that seems reasonable since we have

heard often enough that (1) everything goes to its lowest energy, and (2)

electrons obey an exclusion principle that stops them from all getting into

the same state. The additional fact that the Fermi function tells us is that

the transition from f = 1 to f = 0 occurs over an energy range of ∼ ±2 kT

around µ0.

2.2.1 Thermal broadening function

Also shown in Fig.2.3 is the derivative of the Fermi function, multiplied by

kT to make it dimensionless. Using Eq.(2.2) it is straightforward to show

that

FT (E,µ) = kT

(
− ∂f
∂E

)
=

ex

(ex + 1)2
(2.3)

where x ≡ E − µ
kT

.

Note: (1) From Eq.(2.3) it follows that

FT (E,µ) = FT (E − µ) = FT (µ− E) (2.4)
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(2) From Eqs.(2.3) and (2.2) it follows that

FT = f(1− f) (2.5)

(3) If we integrate FT over all energy the total area equals kT :∫ +∞

−∞
dE FT (E,µ) = kT

∫ +∞

−∞
dE (− ∂f

∂E
)

= kT [−f ]
+∞
−∞ = kT (1− 0) = kT (2.6)

so that we can approximately visualize FT as a rectangular “pulse”centered

around E = µ with a peak value of 1/4 and a width of ∼ 4 kT .

2.3 Non-equilibrium: Two Fermi functions

When a system is in equilibrium the electrons are distributed among the

available states according to the Fermi function. But when a system is

driven out-of-equilibrium there is no simple rule for determining the dis-

tribution of electrons. It depends on the specific problem at hand making

non-equilibrium statistical mechanics far richer and less understood than

its equilibrium counterpart.

For our specific non-equilibrium problem, we argue that the two contacts

are such large systems that they cannot be driven out-of-equilibrium. And

so each remains locally in equilibrium with its own electrochemical potential

giving rise to two different Fermi functions (Fig.2.4):

f1(E) =
1

exp

(
E − µ1

kT

)
+ 1

(2.7a)

f2(E) =
1

exp

(
E − µ2

kT

)
+ 1

(2.7b)

The “little” channel in between does not quite know which Fermi function

to follow and as we discussed earlier, the source keeps filling it up while the

drain keeps emptying it, resulting in a continuous flow of current.

In summary, what makes electrons flow is the difference in the “agenda”

of the two contacts as reflected in their respective Fermi functions, f1(E)

and f2(E). This is qualitatively true for all conductors, short or long. But
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for short conductors, the current at any given energy E is quantitatively

proportional to

I(E) ∼ f1(E)− f2(E) (2.8)

representing the difference in the occupation probabilities in the two con-

tacts. This quantity goes to zero when E lies way above µ1 and µ2, since f1

and f2 are both zero. It also goes to zero when E lies way below µ1 and µ2,

since f1 and f2 are both one. Current flow occurs only in the intermediate

energy window, as we had argued earlier.

f2(E)f1(E)

µ2

E/kT

µ1

€ 

D(E)

Fig. 2.4 Electrons in the contacts occupy the available states with a probability de-

scribed by a Fermi function f(E) with the appropriate electrochemical potential µ.

2.4 Linear response

Current-voltage relations are typically not linear, but there is a common

approximation that we will frequently use throughout this book to extract

the “linear response” which refers to the low bias conductance, dI/dV ,

as V → 0. The basic idea can be appreciated by plotting the difference

between two Fermi functions, normalized to the applied voltage

F (E) =
f1(E)− f2(E)

qV/kT
(2.9)

where

µ1 = µ0 + (qV/2)

µ2 = µ0 − (qV/2)

Fig.2.5 shows that the difference function F gets narrower as the voltage

is reduced relative to kT . The interesting point is that as qV is reduced



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 28

28 Lessons from Nanoelectronics: A. Basic Concepts

below kT , the function F approaches the thermal broadening function FT
we defined (see Eq.(2.3)) in Section 2.2:

F (E)→ FT (E), as qV/kT → 0

so that from Eq.(2.9)

f1(E)− f2(E) ≈ qV

kT
FT (E,µ0) =

(
−∂f0

∂E

)
qV (2.11)

if the applied voltage µ1 − µ2 = qV is much less than kT .

F(E)

y<1

y=3
y=7

y ≡ qV / kT

↑

E − µ0

kT

Fig. 2.5 F (E) from Eq.(2.9) versus (E − µ0)/kT for different values of y = qV/kT .

The validity of Eq.(2.11) for qV � kT can be checked numerically if

you have access to MATLAB or equivalent. For those who like to see a

mathematical derivation, Eq.(2.11) can be obtained using the Taylor series

expansion described in Appendix A to write

f(E)− f0(E) ≈
(
−∂f0

∂E

)
(µ− µ0) (2.12)

Eq.(2.12) and Eq.(2.11) which follows from it, will be used frequently in

these lectures.
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2.5 Difference in “agenda” drives the flow

Before moving on, let me quickly reiterate the key point we are trying to

make, namely that the current is determined by

−∂f0(E)

∂E
and NOT by f0(E)

The two functions look similar over a limited range of energies

−∂f0(E)

∂E
≈ f0(E)

kT
if E − µ0 � kT

So if we are dealing with a so-called non-degenerate conductor (see Section

3.4) where we can restrict our attention to a range of energies satisfying

this criterion, we may not notice the difference.

In general these functions look very different (see Fig.2.3) and the ex-

perts agree that current depends not on the Fermi function, but on its

derivative. However, we are not aware of an elementary treatment that

leads to this result and consequently our everyday thinking tends to be

dominated by a different picture.

2.5.1 Drude formula

Related video lecture available at course website, Unit 1: L1.9.

For example, freshman physics texts start by treating the force due to an

electric field F as the driving term and adding a frictional term to Newton’s

law (τm is the so-called “momentum relaxation time”)

d(mν)

dt
= (−qF ) − mν

τm

Newton′s Law Friction

At steady-state (d/dt = 0) this gives a non-zero drift velocity,

νd = − q τm
m︸ ︷︷ ︸

mobility, µ̃

F (2.14)

from which one calculates the electron current using the relation
I

A
= qnνd = − qnµ̃︸︷︷︸

conductivity, σ

× F (2.15)

https://www.youtube.com/watch?v=QlBy2SF46kk
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The negative sign appears in Eq.(2.15) because we use “I” to denote the

electron current (See Section 3.2.2) which flows opposite to the electric field.

Eqs.(2.14) and (2.15) lead to the Drude formula, stated earlier in Eq.(1.5),

which plays a key role in defining our mental picture of current flow. Since

the above approach treats electric fields as the driving term, it also suggests

that the current depends on the total number of electrons since all electrons

feel the field. This is commonly explained away by saying that there are

mysterious quantum mechanical forces that prevent electrons in full bands

from moving and what matters is the number of “free electrons”. But this

begs the question of which electrons are free and which are not, a question

that becomes more confusing for atomic scale conductors.

It is well-known that the conductivity varies widely, changing by a factor

of ∼ 1020 going from copper to glass, to mention two materials that are near

two ends of the spectrum. But this is not because one has more electrons

than the other. The total number of electrons is of the same order of

magnitude for all materials from copper to glass. Whether a material is a

good or a bad conductor is determined by the availability of states in an

energy window ∼ kT around the electrochemical potential µ0, which can

vary widely from one material to another. This is well-known to experts

and comes mathematically from the dependence of the conductivity

on − ∂f0

∂E
rather than f0(E)

a result that typically requires advanced treatments based on the Boltz-

mann equation (Chapter 9) or the fluctuation-dissipation theorem (Chapter

5).

2.5.2 Present approach

We obtain this result in an elementary way as we have just seen. Current is

driven by the difference in the “agenda” of the two contacts which for low

bias is proportional to the derivative of the equilibrium Fermi function:

f1(E)− f2(E) ≈
(
−∂f0

∂E

)
qV

There is no need to invoke mysterious forces that stops some electrons from

moving, though one could perhaps call it a mysterious force, since the Fermi
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function (Eq.(2.2)) reflects the exclusion principle.

Later when we (briefly) discuss phonon transport in Chapter 14, we will

see how this approach is readily extended to describe the flow of phonons.

The phonon current is governed by the Bose (not Fermi) function which is

appropriate for particles that do not have an exclusion principle.
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Chapter 3

The Elastic Resistor

Related video lectures available at course website, Unit 1: L1.3 and L1.4.

We saw in the last chapter that the flow of electrons is driven by the

difference in the “agenda” of the two contacts as reflected in their respective

Fermi functions, f1(E) and f2(E). The negative contact with its larger

f(E) would like to see more electrons in the channel than the positive

contact. And so the positive contact keeps withdrawing electrons from the

channel while the negative contact keeps pushing them in. This is true

of all conductors, big and small. But in general, it is difficult to express

the current as a simple function of f1(E) and f2(E), because electrons jump

around from one energy to another and the current flow at different energies

is all mixed up.

µ2
µ1

Fig. 3.1 An elastic resistor: electrons travel along fixed energy channels.

But for the ideal elastic resistor shown in Fig.3.1, the current in an

energy range from E to E+ dE is decoupled from that in any other energy

range, allowing us to write it in the form

dI ∼ dE G(E) (f1(E)− f2(E))

and integrating it to obtain the total current I. Making use of Eq.(2.11),

33

https://www.youtube.com/watch?v=jtKrinIpHNc
https://www.youtube.com/watch?v=_MlI1E6z9e4
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this leads to an expression for the low bias conductance

I

V
=

∫ +∞

−∞
dE

(
−∂f0

∂E

)
G(E) (3.1)

where −(∂f0/∂E) can be visualized as a rectangular pulse of area equal to

one, with a width of ∼ ± 2 kT (see Fig.2.3, right panel).

Eq.(3.1) tells us that for an elastic resistor, we can define a conduc-

tance function G(E) whose average over an energy range ∼ ± 2kT around

the electrochemical potential µ0 gives the experimentally measured con-

ductance. At low temperatures, we can simply use the value of G(E) at

E = µ0.

This energy-resolved view of conductance represents an enormous sim-

plification that is made possible by the concept of an elastic resistor. Note

that by elastic we do not just mean ballistic which implies that the electron

goes “like a bullet” from source to drain. An electron could also take a

more traditional diffusive path as long as it changes only its momentum

and not its energy along the way:

z

Source Drain

Ballistic Transport

(a)

z
Source Drain

Diffusive Transport

(b)

In Section 3.1, we will start with an important conceptual issue regard-

ing elastic resistors: Since current flow (I) through a resistor (R) dissipates

a Joule heat of I2R per second, it seems like a contradiction to talk of a

resistor as being elastic, implying that electrons do not lose any energy.

The point to note is that while the electron does not lose any energy in

the channel of an elastic resistor, it does lose energy both in the source

and the drain and that is where the Joule heat gets dissipated. In short

an elastic resistor has a resistance R determined by the channel, but the

corresponding heat I2R is entirely dissipated outside the channel. This is

a very non-intuitive result that seems to be at least approximately true of

nanoscale conductors.

We will argue that it also helps understand transport properties like the

conductivity of large resistors by viewing them as multiple elastic resistors

in series making it a very powerful conceptual tool for transport problems in
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general. In Section 3.2 we will proceed to obtain our conductance formula

G(E) =
q2D(E)

2t(E)
(3.2)

expressing the conductance function G(E) for an elastic resistor in terms

of the density of states D(E) and the time t(E) that an electron spends in

the channel. Eq.(3.2) seems quite intuitive: it says that the conductance is

proportional to the product of two factors, namely the availability of states

(D) and the ease with which electrons can transport through them (1/t).

This is the key result that we will use in subsequent chapters.

Finally in Section 3.3 we will explain how the energy averaging of the

conductance function G(E) described by Eq.(3.1) leads to two different

limiting physical pictures, generally referred to as the degenerate and the

non-degenerate limits. Although the semiconductor literature often focuses

on the non-degenerate limit, we will try to keep the discussion general so

that it applies to both limits and in-between as well.

3.1 How an elastic resistor dissipates heat

Let us start by addressing a basic question regarding an elastic resistor.

How does it dissipate the joule heat I2R associated with the resistance R?

Consider a one level elastic resistor having one sharp level with energy

ε. Every time an electron crosses over through the channel, it appears as

a “hot electron” on the drain side with an energy ε in excess of the local

electrochemical potential µ2 as shown below:

µ1 µ2

€ 

ε

Source Drain

(a) Temporary state immediately
after electron transfer 

(a)

qV

€ 

ε

(b) Final state after energy
relaxation processes have

returned contacts to equilibrium

(b)

Energy dissipating processes in the contact quickly make the electron

get rid of the excess energy (ε− µ2). Similarly at the source end an empty

spot (a “hole”) is left behind with an energy that is much less than the

local electrochemical potential µ1, which gets quickly filled up by electrons

dissipating the excess energy (µ1 − ε).
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In effect, every time an electron crosses over from the source to the

drain,

an energy (µ1 − ε) is dissipated at the source
an energy (ε− µ2) is dissipated at the drain

The total energy dissipated is

µ1 − µ2 = qV

which is supplied by the external battery that maintains the potential dif-

ference µ1 − µ2. The overall flow of electrons and heat is summarized in

Fig.3.2.

Flow of Electrons
and Heat

ChannelSource

µ1 µ2

Heat Heat

Drain

µ1 − ε

ε ε

ε − µ2

Fig. 3.2 Flow of electrons and heat in a one-level elastic resistor having one level with
E = ε.

If N electrons cross over in a time t

Current, I =
qN

t

Dissipated power =
qV N

t
= V I

Note that V I is the same as I2R and V 2G.

The heat dissipated by an “elastic resistor” thus occurs in the contacts.

As we will see next, the detailed mechanism underlying the complicated

process of heat transfer in the contacts can be completely bypassed simply

by legislating that the contacts are always maintained in equilibrium with

a fixed electrochemical potential.

3.2 Current in an elastic resistor

Consider an elastic resistor (Fig.3.1) with an arbitrary density of states

D(E). Since all energy channels conduct independently in parallel, we
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could first write the current in an energy channel between E and E + dE

and then integrate over energy to find the total current.

To write the current in this energy range let us first assume that f1 = 1

and f2 = 0, so that electrons continually flow from 1 to 2. The flux of

electrons per second can be related to the steady-state number of electrons

in the channel as follows:

Electron flux =
Number of electrons in channel

T ime each electron spends in channel

This is a non-obvious result, but one that appears in many different physical

problems. For example we could relate the “flux” of students graduating

each year from a given program to the number of students in the program

by the relation

Student flux =
Number of students in program

Time each student spends in program

E

dE

D(E)

f1 =  1 f2 =  0

D(E) dE
2

× 1
t

Using this principle we could write the flux of electrons as

D(E) dE

2

1

t

where t is the time an average electron spends in the channel on its way from

contact 1 to contact 2. This is because the steady-state number of electrons

in the channel is equal to half the number of available states D(E) dE since

one contact wants to keep all states filled (f1 = 1) while the other wants to

keep it empty (f2 = 0). On the average the states remain filled only half

the time.

Interestingly, this half-filling of available states applies to both ballistic

and diffusive regimes and in between, though the details are somewhat
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E

dE

D(E)

f1 =  0 f2 =  1

D(E) dE
2

× 1
t

different in different regimes as we will see later in Chapter 8 when we

discuss the diffusion equation.

If we reverse the roles of the two contacts with f1 = 0 and f2 = 1,

we will have the same flux but in the opposite direction. In general with

arbitrary values of f1 and f2 we can superpose the two results to write the

net current as the difference

dI = q
D(E) dE

2t
(f1(E)− f2(E))

where we have multiplied by the electronic charge q to convert from flux of

electrons to flux of (negative) charge. Integrating we obtain an expression

for the current through the elastic resistor:

I =
1

q

∫ +∞

−∞
dE G(E) (f1(E)− f2(E)) (3.5)

where G(E) =
q2D(E)

2t(E)
→ same as Eq.(3.2)

3.2.1 Exclusion principle?

It is not obvious that in general we can superpose the two results from

f1 = 1, f2 = 0 and from f1 = 0, f2 = 1 and obtain the resulting current as

we have done. Doesn’t the presence of one stream affect the other?

We view electrons as non-interacting particles with the understanding

that their Coulomb interaction is included through an average potential U

which is calculated self-consistently (Chapter 7). But even then it might

seem that the mere presence of one stream could impede the other stream

through the Pauli exclusion principle which can be significant for degenerate
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conductors (see Section 3.4) where f is close to one in the energy range of

interest.

However, it can be shown that the two flows involve “orthogonal states”

that do not “Pauli block” each other in any way, as long as transport

is coherent and does not involve interaction with external objects having

internal degrees of freedom (see Section 2.6 of Datta (1995)). Within a

semiclassical picture we can arrive at the same conclusion if we use the

relaxation time approximation for the scattering processes in the Boltzmann

equation (Chapter 9).

3.2.2 Convention for current and voltage

µ1 µ2

Source Drain

Conventional
Current

e-e-

V

Electron
Current

- +

Fig. 3.3 Because an electron carries negative charge, the direction of the electron current
is always opposite to that of the conventional current.

Let me briefly comment regarding the direction of the current. As I

noted in Chapter 2, because the electronic charge is negative (an unfortu-

nate choice, but we are stuck with it!) the side with the higher voltage has a

lower electrochemical potential. Inside the channel, electrons flow from the

higher to the lower electrochemical potential, so that the electron current

flows from the source to the drain. The conventional current on the other

hand flows from the higher to the lower voltage.

Since our discussions will usually involve electron energy levels and the

electrochemical potentials describing their occupation, it is also convenient

for us to use the electron current instead of the conventional current. For
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example, in Fig.3.3 it seems natural to say that the current flows from the

source to the drain and not the other way around. And that is what I

will try to do consistently throughout this book. In short, we will use the

current, I, to mean electron current.

3.3 Conductance of a long resistor

If the applied bias is much less than kT , we can use Eq.(2.11) to write from

Eq.(3.5)

I = V

∫ +∞

−∞
dE

(
−∂f0

∂E

)
G(E)

which yields the expression for conductance stated earlier in Eq.(3.1). Since

we are obtaining the linear conductance by keeping only the first term in

a Taylor series (Eq.(2.11)), it can be justified only for voltages V < kT/q,

which at room temperature equals 25 mV. But everyday resistors are linear

for voltages that are much larger. How do we explain that?

The answer is that the elastic resistor model should only be applied to

a short length < Lin, where Lin is the length an electron travels on the

average before getting inelastically scattered. Such short conductors could

indeed show non-linear effects for voltages > kT/q, though the non-linearity

may be quite small if the conductance function G(E) is constant over the

relevant energy range (see Section 2.5 of Datta (1995)).

But how do we understand everyday resistors that are linear over sev-

eral volts? To apply the elastic resistor model to a large conductor with

distributed inelastic processes (Fig.3.4a) we should break it up conceptu-

ally into a sequence of elastic resistors (Fig.3.4b), each much shorter than

the physical length L, having a voltage that is only a fraction of the total

voltage V . As long as the voltage dropped over a length Lin is less than

kT/q we expect the current to be linear with voltage. The terminal voltage

can be much larger.

Before we move on, let me reiterate a little subtlety in viewing a long

resistor (Fig.3.4a) as elastic resistors in series (Fig.3.4b). We will see in the

next chapter that the resistance of an individual section has the form

R = RB

(
1 +

L

λ

)
→ same as Eq.(1.8) (3.6)

and we will see in Part 3, that the length independent part RB represents

an interface resistance associated with the channel-contact interfaces.
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Inelastic scatterers

µ2
µ1

Source Drain

(a)

µ2
µ1

L L L

(b)

Fig. 3.4 (a) Real conductors have inelastic scatterers distributed throughout the chan-

nel. (b) A hypothetical series of elastic resistors as an approximation to a real resistor
with distributed inelastic scattering as shown in (a).

Now, the structure in Fig.3.4b has too many conceptual interfaces that

are not present in the real structure of Fig.3.4a. Each of these interfaces

introduces an interface resistance as shown in Fig.3.5 and these have to be

subtracted out. But this is straightforward to do, once we understand the

nature and origin of the interface resistance. For example, the resistance of

the real structure in Fig.3.4a of length 3L is approximately given by

R = RB

(
1 +

3L

λ

)
and NOT by R = 3RB

(
1 +

L

λ

)
(3.7)

In general our approach is to consider just a single section, exclude the

interface resistances to obtain the length dependent part of the resistance

(RBL/λ) from which we deduce bulk properties like the conductivity.

Long  Resistors

Not  present  in
physical  structure

Contact
resistance

Contact
resistance

Fig. 3.5 A long resistor can be viewed as a series of ideal elastic resistors. However,

we have to exclude the resistance due to all the conceptual interfaces that we introduce

which are not present in the physical structure.



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 42

42 Lessons from Nanoelectronics: A. Basic Concepts

3.4 Degenerate and Non-degenerate Conductors

Getting back to our conductance expression

I

V
=

∫ +∞

−∞
dE

(
−∂f0

∂E

)
G(E) → same as Eq.(3.1)

we note that depending on the nature of the conductance function G(E)

and the thermal broadening function we can identify two distinct limits

(Fig.3.4).

The first is case A where the conductance function G(E) is nearly con-

stant over the width of the broadening function. We could then pull G(E)

out of the integral in Eq.(3.1) to write

I

V
≈ G(E = µ0)

∫ +∞

−∞
dE

(
−∂f0

∂E

)
= G(E = µ0) (3.8)

This relation suggests an operational definition for the conductance function

G(E): it is the conductance measured at low temperatures for a channel

with its electrochemical potential µ0 located at E. The actual conductance

is obtained by averaging G(E) over a range of energies using −∂f0/∂E as

a weighting function. Case A is a good example of the so-called degenerate

conductors.

G(E)

A

B

µ0

4kT −
∂ f

0

∂E
⎛
⎝⎜

⎞
⎠⎟

Fig. 3.6 Degenerate (A) and non-degenerate (B) limits.

The other extreme is the non-degenerate conductor shown in case B

where the electrochemical potential is located at an energy many kT s below
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the energy range where the conductance function is non-zero. As a result

over the energy range of interest where G(E) is non-zero, we have

x ≡ E − µ0

kT
� 1

and it is common to approximate the Fermi function with the Boltzmann

function

1

1 + ex
≈ e−x

so that
I

V
=

∫ +∞

−∞

dE

kT
G(E) e−(E−µ0)/kT

This non-degenerate limit is commonly used in the semiconductor literature

though the actual situation is often intermediate between degenerate and

non-degenerate limits.

We will generally use the expression

G =
q2D

2t

with the understanding that the quantities D and t are evaluated at E = µ0

at low temperatures. Depending on the nature of G(E) and the location

of µ0, we may need to average G(E) over a range of energies using as a

“weighting function” as prescribed by Eq.(3.1).
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Chapter 4

Ballistic and diffusive transport

Related video lectures available at course website, Unit 1: L1.5, L1.6, L1.7

and L1.8.

We saw in the last chapter that the resistance of an elastic resistor can

be written as

G =
q2D

2t
→ same as Eq.(3.2)

In this chapter I will first argue that the transit time t across a resistor of

length L for diffusive transport with a mean free path can be related to the

time tB for ballistic transport by the relation (Section 4.1)

t = tB

(
1 +

L

λ

)
(4.1)

Combining with Eq.(3.2) we obtain

G =
GBλ

L+ λ
(4.2)

where GB =
q2D

2tB
(4.3)

We could rewrite Eq.(4.2) as

G =
σA

L+ λ
(4.4a)

where σA = GBλ (4.4b)

So far we have only talked about three dimensional resistors with a large

cross-sectional area A. Many experiments involve two-dimensional resistors

45

https://www.youtube.com/watch?v=wbyURzk2Hzk
https://www.youtube.com/watch?v=g2IOi9adUF0
https://www.youtube.com/watch?v=Zq_K1SsmXPM
https://www.youtube.com/watch?v=XtCtwT1XHUM
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whose cross-section is effectively one-dimensional with a width W , so that

the appropriate equations have the form

G =
σW

L+ λ

where σW = GBλ

3-D conductor with
2-D cross-section

of area A

L

A

2-D conductor with
1-D cross-section

of area W

L

W
L

1-D conductor

Current

Fig. 4.1 3D, 2D and 1D conductors.

Finally we have one-dimensional conductors for which

G =
σ

L+ λ

where σ = GBλ

We could collect all these results and write them compactly in the form

G =
σ

L+ λ
{1,W,A} (4.5a)

where σ = GBλ

{
1,

1

W
,

1

A

}
(4.5b)

The three items in parenthesis correspond to 1D, 2D and 3D conductors.

Note that the conductivity has different dimensions in 1D, 2D and 3D,

while both GB and λ have the same dimensions, namely Siemens (S) and

meter (m) respectively.

Note that Eq.(4.5b) is different from the standard Ohm’s law

G =
σ

L
{1,W,A}

which predicts that the resistance will approach zero (conductance will

become infinitely large) as the length L is reduced to zero. Of course no one
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expects it to become zero, but the common belief is that it will approach a

value determined by the interface resistance which can be made arbitrarily

small with improved contacting technology.

What is now well established experimentally is that even with the best

possible contacts, there is a minimum interface resistance determined by the

properties of the channel, independent of the contact. The modified Ohm’s

law in Eq.(4.5b) reflects this fact: even a channel of zero length with perfect

contacts has a resistance equal to that of a hypothetical channel of length

λ. But what does it mean to talk about the mean free path of a channel of

zero length? The answer is that neither σ nor λ mean anything for a short

conductor, but the ballistic conductance

GB =
σ

λ
{1, W, A}

represents a basic material parameter whose significance has become clear

in the light of modern experiments (see Section 4.2).

The ballistic conductance is proportional to the number of channels,

M(E) available for conduction, which is proportional to, but not the same

as, the density of states, D(E). The concept of density of states has been

with us since the earliest days of solid state physics. By contrast, the

number of channels (or transverse modes) M(E) is a more recent concept

whose significance was appreciated only after the seminal experiments in

the 1980s on ballistic conductors showing conductance quantization.

4.1 Transit times

Consider how the two quantities in

G =
q2D

2t

namely the density of states, D and the transfer time t scale with channel

dimensions for large conductors. The first of these is relatively easy to see

since we expect the number of states to be additive. A channel twice as big

should have twice as many states, so that the density of states D(E) for

large conductors should be proportional to the volume (AL).

Regarding the transfer time, t, broadly speaking there are two transport

regimes:

Ballistic regime: Transfer time t ∼ L
Diffusive regime: Transfer time t ∼ L2
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Consequently the ballistic conductance is proportional to the area (note

that D ∼ AL as discussed above), but independent of the length. This

“non-ohmic” behavior has indeed been observed in short conductors. It is

only diffusive conductors that show the “ohmic” behavior G ∼ A/L.

These two regimes can be understood as follows.

z

Source Drain

Ballistic Transport

In the ballistic regime electrons travel straight from the source to the drain

“like a bullet,” taking a time

tB =
L

u
where u = 〈|vz|〉 (4.6)

is the average velocity of the electrons in the z-direction.

But conductors are typically not short enough for electrons to travel “like

bullets.” Instead they stumble along, getting scattered randomly by various

defects along the way taking much longer than the ballistic time in Eq.(4.6).

z
Source Drain

Diffusive Transport

We could write

t =
L

u
+
L2

2D
(4.7)

viewing it as a sort of “polynomial expansion” of the transfer time t in pow-

ers of L. We could then argue that the lowest term in this expansion must

equal the ballistic limit, while the highest term should equal the diffusive

limit well-known from the theory of random walks. This theory (see for

example, Berg, 1983) identifies the coefficient D as the diffusion constant

D = 〈v2
zτ〉

τ being the mean free time.
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Some readers may not find this “polynomial expansion” completely sat-

isfactory. But this approach has the advantage of getting us to the new

Ohm’s law (Eq.(4.5b)) very quickly using simple algebra. In Chapters 8, 9

we will obtain this result more directly from the Boltzmann equation.

Getting back to Eq.(4.7), we use Eq.(4.6) to rewrite it in the form

t = tB (1 +
Lu

2D
)

which agrees with Eq.(4.1) if the mean free path is given by

λ =
2L

u

In defining the two constants D and u we have used the symbol 〈〉 to

denote an average over the angular distribution of velocities which yields a

different numerical factor depending on the dimensionality of the conductor

(see Appendix B). For d = {1, 2, 3} dimensions

u ≡ 〈|vz|〉 = v(E)

{
1,

2

π
,

1

2

}
(4.8)

D ≡ 〈v2
zτ〉 = v2(E)τ(E)

{
1,

1

2
,

1

3

}
(4.9)

λ =
2D

u
= v(E)τ(E)

{
2,
π

2
,

4

3

}
(4.10)

Note that our definition of the mean free path includes a dimension-

dependent numerical factor over and above the standard value of ντ .

Couldn’t we simply use the standard definition? We could, but then the

new Ohm’s law would not simply involve replacing L with L plus λ. Instead

it would involve L plus a dimension-dependent factor times λ. Instead we

have chosen to absorb this factor into the definition of λ.

Interestingly, even in one dimensional conductors the factor is not one,

but two. This is because the mean free time after which an electron gets

scattered. Assuming the scattering to be isotropic, only half the scattering

events will result in an electron traveling towards the drain to head towards

the source. The mean free time for backscattering is thus, making the mean

free path 2ντ rather than ντ .
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4.2 Channels for conduction

Next we obtain an expression for the ballistic conductance by combining

Eq.(4.3) with Eq.(4.6) to obtain

GB =
q2Du

2L

and then make use of Eq.(4.8) to write

GB =
q2Dv

2L

{
1,

2

π
,

1

2

}
(4.11)

Eq.(4.11) tells us that the ballistic conductance depends on D/L, the den-

sity of states per unit length.

Actual
conductor with
cross-sectional

area A

M independent
conductors
In parallel

€ 

•

•Current

L L

A

Fig. 4.2 Channels of conduction: a key concept.

Since D is proportional to the volume, the ballistic conductance is expected

to be proportional to the cross-sectional area A in 3D conductors (or the

width W in 2D conductors). This was experimentally observed in metals in

1969 and is known as the Sharvin resistance. Numerous experiments since

the 1980s have shown that for small conductors, the ballistic conductance

does not go down linearly with the area A. Rather it goes down in integer
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multiples of the conductance quantum

GB =
q2

h︸︷︷︸
∼40µS

M︸︷︷︸
integer

(4.12)

How can we understand this relation and what does the integer M

represent? This result cannot come out of our elementary treatment of

electrons in classical particle-like terms, since it involves Planck’s constant

h. Some input from quantum mechanics is clearly essential and this will

come in Chapter 6 when we evaluate D(E). For the moment we note

that heuristically Eq.(4.12) suggests that we visualize the real conductor

as M independent channels in parallel whose conductances add up to give

Eq.(4.11) for the ballistic conductance.

This suggests that we use Eqs.(4.12) and (4.11) to define a quantity

M(E) (floor(x) denotes the largest integer less than or equal to x)

M = floor

(
hDv

2L

{
1,

2

π
,

1

2

})
(4.13)

which provides a measure of the number of conducting channels. In Chap-

ter 6 we will use a simple model that incorporates the wave nature of elec-

trons to show that for a one-dimensional channel the quantity M indeed

equals one showing that it has only one channel, while for two- and three-

dimensional conductors the quantity M represents the number of de Broglie

wavelengths that fit into the cross-section, like the modes of a waveguide.
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Chapter 5

Conductance from fluctuation

5.1 Introduction

In this chapter we will digress a little to connect our conductance formula

G =
q2D

2t
→ same as Eq.(3.2)

to the very powerful fluctuation-dissipation theorem widely used in dis-

cussing linear transport coefficients, like the conductivity. In our discussion

we have stressed the non-equilibrium nature of the problem of current flow

requiring contacts with different electrochemical potentials (see Fig.1.4).

Just as heat flow is driven by a difference in temperatures, current flow

is driven by a difference in electrochemical potentials. Our basic current

expression (see Eqs.(3.2) and (3.5))

I = q

∫ +∞

−∞
dE

D(E)

2t(E)
(f1(E)− f2(E)) (5.1)

is applicable to arbitrary voltages but so far we have focused largely on the

low bias approximation (see Eqs.(3.1) and (3.2))

G0 = q2

∫ +∞

−∞
dE

(
−∂f0

∂E

)
D(E)

2t(E)
(5.2)

Although we have obtained this result from the general non-equilibrium

expression, it is interesting to note that the low bias conductance is really an

equilibrium property. Indeed there is a fundamental theorem relating the

low bias conductance for small voltages to the fluctuations in the current

53
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that occur at equilibrium when no voltage is applied. Consider a conductor

with no applied voltage (see Fig.5.1) so that both source and drain have

the same electrochemical potential µ0. There is of course no net current

without an applied voltage, but even at equilibrium, every once in awhile,

an electron crosses over from source to drain and on the average an equal

number crosses over the other way from the drain to the source, so that

〈I(t0)〉eq = 0

where the angular brackets 〈〉 denote either an “ensemble average” over

many identical conductors or more straightforwardly a time average over

the time t0.

µ0µ0

Source Drain

I(t0)

Fig. 5.1 At equilibrium both contacts have the same electrochemical potential µ0. No
net current flows, but there are equal currents I0 from source to drain and back.

However, if we calculate the current correlation

CI =

∫ +∞

−∞
dτ〈I(t0 + τ)I(t0)〉eq (5.3)

we get a non-zero value even at equilibrium, and the fluctuation-dissipation

(F-D) theorem relates this quantity to the low bias conductance :

G0 =
CI

2kT
=

1

2kT

∫ +∞

−∞
dτ〈I(t0 + τ)I(t0)〉eq (5.4)

This is a very powerful result because it allows one to calculate the conduc-

tance by evaluating the current correlations using the methods of equilib-

rium statistical mechanics, which are in general more well-developed than

the methods of non-equilibrium statistical mechanics. Indeed before the

advent of mesoscopic physics in the late 1980s, the Kubo formula based on

the F-D theorem was the only approach used to model quantum transport.

The Kubo formula in principle applies to large conductors with inelastic
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Channel

scattering, though in practice it may be difficult to evaluate the effect of

complicated inelastic processes on the current correlation.

The usual approach is to evaluate transport in long conductors with a

high frequency alternating voltage, for which electrons can slosh back and

forth without ever encountering the contacts. One could then obtain the

zero frequency conductivity by letting the sample size L tend to infinity

before letting the frequency tend to zero (see for example, Chapter 5 of

Doniach and Sondheimer (1974)). However, this approach is limited to

linear response. In this book (part B) we will stress the Non-Equilibrium

Green’s Function (NEGF) method for quantum transport, which allows us

to address the non-equilibrium problem head on for quantum transport,

just as the Boltzmann equation (BTE) does for semiclassical transport.

In this chapter my purpose is primarily to connect our discussion to

this very powerful and widely used approach. We will look at the effect

of contacts on the current correlations in an elastic resistor and show that

applied to an elastic resistor, the F-D theorem (Eq.(5.4)) does lead to our

old result (Eq.(3.2)) from Chapter 3.

Interestingly, our elementary arguments in Chapter 3 lead to a conduc-

tance proportional to

f1 − f2

µ1 − µ2

∼= −
∂f0

∂E

while the current correlations in the F-D theorem lead to

f0(1− f0)

kT

with the 1 − f0 factor arising from the exclusion principle. The physical

arguments are very different, but their equivalence is ensured by the identity

− ∂f0

∂E
=
f0(E)(1− f0(E))

kT
(5.5)
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which can be verified with a little algebra, starting from the definition of

the Fermi function (Eq.(2.2)).

For phonons (Chapter 14) similar elementary arguments lead to a sim-

ilar expression with the Fermi function replaced by the Bose function, n

(Eq.(14.5) and Section 15.5.1) for which it can be shown that

n1 − n2

}ω
∼= −

∂n

∂(}ω)
=
n(1 + n)

kT
(5.6)

Agreement with the corresponding F-D theorem in this case requires a

1 + n factor instead of the 1− f factor for electrons. This is of course the

well-known phenomenon of stimulated emission for Bose particles. We will

talk a little more about Fermi and Bose functions in Chapter 15.

5.2 Current fluctuations in an elastic resistor

5.2.1 One-level resistor

Consider first a one-level resistor connected to two contacts with the same

electrochemical potential µ0 and hence the same Fermi function f0(E) (see

Fig.5.2).

µ0 µ0

€ 

ε

Source Drain

Fig. 5.2 At equilibrium with the same electrochemical potential in both contacts, there

is no net current. But there are random pulses of current as electrons cross over in either
direction.

t€ 

+ q / t

t

€ 

− q / t

(b)

€ 

← q / t( ) 2

2t 2t€ 

Area = q
2
/ t

(c)

Fig. 5.3 (a) Random pulses of current at equilibrium with the same electrochemical
potential. (b) Current correlation function.

There are random positive and negative pulses of current as electrons

cross over from the source to the drain and from the drain to the source
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respectively. The average positive current is equal to the average negative

current, which we call the equilibrium current I0 and write it in terms of

the transit time t (see Eq.(3.2))

I0 =
q

t
f0(ε)(1− f0(ε)) (5.7)

where the factor f0(ε)(1− f0(ε)) is the probability that an electron will be

present at the source ready to transfer to the drain but no electron will be

present at the drain ready to transfer back. The correlation is obtained by

treating the transfer of each electron from the source to the drain as an

independent stochastic process. The integrand in Eq.(5.3) then looks like

a sequence of triangular pulses as shown each having an area of q2/t , so

that

CI = 2
q2

t
f0(ε)(1− f0(ε)) (5.8)

where the additional factor of 2 comes from the fact that I0 only counts

the positive pulses, while both positive and negative pulses contribute ad-

ditively to CI .

5.2.2 Multi-level resistor

To generalize our one-level results from Eq.(5.7) to an elastic resistor with

an arbitrary density of states, D(E) we note that in an energy range dE

there are D(E) dE states so that

I = q

∫ +∞

−∞
dE

D(E)

2t(E)
f0(E)(1− f0(E)) (5.9a)

CI = 2q2

∫ +∞

−∞
dE

D(E)

2t(E)
f0(E)(1− f0(E)) (5.9b)

assuming that the fluctuations in different energy ranges can simply be

added, as we are doing by integrating over energy.

Note that CI = 2qI0 suggesting that the fluctuation is like the shot

noise due to the equilibrium currents I0 flowing in either direction. Making

use of Eq.(5.4) we have for the conductance

G0 =
CI

2kT
= q2

∫ +∞

−∞
dE

f0(E)(1− f0(E))

kT

D(E)

2t(E)
(5.10)
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which can be reduced to our old expression (Eq.(3.2)) making use of the

identity stated earlier in Eq.(5.5).

Before moving on, let me note that there is at present an extensive

body of work on subtle correlation effects in elastic resistors (see for exam-

ple, Splettstoesser et al. 2010), some of which have been experimentally

observed. But the theory of noise even for an elastic resistor is more intri-

cate than the theory for the average current that we will focus on in this

book.
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Chapter 6

Energy band model

Related video lecture available at course website, Unit 2: L2.10.

6.1 Introduction

A common expression for conductivity is the Drude formula relating the

conductivity to the electron density n, the effective mass m and the mean

free time τ

σ ≡ 1

ρ
=
q2nτ

m
(6.1)

This expression is very well-known since even freshman physics texts start

by deriving it (see Section 2.5.1). It also leads to the widely used concept

of mobility

µ̃ =
qτ

m
(6.2)

with σ = qnµ̃ (6.3)

On the other hand, Eq.(4.5b) expresses the conductivity as a product of

the ballistic conductance GB and the mean free path λ

σ = GBλ

{
1,

1

W
,

1

A

}
(same as Eq.(4.5b)) (6.4)

This expression can be rewritten, using Eq.(4.3) for GB , Eq.(4.6) for tB and

Eq.(4.10) for λ, as a product of the density of states D and the diffusion

coefficient D (see Eq.(4.9))

σ(E) = q2 D
D

L

{
1,

1

W
,

1

A

}
(6.5)

61

https://www.youtube.com/watch?v=ojuWLKQZ9s4
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Eq.(6.5) is a standard result referred to as the degenerate Einstein relation

but it is not as well-known as the Drude formula. Most people remember

Eq.(6.1) and not Eq.(6.5). Our objective in this chapter is to relate the

two.

Note that, like the conductance (see Eq.(3.1)), these expressions for

the energy-dependent conductivity also have to be averaged over an energy

range of a few kT s around E = µ0, using the thermal broadening function,

σ0 =

∫ +∞

−∞
dE

(
−∂f0

∂E

)
σ(E) (6.6)

It is this averaged conductivity that should be compared to the Drude

conductivity in Eq.(6.1). But for degenerate conductors (see Eq.(3.8)) the

averaged conductivity is approximately equal to the conductivity at an

energy E = µ0:

σ0 ≈ σ(E = µ0) (6.7)

and so we can compare σ(E = µ0) from Eq.(6.5) with Eq.(6.1).

The point we wish to stress is that while Eq.(6.1) is often very use-

ful, it is a result of limited validity that can be obtained from Eq.(6.5)

by making suitable approximations based on a specific model. But when

these approximations are not appropriate, we can still use Eq.(6.5) which

is far more generally applicable .

For example, Eq.(6.5) gives sensible answers even for materials like

graphene whose non-parabolic bands make the meaning of mass somewhat

unclear, causing considerable confusion when using Eq.(6.1). In general we

should really use Eq.(6.5), and not Eq.(6.1), to shape our thinking about

conductivity.

There is a fundamental difference between Eq.(6.5) and (6.1). The av-

eraging implied in Eq.(6.6) makes the conductivity a “Fermi surface prop-

erty”, that is one that depends only on the energy levels close to E = µ0.

By contrast, Eq.(6.1) depends on the total electron density n integrated

over all energy. But this dependence on the total number is true only in a

limited sense.

Experts know that “n” only represents the density of “free” electrons

and have an instinctive feeling for what it means to be free. They know

that there are p-type semiconductors which conduct better when they have

fewer electrons, but in that case they know that n should be interpreted to

mean the number of “holes”. For beginners, all this appears confusing and

much of this confusion can be avoided by using Eq.(6.5) instead of Eq.(6.1).
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Interestingly, Eq.(6.5) was used in a seminal paper to obtain Eq.(3.2)

G(E) =
q2D(E)

2t(E)
(same as Eq.(3.2)) (6.8)

Eq.(1) of Thouless (1977) is essentially the same as this equation with minor

differences in definitions. What we have done is to use the concept of an

elastic resistor to first obtain Eq.(3.2) from elementary arguments, and then

used it to obtain Eq.(6.5).

Eq.(6.5) stresses that the essential factor determining the conductivity

is the density of states around E = µ0. Materials are known to have

conductivities ranging over many orders of magnitude from glass to copper.

And the basic fact remains that they all have approximately the same

number of electrons. Glass is an insulator but not because it is lacking in

electrons. It is an insulator because it has a very low density of states or

number of modes around E = µ0.

So when does Eq.(6.5) reduce to (6.1)? Answer: if the electrons are

described by a “single band effective mass model” as I will try to show

in this chapter. So far we have kept our discussion general in terms of

the density of states, D(E) and the velocity, v(E) without adopting any

specific models. These concepts are generally applicable even to amorphous

materials and molecular conductors. A vast amount of literature both in

condensed matter physics and in solid state devices, however, is devoted

to crystalline solids with a periodic arrangement of atoms because of the

major role they have played from both basic and applied points of view.

For such materials, energy levels over a limited range of energies are de-

scribed by a E(p) relation and we will show in this chapter that irrespective

of the specific E(p) relation, at any energy E the density of states D(E),

velocity v(E) and momentum p(E) are related to the total number of states

N(E) with energy less than E by the relation (d: number of dimensions)

D(E)v(E)p(E) = N(E) · d (6.9)

We can combine this relation with Eq.(6.5) and make use of Eq.(4.9), to

write

σ(E) =
q2τ(E)ν(E)

p(E)

{
N(E)

L
,

N(E)

WL
,

N(E)

AL

}
(6.10)

Eq.(6.10) indeed looks like Drude expression (Eq.(6.1)) if we identify (1)

the mass as

m(E) =
p(E)

v(E)
(6.11)
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which is independent of energy for parabolic E(p) relations, but can in

general be energy-dependent, and (2) the quantity in parenthesis{
N(E)

L
,

N(E)

WL
,

N(E)

AL

}
as the electron density, n per unit length, area and volume in 1D, 2D and

3D respectively. At low temperatures, this is easy to justify since the energy

averaging in Eq.(6.6) amounts to looking at the value at E = µ0 and N(E)

at E = µ0 represents the total number of electrons (Fig.6.1).

At non-zero temperatures one needs a longer discussion which we will

get into later in the chapter. Indeed as will see, some subtleties are involved

even at zero temperature when dealing with differently shaped density of

states.

µ0

f0(E)

€ 

D(E)

€ 

E − µ0
kT

N(E)

Fig. 6.1 Equilibrium Fermi function f0(E), density of states D(E) and integrated den-
sity of states N(E).

Note, however, that the key to reducing our conductivity expression

(Eq.(6.5)) to the Drude-like expression (Eq.(6.10)) is Eq.(6.9) which is an

interesting relation for it relates D(E), v(E) and p(E) at a given energy E,

to the total number of states N(E) obtained by integrating D(E)

N(E) =

∫ E

−∞
dE D(E)

How can the integrated value of D(E) be uniquely related to the value of

quantities like D(E), v(E) and p(E) at a single energy? The answer is that
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this relation holds only as long as the energy levels are given by a single E(p)

relation. It may not hold in an energy range with multiple bands of energies

or in an amorphous solid not described by an E(p) relation. Eq.(6.1) is then

not equivalent to Eq.(6.5), and it is Eq.(6.5) that can be trusted .

With that long introduction let us now look at how single bands de-

scribed by an E(p) relation leads to Eq.(6.9) and helps us connect our con-

ductivity expression (Eq.(6.5)) to the Drude formula (Eq.(6.1)). This will

also lead to a different interpretation of the quantity M(E) introduced in

the last chapter, that will help understand why it is an integer representing

the number of channels.

6.2 E(p) or E(k) relation

Related video lecture available at course website, Unit 2: L2.2.

The general principle for calculating D(E) is to start from the

Schrödinger equation treating the electron as a wave confined to the solid.

Confined waves (like a guitar string) have resonant “frequencies” and these

are basically the allowed energy levels. By counting the number of energy

levels in a range E to E + dE, we obtain the density of states D(E).

Although the principle is simple, a first principles implementation is

fairly complicated since one needs to start from a Schrödinger equation

including an appropriate potential that the electrons feel inside the solid

not only due to the nuclei but also due to the other electrons.

One of the seminal concepts in solid state physics is the realization that

in crystalline solids electrons behave as if they are in vacuum, but with

an effective mass different from their natural mass, so that the energy-

momentum relation can be written as

E(p) = Ec +
p2

2m
(6.12)

where Ec is a constant.

The momentum p is equated to ~k, providing the link between the

energy-momentum relation E(p) associated with the particle viewpoint and

the dispersion relation E(k) associated with the wave viewpoint. Here we

will write everything in terms of p, but they are easily translated using the

relation p = ~k.

Eq.(6.12) is generally referred to as a parabolic dispersion relation and

is commonly used in a wide variety of materials from metals like copper to

https://www.youtube.com/watch?v=4CZ3xhrWAis
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E

p
Ec

Parabolic
Dispersion

semiconductors like silicon, because it often approximates the actual E(p)

relation fairly well in the energy range of interest. But it is by no means the

only possibility. Graphene, a material of great current interest, is described

by a linear relation:

E = Ec + v0p (6.13)

where v0 is a constant. Note that p denotes the magnitude of the momen-

tum and we will assume that the E(p) relation is isotropic, which means

that it is the same regardless of which direction the momentum vector

points.

E

p
Ec

Linear
Dispersion

For any given isotropic E(p) relation, the velocity points in the same

direction as the momentum, while its magnitude is given by

v ≡ dE

dp
(6.14)
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This is a general relation applicable to arbitrary energy-momentum rela-

tions for classical particles. On the other hand, in wave mechanics it is jus-

tified as the group velocity for a given dispersion relation E(k). Note that

Eq.(6.14) yields an energy-independent mass m = p/v, only for a parabolic

E(p) relation (Eq.(6.12)) and not for the linear relation in Eq.(6.13).

6.3 Counting states

Related video lecture available at course website, Unit 2: L2.3.

One great advantage of this principle is that it reduces the complicated

problem of electron waves in a solid to that of waves in vacuum, where the

allowed energy levels can be determined the same way we find the resonant

frequencies of a guitar string: simply by requiring that an integer number

of wavelengths fit into the solid. Noting that the de Broglie principle relates

the electron wavelength to the Planck’s constant divided by its momentum,

h/p, we can write

L

h/p
= Integer ⇒ p = Integer ×

(
h

L

)
(6.15)

where L is the length of the box. This means that the allowed states are

uniformly distributed in p with each state occupying a “space” of

4 p =
h

L
(6.16)

Let us define a function N(p) that tells us the total number of states

that have a momentum less than a given value p. In one dimension this

function is written down by dividing the total range of 2p (from −p to +p)

by the spacing h/L:

N(p) =
2p

h/L
= 2L

( p
h

)
→ 1D

In two dimensions we divide the area of a circle of radius p by the spacing

h/L× h/W , L and W being the dimensions of the two dimensional box.

N(p) =
πp2

(h/L)(h/W )
= πWL

( p
h

)2

→ 2D

In three dimensions we divide the volume of a sphere of radius p by the

spacing h/L × h/W1 × h/W2, L, W1 and W2 being the dimensions of the

three dimensional box. Writing A = W1 ×W2 we have

https://www.youtube.com/watch?v=f1SkvU7jtMo
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- p + p

2p

h/L

1D

(a)

p
2D

(b)

N(p) =
(4π/3)p3

(h/L)(h2/A)
=

4π

3
AL

( p
h

)3

→ 3D

We can combine all three results into a single expression for d = {1, 2, 3}
dimensions:

N(p) =

{
2
L

h/p
, π

LW

(h/p)2
,

4π

3

LA

(h/p)3

}
(6.17)

6.3.1 Density of states, D(E)

Related video lecture available at course website, Unit 2: L2.4.

We could use a given E(p) relation to turn this function N(p) into a

function of energy N(E) that tells us the total number of states with energy

less than E, which must equal the density of states D(E) integrated up to

an energy E, so that D(E) can be obtained from the derivative of N(E):

N(E) =

∫ E

−∞
dE′D(E′)→ D(E) =

dN

dE

Making use of Eqs.(6.17) and (4.8),

D(E) =
dN

dp

dp

dE
→ D(E)v(E) =

dN

dp
= d · N

p

leading to the relation stated earlier

D(E)v(E)p(E) = N(E) · d (same as Eq.(6.9))

Note that this identity is independent of the actual E(p) relation.

https://www.youtube.com/watch?v=m_GZrksspmc
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6.4 Number of modes

Related video lecture available at course website, Unit 2: L2.5.

I noted in Chapter 4 that the ballistic conductance is given by

GB =
q2

h︸︷︷︸
38µS

M︸︷︷︸
integer

same as Eq.(4.12)

and that experimentally M is found to be an integer in low dimensional

conductors at low temperatures. Based on this observation we defined

M = floor

(
hDv

2L

{
1,

2

π
,

1

2

})
same as Eq.(4.13)

but there was no justification for choosing integer values for M instead

of letting it be a continuous variable as the simple semiclassical theory

suggested. Using the E(p) relations discussed in this chapter we will now

show that we can interpret M(p) in a very different way that helps justify

its integer nature. First we make use of Eq.(6.9) to rewrite Eq.(4.13) in the

form (dropping the floor function for the moment)

M =
hN

2Lp

{
1,

4

π
,

3

2

}
(6.18)

where N(p) is the total number of states with a momentum that is less

than p and we have seen that it is equal to the number of wavelengths that

fit into the solid. Making use of Eq.(6.17) for N(p), we obtain

M(p) =

{
1, 2

W

h/p
, π

A

(h/p)2

}
(6.19)

This result is independent of the actual E(p) relation, since we have not

made use of any specific relationship. We can now understand why we

should modify Eq.(6.19) to write

M(p) = floor

{
1, 2

W

h/p
, π

A

(h/p)2

}
(6.20)

https://www.youtube.com/watch?v=tIZMa719BzI
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where floor(x) represents the largest integer less than or equal to x. Just

as N(p) tells us the number of wavelengths that fit into the volume, M(p)

tells us the number that fit into the cross-section.

If we evaluate our expressions for N(p) and M(p) for a given sample we

will in general get a fractional number. However, since these quantities

represent the number of states, we would expect them to be integers and if

we obtain say 201.59, we should take the lower integer 201.

This point is commonly ignored in large conductors at high temperatures,

where experiments do not show this quantization because of the energy

averaging over µ0 ± 2kT associated with experimental measurements. For

example, if over this energy range, M(E) varies from say 201.59 to 311.67,

then it seems acceptable to ignore the fact that it really varies from 201 to

311.

But in small structures where one or more dimensions is small enough to

fit only a few wavelengths the integer nature of M is observable and shows

up in the quantization of the ballistic conductance. We should then use

Eq.(6.20) and not (6.19).

6.4.1 Degeneracy factor

One little “detail” that we need to take into account when comparing to

experiment is the degeneracy factor “g” denoting the number of equivalent

states given by the product of the number of spins and the number of valleys

(which we will discuss in Part B). All these g channels conduct in parallel

so that ballistic conductors have a resistance of

h

q2M
≈ 25 kΩ

M

1

g

So the resistance of a 1D ballistic conductor is approximately equal to 25 kΩ

divided by g. This has indeed been observed experimentally. Most metals

and semiconductors like GaAs have g = 2 due to the two spins, and the 1D

ballistic resistance ∼ 12.5 kΩ. But carbon nanotubes have two valleys as

well making g = 4 and exhibit a ballistic resistance ∼ 6.25 kΩ.

Another “detail” to note is that for two- and three-dimensional conduc-

tors, Eq.(6.17) is not quite right, because it is based on the heuristic idea
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of counting modes by counting the number of wavelengths that fit into the

solid (see Eq.(6.15)). Mathematically it can be justified only if we assume

periodic boundary conditions, that is if we assume that the cross-section

is in the form of a ring rather than a flat sheet for a 2D conductor. For

a 3D conductor it is hard to visualize what periodic boundary conditions

might look like though it is easy to impose it mathematically as we have

been doing.

Ring-shaped
conductor

(a)

Flat
Conductor

(b)

Most real conductors do not come in the form of rings, yet periodic

boundary conditions are widely used because it is mathematically conve-

nient and people believe that the actual boundary conditions do not really

matter. But this is true only if the cross-section is large. For small area

conductors the actual boundary conditions do matter and we cannot use

Eq.(6.15).

Interestingly a conductor of great current interest has actually been

studied in both forms: a ring-shaped form called a carbon nanotube and a

flat form called graphene. If the circumference or width is tens of nanome-

ters they have much the same properties, but if it is a few nanometers their

properties are observably different including their ballistic resistances.

6.5 Electron density, n

Related video lecture available at course website, Unit 2: L2.6.

As we mentioned in the introduction, a key quantity appearing in the

familiar Drude formula is the electron density, n. In this Section we would

like to establish that the total number of electrons can be identified with

the function N(E) discussed in Section 6.2. This is easy to see at low

temperatures where the energy averaging in Eq.(6.6) amounts to looking

at the value at a single energy E = µ0. Since N(E) represents the total

number of states available below E, and the total number of electrons at

https://www.youtube.com/watch?v=I5hvIGALb04
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low temperatures equals the number of states below µ0, it seems clear that

N(E) can be identified with the number of electrons. It then follows then

that the electron density can be written as

n(E) = N(E)

{
1

L
,

1

WL
,

1

AL

}
(6.21)

But does this work at non-zero temperatures? We will argue below that

the answer is yes.

6.5.1 n-type Conductors

Will we get the correct electron density if we energy average n(E) from

Eq.(6.21) following the prescription in Eq.(6.6)? It is straightforward to

check that the answer is yes, if we carry out the integral “by parts” to yield

∫ +∞

−∞
dE

(
−∂f0

∂E

)
N(E) = [−N(E) f0(E)]

+∞
−∞ +

∫ +∞

−∞
dE

(
dN

dE

)
f0(E)

= [0− 0] +

∫ +∞

−∞
dE D(E)f0(E)

= Total Number of Electrons

since dED(E)f0(E) tells us the number of electrons in the energy range

from E to E+dE. When integrated it gives us the total number of electrons.

6.5.2 p-type conductors

An interesting subtlety is involved when we consider a p-type conductor for

which the E(p) relation extends downwards, say something like

E(p) = Ev −
p2

2m
Instead of

N(E) =

∫ E

−∞
dE′ D(E′)

we now have (see Fig.6.2)

N(E) =

∫ +∞

E

dE′ D(E′)→ D(E) = −dN
dE
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µ0

f0(E)

€ 

D(E)

€ 

E − µ0
kT N(E)

Fig. 6.2 Equilibrium Fermi function f0(E), density of states D(E) and integrated den-
sity of states N(E): p-type conductor.

This is because we defined the function N(E) from N(p) which represents

the total number of states with momenta less than p, which means energies

greater than E for a p-type dispersion relation. Now if we carry out the

integration by parts as before

∫ +∞

−∞
dE

(
−∂f0

∂E

)
N(E) = [−N(E) f0(E)]

+∞
−∞ +

∫ +∞

−∞
dE

(
dN

dE

)
f0(E)

we run into a problem because the first term does not vanish at the lower

limit where both N(E) and f0(E) are both non-zero. We can get around

this problem by writing the derivative in terms of 1− f0 instead of f0:

∫ +∞

−∞
dE

(
∂(1− f0)

∂E

)
N(E)

= [−N(E) (1− f0(E))]
+∞
−∞ +

∫ +∞

−∞
dE

dN

dE
[1− f0(E)]

= [0− 0] +

∫ +∞

−∞
dE D(E) [1− f0(E)]

= Total Number of “holes”
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What this means is that with p-type conductors we can use the Drude

formula Eq.(6.1)

σ = q2nτ/m

but the n now represents the density of empty states or holes. A larger n

really means fewer electrons.

6.5.3 “Double-ended” density of states

How would we count n for a density of states D(E) that extends in both di-

rections as shown in Fig.6.3 (left panel). This is representative of graphene,

a material of great interest (recognized by the 2010 Nobel prize in physics),

whose E(p) relation is commonly approximated by

E = ±v0 p

People usually come up with clever ways to handle such “double-ended”

density of states so that the Drude formula can be used. For example they

divide the total density of states into an n-type and a p-type component

D(E) = Dn(E) +Dp(E)

as shown in Fig.6.3 and the two components are then handled separately,

using a prescription that is less than obvious: the conductivity due to the

upper half Dn depends on the number of occupied states (electrons), while

that due to the lower half depends on the number of unoccupied states

(holes). But the point we would like to stress is that there is really no

€ 

D(E)

€ 

Dn (E)

€ 

Dp (E)

= +

Fig. 6.3 A “double-ended” density of states can be visualized as a sum of an “n-type

component” and a “p-type component.”

particular reason to insist on using a Drude formula and keep inventing



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 75

Energy band model 75

clever ways to make it work. One might just as well use Eq.(6.5) which

reflects the correct physics of conduction, namely that it takes place in a

narrow band of energies around µ0.

6.6 Conductivity versus n

Related video lecture available at course website, Unit 2: L2.7.

From our new perspective, the conductivity can be written by combining

Eq.(4.5b) with Eq.(4.12)

σ(E) =
q2

h
Mλ

{
1,

1

W
,

1

A

}
(6.22)

while the Drude formula (Eq.(6.10)) with m = p/v would express it as

σ(E) = q2 vτ

p

N

L

{
1,

1

W
,

1

A

}
(6.23)

The two expressions can be shown to be equivalent making use of Eq.(6.18)

for the number of modes and Eq.(4.10) for the mean free path.

Experimental conductivity measurements are often performed as a func-

tion of the electron density and the common expectation based on the Drude

formula is that conductivity should be proportional to the electron density

and any non-linearity must be a consequence of the energy-dependence of

the mean free time. Is this generally true? Our expression in Eq.(6.22)

suggests that we view the conductivity as the product of the ballistic resis-

tance (or number of modes) and the mean free path. From Eqs.(6.19) and

(6.17) we have

M ∼ pd−1 while n ∼ pd

so that GB ∼M ∼ n(d−1)/d →
√
n for d = 2 (6.24)

Short ballistic samples of graphene indeed show this dependence discussed

above (see for example, Bolotin et al. (2008)). What about the conductivity

of long diffusive samples?

The conductivity is a product of GB and the mean free path, the latter

being a product of the velocity and the mean free time. Since graphene has

https://www.youtube.com/watch?v=KB462uMwNNo
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a linear energy-momentum relation (Eq.(6.13)), the velocity is a constant

independent of energy, and if the mean free time were constant too, the

conductivity too would be
√
n.

In practice, however, the mean free time for specific scattering mech-

anisms τ(E) ∼
√
n , so that the conductivity often ends up being pro-

portional to the electron density, n (see Torres et al. 2013 for a thorough

discussion). But the point to note is that the energy dependence of the

mass, m(E) and the mean free time τ(E) happen to cancel out acciden-

tally, to give σ ∼ n .

Before we move on I should again mention the little “detail” that I

mentioned at the end of Section 6.4. This is the degeneracy factor g which

denotes the number of equivalent states. For example all non-magnetic

materials have two spin states with identical energies, which would make

g = 2. Certain materials also have equivalent “valleys” having identical

energy momenta relations so that the N we calculate for one valley has to

be multiplied by g when relating to the experimentally measured electron

densities. For graphene, g = 2× 2 = 4.

All our discussion applies to a single spin and valley for which the con-

ductance and the electron density are each 1/g times the actual, so that

Eq.(6.24) gets modified to

GB
g
∼
(
n

g

)(d−1)/d

→ GB ∼ g1/d n(d−1)/d (6.25)
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Chapter 7

The nanotransistor

Related video lecture available at course website, Unit 2: L2.9.

Our “field-less” approach to conductivity comes as a surprise to many

since it is commonly believed that currents are driven by electric fields.

However, we hasten to add that the field can and does play an important

role once we go beyond low bias and our purpose in this chapter is to discuss

the role of the electrostatic potential and the corresponding electric field

on the current-voltage characteristics beyond low bias.

To illustrate these issues, I will use the nanotransistor, an important

device that is at the heart of microelectronics. As we noted at the outset the

nanotransistor is essentially a voltage-controlled resistor whose length has

shrunk over the years and is now down to a few hundred atoms. But as any

expert will tell you, it is not just the low bias resistance, but the entire shape

of the current-voltage characteristics of a nanotransistor that determines its

utility. And this shape is controlled largely by its electrostatics, making it

a perfect example for our purpose.

I should add, however, that this chapter does not do justice to the

nanotransistor as a device. This will be discussed in a separate volume

in this series written by Lundstrom, whose model is widely used in the

field and forms the basis of our discussion here. We will simply use the

nanotransistor to illustrate the role of electrostatics in determining current

flow.

We have seen that the elastic transport model leads to the current for-

mula

I =
1

q

∫ +∞

−∞
dE G(E) (f1(E)− f2(E)) (see Eq.(3.5))

In this chapter I will use the nanotransistor to illustrate a few issues that

77

https://www.youtube.com/watch?v=eMAYQfIaK1I
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need to be considered at high bias, some of which can be modeled with a

simple extension of Eq.(3.5)

I =
1

q

∫ +∞

−∞
dE G(E − U) (f1(E)− f2(E)) (7.1)

to include an appropriate choice of the potential U in the channel which is

treated as a single point. We call this the point channel model to distinguish

it from the standard and more elaborate extended channel model which we

will introduce at the end of the chapter.

7.1 Current-voltage relation

The nanotransistor is a three-terminal device (Fig.7.1), though ideally no

current should flow at the gate terminal whose role is just to control the

current. In other words, the current-drain voltage, I-VD, characteristics are

controlled by the gate voltage, VG (see Fig.7.2). The low bias current and

conductance can be understood based on the principles we have already

discussed. But currents at high VD involve important new principles.

The basic principle underlying an FET is straightforward (see Fig.7.3).

A positive gate voltage VG changes the potential in the channel, lowering

all the states down in energy, which can be included by setting U = −qVG
in Eq.(7.1).

ChannelSource DrainInsulator

VG VD

I

Fig. 7.1 Sketch of a field effect transistor (FET): channel length, L; transverse width,
W (perpendicular to page).

For an n-type conductor this increases the number of available states

in the energy window of interest around µ1 and µ2 as shown. Of course

for a p-type conductor (see Fig.6.2) the reverse would be true leading to a
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Increasing
VG

VDD

Isat

I

VD

Low bias
conductance
G = dI/dV

Fig. 7.2 Typical current-voltage, I-VD characteristic and its variation with VG for an
FET with an n-type channel of the type shown in Fig.7.1 built on an insulating substrate

so that the drain voltage VD can be made either positive or negative as shown. This

may not be possible in FETs built on semiconducting substrates and standard textbooks
normally do not show negative VD for n-MOSFETs.

complementary FET (see Fig.1.2) whose conductance variation is just the

opposite of what we are discussing. But we will focus here on n-type FETs.

We will not discuss the low bias conductance since these involve no new

principles. Instead we will focus on the current at high bias, specifically

on why the current-voltage, I- VD characteristic is (1) non-linear, and (2)

“rectifying”, that is different for positive and negative VD.

E

µ1

G (E)
µ2

E

µ1

G (E)
µ2

VG > 0VG = 0

Fig. 7.3 A positive gate voltage VG increases the current in an FET by moving the
states down in energy.
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7.2 Why the current saturates

Fig.7.2 shows that as the voltage VD is increased the current does not

continue to increase linearly. Instead it levels off tending to saturate. Why?

The reason seems easy enough. Once the electrochemical potential in the

drain has been lowered below the band edge the current does not increase

any more (Fig.7.4).

E

µ1

G (E)
µ2

Fig. 7.4 The current saturates once µ2 drops below the band-edge.

The saturation current can be written from Eq.(7.1)

Isat =
1

q

∫ +∞

−∞
dE G(E − U) f1(E) (7.2)

by dropping the second term f2(E) assuming µ2 is low enough that f2(E)

is zero for all energies where the conductance function is non-zero. In the

simplest approximation

U (1) = −q VG

The superscript 1 is included to denote that this expression is a little too

simple, representing a first step that we will try to improve.

If this were the full story the current would have saturated completely

as soon as µ2 dropped a few kT below the band edge. In practice the

current continues to increase with drain voltage as sketched in Fig.7.6.

The reason is that when we increase the drain voltage we do not just

lower µ2, but also lower the energy levels inside the channel (Fig.7.5) similar

to the way a gate voltage would. The result is that the current keeps

increasing as the conductance function G(E) slides down in energy by a
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E

µ1

G (E)
µ2

Fig. 7.5 The current does not saturate completely because the states in the channel are

also lowered by the drain voltage.

I

VD€ 

α = 0

€ 

0 < α < 1

Fig. 7.6 Current in an FET would saturate perfectly if the channel potential were

unaffected by the drain voltage.

fraction α (< 1) of the drain voltage VD, which we could include in our

model by choosing

U (2) → UL ≡ α(−q VD) + β(−q VG) (7.3)

Indeed the challenge of designing a good transistor is to make α as small as

possible so that the channel potential is hardly affected by the drain voltage.

If α were zero the current would saturate perfectly as shown in Fig.7.6 and

that is really the ideal: a device whose current is determined entirely by VG
and not at all by VD or in technical terms, a high transconductance but low

output conductance. For reasons we will not go into, this makes designing

circuits much easier.

To ensure that VG has far greater control over the channel than VD it

is necessary to make the insulator thickness a small fraction of the channel
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length. This means that for a channel length of a few hundred atoms we

need an insulator that is only a few atoms thick in order to ensure a small

α. This thickness has to be precisely controlled since thinner insulators

would lead to unacceptably large leakage currents. We mentioned earlier

that today’s laptops have a billion transistors. What is even more amazing

is that each has an insulator whose thickness is precisely controlled down

to a few atoms!

7.3 Role of charging

There is a second effect that leads to an increase in the saturation current

over what we get using Eq.(7.3) in Eq.(7.1). Under bias, the occupation of

the channel states is less than what it is at equilibrium. This is because

at equilibrium both contacts are trying to fill up the channel states, while

under bias only the source is trying to fill up the states while the drain is

trying to empty it. Since there are fewer electrons in the channel, it tends

to become positively charged and this will lower the states in the channel

as shown in Fig.7.5, even for perfect electrostatics (α = 0) resulting in an

increase in the current.

This effect can be captured within the point channel model (Eq.(7.1))

by writing the channel potential as

(A) U = UL + U0(N −N0) (7.4)

where UL is given by our previous expression in Eq.(7.3). The extra term

represents the change in the channel potential due to the change in the

number of electrons in the channel, N under non-equilibrium conditions

relative to the equilibrium number N0, U0 being the change in the channel

potential energy per electron. To use Eq.(7.4), we need expressions for N0

and N . N0 is the equilibrium number of channel electrons, which can be

calculated simply by filling up the density of states, D(E) according to the

equilibrium Fermi function f0(E).

(B1) N0 =

∫ +∞

−∞
dE D(E − U) f0(E) (7.5)

while the number of electrons, N in the channel under non-equilibrium

conditions is given by

(B2) N =

∫ +∞

−∞
dE D(E − U)

f1(E) + f2(E)

2
(7.6)

assuming that the channel is “equally” connected to both contacts. Note

that the calculation is now a little more intricate than what it would be if
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U0 were zero. We now have to obtain a solution for U and N that satisfy

both Eqs.(7.4) and Eq.(7.6) simultaneously through an iterative procedure

as shown schematically in Fig.7.7.

Once a self-consistent U has been obtained, the current is calculated

from Eq.(7.1), or an equivalent version that is sometimes more convenient

numerically and conceptually.

(C) I =
1

q

∫ +∞

−∞
dE G(E) (f1(E + U) − f2(E + U)) (7.7)

This simple point channel model often provides a good description of the

I-V characteristics as discussed in Rahman et al. (2003).

Guess U

Find N-N0
(B1,B2)

Find new U
(A)

Is new U almost same as the 
starting U ? 

Update guess 
for U

YES

NO

Use U to 
calculate I

(C)

Fig. 7.7 Self-consistent procedure for calculating the channel potential U in point chan-

nel model.

Fig.7.9 shows the current versus voltage characteristic calculated nu-

merically (MATLAB code at end of chapter) assuming a 2D channel with

a parabolic dispersion relation for which the density of states is given by

(L: length, W : width, ϑ : unit step function)

D(E) = g
mLW

2π~2
ϑ(E − Ec) (7.8)

The numerical results are obtained using g = 2, m = 0.2× 9.1× 10−31 Kg,

β = 1, α = 0 and U0 = 0 or U0 = ∞ as indicated, with L = 1 µm, W = 1

µm assuming ballistic transport, so that

G(E) =
q2

h
M(E)
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E

D(E)

µ0

Ec

Fig. 7.8 Density of states D(E) given in Eq.(7.8)

M(E) being the number of modes given by

M(E) = g
2W

h

√
2m(E − Ec)ϑ(E − Ec) (7.9)

The current-voltage characteristics in Fig.7.9 has two distinct parts,

the initial linear increase followed by a saturation of the current. Although

these results were obtained numerically, both the slope and the saturation

current can be calculated analytically, especially if we make the low tem-

perature approximation that the Fermi functions change abruptly from 1

to 0 as the energy E crosses the electrochemical potential µ. Indeed we

used a kT of 5 meV instead of the usual 25 meV, so that the numerical

results would compare better with simple low temperature estimates.

There are two key points we wanted to illustrate with this example. Firstly,

the initial slope of the current-voltage characteristics is unaffected by the

charging energy. This slope defines the low bias conductance that we have

been discussing till we came to this chapter. The fact that it remains unaf-

fected is reassuring and justifies our not bringing up the role of electrostatics

earlier.

Secondly, the saturation current is strongly affected by the electrostatics

and changes by a factor of ∼ 2.8 from a model with zero charging energy

to one with a very large charging energy. This is because of the reason

mentioned at the beginning of this section. With U0 = 0, the channel

states remain fixed and the number of electrons N is equal to N0/2, since

f1 = 1 and f2 = 0 in the energy range of interest. With very large U0, to
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U
0
= 0, α = 0

U
0
→∞, α = 0

I2

I1

Fig. 7.9 Current-voltage characteristics calculated numerically using the self-consistent

point channel model shown in Fig.7.7. MATLAB code included at end of chapter.

E

µ1

G (E)
µ2

avoid U0(N − N0) becoming excessive, N needs to be almost equal to N0

even though the states are only half-filled. This requires the states to move

down as sketched with a corresponding increase in the current.

7.3.1 Quantum capacitance

Related video lecture available at course website, Unit 2: L2.8.

We have generally focused on the shape of the current-voltage charac-

teristics obtained when a voltage is applied between the source and the

drain, which is a non-equilibrium problem. Let us take a brief detour to

talk about an equilibrium problem where charging can have a major ef-

fect. Suppose the source and drain are held at the same potential while the

https://www.youtube.com/watch?v=jSlVRmsiXuk
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gate voltage VG is changed. How much does the number of electrons (N)

change?

A positive gate voltage lowers the density of states D(E) resulting in

an increase in the number of electrons N . From Eq.(7.6)

N =

∫ +∞

−∞
dE D(E) f0(E + U) (7.10)

Assuming that the electrochemical potential is located outside the band as

shown, it is usually permissible to use the Boltzmann approximation to the

Fermi function

f0(E) ≈ e−(E−µ)/kT

so that N = e−U/kT ×
∫ +∞

−∞
dE D(E) f0(E)

VG

Insulator

U

D(E)

E

µ

To change the number of electrons by a factor of 10, we need a change in

the channel potential U by

kT ln (10) ≈ 60 meV

To change the channel potential U by 60 meV, we need a gate voltage of at

least 60 mV, leading to an oft-quoted result that one needs a gate voltage

of at least 60 mV for every decade of change in N .

This discussion, however, is relevant only when the number of electrons

is relatively small. Once the electrochemical potential gets close to the

band, it is important to include the charging effect.

A positive gate voltage tries to lower the density of states as shown by

the solid line, which increases the number of electrons, but that in turn

causes the states to float up as indicated by the dashed line.
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D(E)

E

D(E)

E

µ

VG > 0 VG = 0

To determine the resulting N in general, one has to include this charging

effect. We can divide the problem into two parts, (1) the change in N due

to a change in the channel potential U , and (2) the change in U due to a

change in the gate voltage VG:

C = q
dN

dVG
= q

dN

(dU/− q)
× dU

d(−qVG)
(7.11)

The first term is the quantum capacitance which can be related to the

density of states starting from Eq.(7.8) as before (but not invoking the

Boltzmann approximation)

CQ = q
dN

(dU/− q)

= q2

∫ +∞

−∞
dE D(E)

(
−∂f0

∂E

)
= q2D0 (7.12)

whereD0 represents the averaged value of the density of statesD(E) around

E + U = µ, that is, around E = µ− U .

To evaluate the second term we write from Eq.(7.4), using Eq.(7.12),

dU

d(VG)
=

dUL
d(VG)

+ U0
dN

d(VG)
=

dUL
d(VG)

− U0D0
dU

d(VG)

Hence
dU

d(−qVG)
=

1

1 + U0D0
× dUL

d(−qVG)
(7.13)

The second term represents the change in the potential UL due to a gate

voltage which ideally could approach one. But the actual change in the
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CE

CQU / −q

0

UL / −q

channel potential can be much smaller depending on the product of the

average density of states D0 and the single electron charging energy U0.

We can visualize the result in Eq.(7.13) in terms of the quantum capac-

itance defined in Eq.(7.12) and an electrostatic capacitance CE related to

the charging energy

U0 =
q2

CE

so that U0D0 =
CQ
CE

(7.14)

The electrostatic capacitance reflects the charging energy related to the

increase in the potential of the channel q/CE when a single electron is

added to it.

In this book we have been talking about the density of states D0 from

the outset, but we have talked very little about the charging effects U0.

This is because the low bias conductance of a homogeneous structure is

ordinarily not affected by it, but we would like to stress that charging is

generally an integral part of device analysis, both in equilibrium and out

of equilibrium.

7.4 “Rectifier” Based on Electrostatics

Let us now look at an example that can be handled using the point channel

model just discussed though it does not illustrate any issues affecting the

design of nanotransistors.

I have chosen this example to illustrate a fundamental point that is

often not appreciated, namely that an otherwise symmetric structure could

exhibit asymmetric current-voltage characteristics (which we are loosely

calling a “rectifier”). In other words, we could have

I(+VD) 6= I(−VD)
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for a symmetric structure, simply because of electrostatic asymmetry.

Consider a nanotransistor having perfect electrostatics represented by

α = 0 (Eq.(7.3)), connected (a) in the standard configuration (Fig.7.10a)

and (b) with the gate left floating (Fig.7.10b). The basic device is assumed

physically symmetric, so that one could not tell the difference between the

source and drain contacts. This is usually true of real transistors, but that

is not important, since we are only trying to make a conceptual point.

The configuration in (a) has electrostatic asymmetry, since the gate

is held at a fixed potential with respect to the source, but not with re-

spect to the drain. But configuration (b) is symmetric in this respect too,

since the gate floats to a potential halfway between the source and the

drain. Fig.7.11 shows the current-voltage characteristics calculated using

the model summarized in Fig.7.7 (MATLAB code at end of chapter), for

each of the structures shown in Fig.7.10(a) and (b). The parameters are

the same as those used for the example shown in Fig.7.9, except that the

equilibrium electrochemical potential is located exactly at the bottom of

the band as shown in Fig.7.10: µ0 = Ec.

E 

VD > 0

G (E)

VD > 0

VD < 0

VD < 0

ChannelSource DrainInsulator

VG VD

I

µ2µ1 E 

VD > 0

G (E)

VD > 0

VD < 0

VD < 0

µ2µ1
ChannelSource DrainInsulator

VD

I

(b) Floating gate FET(a) Standard FET

-
+ -

+
-
+

Fig. 7.10 (a) Standard FET assuming perfect electrostatics. (b) Floating gate FET.

The standard FET connection corresponds to α = 0 assuming perfect

electrostatics, while the same physical structure in the floating gate connec-

tion corresponds to α = 0.5. The former gives a rectifying characteristic,

while the latter gives a linear characteristic, often called “ohmic”. The point

is that it is not necessary to design an asymmetric channel to get asymmet-

ric I-V characteristics. Even the simplest symmetric channel can exhibit
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(b) Floating gate FET ,

α = 0.5

(a) S tandard FET ,

withα = 0

Fig. 7.11 Current-voltage characteristics obtained from the point channel model cor-

responding to the confgurations shown in Fig.7.10. MATLAB code included at end of
chapter.

non-symmetric I(VD) characteristic if the electrostatics is asymmetric.

Note also that the linear conductance given by the slope dI/dV around

V = 0 is unaffected by our choice of α and can be predicted without

any reference to the electrostatics, even though the overall shape obviously

cannot.

7.5 Extended Channel Model

The point channel elastic model that we have described (Eqs.(7.1) and

(7.4)) integrates our elastic resistor with a simple electrostatic model for

the channel potential U/q, allowing it to capture some of the high bias

physics that the pure elastic resistor misses. Let us now talk briefly about

some of the things we are still missing.

The point channel model ignores the electric field in the channel and

assumes that the density of states D(E) stays the same from source to

drain. In the real structure, however, the electric field lowers the states at

the drain end relative to the source as sketched here. Doesn’t this change

the current?

For an elastic resistor one could argue that the additional states with

the slanted (rather than horizontal) shading are not really available for con-

duction since (in an elastic resistor) every energy represents an independent

energy channel and can only conduct if it connects all the way from the

source to the drain.

But even for an elastic resistor there should be an increase in current
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because at a given energy E, the number of modes at the drain end is larger

than the number of modes at the source end. This is because the number

of modes at an energy E depends on how far this energy is from the bottom

of the band determined by U(z) (see Eq.7.9) which is lower at the drain

than at the source.

µ1

µ2

Non-zero electric field 

E

SOURCE DRAIN

D(z,E)

Zero-field

spatial profile
E

z

SOURCE DRAIN

µ1

µ2

Fig. 7.12 An electric field in the channel causes the density of states D(E) to increase

from the source to the drain.

M(E-U(z))

U(z)

E

M1(E) M2(E)
> M1(E)

Fig. 7.13 The number of channels M(E) is larger at the drain end than at the source

because of the lower U(z).

The structure almost looks as if it were “wider” at the drain than at

the source. For a ballistic conductor this makes no difference since the

conductance function cannot exceed the maximum set by the “narrowest”

point. But for a conductor that is many mean free paths long, the broad-

ening at the drain could increase the conductance relative to that of an

un-broadened channel.

In general

q2

h

M1λ

L+ λ
D0 = G(E) ≤ q2

h
M1 (7.15)

This effect is not very important for near ballistic elastic channels, since the
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minimum and maximum values of the conductance function in Eq.(7.15)

are then essentially equal. But it can lead to a significant increase in the

current for diffusive channels as the drain voltage VD is increased. A semi-

analytical expression describing this effect is given in Appendix C.

7.5.1 Diffusion equation

Let me end this chapter by talking briefly about how we could develop a

quantitative model that goes beyond point channels.The standard approach

is to take the continuity equation

d

dz
I = 0 (7.16)

and combine it with a “drift-diffusion” equation with a spatially varying

conductivity:

I

A
= −σ0(z)

q

dµ

dz
(7.17)

We are using σ0 rather than σ to stress that the conductivity which enters

the diffusion equation is an energy-averaged quantity obtained from σ(E)

and the appropriate averaging is discussed at the end of this subsection.

We will talk more about these equations in the next two chapters when we

discuss the Boltzmann equation. For the moment let me just indicate how

these equations can be obtained from what we have discussed so far.

Eq.(7.16) is easy to see. If we have a current of 25 electrons per second

entering a section of the conductor and only 10 electrons per second leaving

it, then the number of electrons will be building up in this section at the

rate of 25−10 = 15 per second. That is a transient condition, not a steady-

state one. Under steady-state conditions the current has to be the same at

all points along the z-axis as required by Eq.(7.16).

νz Δ t

10/sec25/sec
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µ2
µ1

f (z) f (z + Δz)
I(z)

To obtain Eq.(7.17) we view a long conductor as a series of elastic re-

sistors as discussed in Section 3.3. Using Eq.(3.5) we can write the current

I(z) in a section of the conductor as

I(z) =
1

q

∫ +∞

−∞
dE G(E) (f(z, E) − f(z + 4z, E))

From Eq.(4.5b) we could write

1

G(E)
= ρ

4z + λ

A

but the point to note is that part of this resistance represents the interface

resistance, which should not be included since there are no actual interfaces

except at the very ends. Omitting the interface resistance we can write

(Note: σ = 1/ρ)

G(E) =
σA

4z

Combining this with our usual linear expansion for small potential differ-

ences from Eq.(2.11)

(f(z, E) − f(z + 4z, E)) ≡
(
−∂f0

∂E

)
(µ(z, E) − µ(z + 4z, E))

and defining the conductivity as the thermal average of σ(E) (Eq.(6.6)),

we obtain

I(z) =
1

q

σ0A

4z
(µ(z) − µ(z + 4z))

Letting ∆→ 0, we obtain Eq.(7.17).

What do we use for the conductivity, σ0? Our old expression
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σ0 =

∫ +∞

−∞
dE σ(E)

(
− ∂f
∂E

)
E=µ0

(same as Eq.(6.6))

involved an energy average of over an energy window of a few kT around

E = µ0.

U(z)

µ(z)

µ-U

The spatially varying U(z) shifts the available energy states in energy, so

that one now has to look at the energy window around E = µ(z) − U(z)

suggesting that we replace Eq.(6.6) with

σ0 =

∫ +∞

−∞
dE σ(E)

(
− ∂f
∂E

)
E=µ(z)−U(z)

(7.18)

7.5.2 Charging: Self-consistent solution

Note that to use Eq.(7.18) we have to determine µ(z) − U(z) from a self-

consistent solution the Poisson equation (ε : Permittivity, n0, n: electron

density per unit volume at equilibrium and out of equilibrium)

(A′)
d

dz

(
ε
dU

dz

)
= q2 (n − n0) (7.19)

The electron density per unit length entering the Poisson equation is calcu-

lated by filling up the density of states (per unit length) shifted by the local

potential U(z), according to the local electrochemical potential, so that we
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Guess U(z)

Find n(z)-n0(z)
(B1’,B2’)

Find new U(z)
(A’)

Is new U almost same as the 
starting U ? 

Update guess 
for U

YES

NO

Use U to 
calculate I

(C’)

Fig. 7.14 Extended channel version of the point channel model in Fig.7.7.

can write

(B1′) n(z) ≡
∫ +∞

−∞
dE

D(E − U(z))

L

1

1 + exp

(
E − µ(z)

kT

) (7.20a)

(B2′) n0 =

∫ +∞

−∞
dE

D(E)

L

1

1 + exp

(
E − µ0

kT

) (7.20b)

Solving Eq.(7.20) self-consistently with the Poisson equation (Eq.(7.19)) is

indeed the standard approach to obtaining the correct µ(z), U(z), which

can then be used to find the current from Eq.(7.17). We could view this

procedure as the extended channel version of the point channel model in

Fig.7.7 as shown in Fig.7.14.

Note that this whole approach is based on the assumption of a local

electrochemical potential µ(z) appearing in Eq.(7.14). In general, electron

distributions can deviate so badly from Fermi functions that an electro-

chemical potential may not be adequate and one needs the full semiclassical

formalism based on the Boltzmann Transport Equation (BTE) which we

discuss in Chapter 9.

Much progress has been made in this direction but full-fledged BTE-

based simulation is time-consuming and the drift-diffusion equation based

on the concept of a local potential µ(z) continues to be the “bread and

butter” of device modeling. But the diffusion equation has been around a

long time. What are we adding to it? It is the extra interface resistance
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that changes

G(E) =
σA

L
to

σA

L + λ

In the next chapter we will show that this result follows from the diffusion

equation if the boundary conditions are modified appropriately and to jus-

tify this modified boundary condition requires a deeper discussion of the

meaning of the electrochemical potential on a nanometer scale.

7.6 MATLAB codes for Figs. 7.9 and 7.11

These codes are included here mainly for their pedagogical value.

Soft copies are available through our website

https://nanohub.org/groups/lnebook

% Saturation current

clear all

% Constants

hbar=1.06e-34;q=1.6e-19;

%Parameters

m=0.2*9.1e-31;g=2;ep=4*8.854e-12;

% mass, degeneracy factor, permittivity

kT=0.005;mu0=0.05;

% Thermal energy, equilibrium electrochemical potential

W=1e-6;L=1e-6;tox=2e-9;% dimensions

% Energy grid

dE=0.00001;E=[0:dE:2];NE=size(E,2);

D=(g*W*L*q*m/2/pi/hbar/hbar).*ones(1,NE);

% Density of states

M=(g*2*W/2/pi/hbar).*sqrt(2*m*q*E);% Number of modes

f0=1./(1+exp((E-mu0)./kT));

% Equilibrium Fermi function

N0=sum(dE*D.*f0);% Equilibrium electron number

U0=0*q*tox/ep/L/W;% Charging energy

alpha=0.05;% Drain induced barrier lowering
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% I-V characteristics

ii=1;dV=0.01;for V=1e-3:dV:0.5

UL=-alpha*V;ii

change=100;U=UL;

% Self-consistent loop

while change>1e-6

f1=1./(1+exp((E-mu0+U)./kT));

f2=1./(1+exp((E-mu0+U+V)./kT));

f=(f1+f2)./2;

N=sum(dE*D.*f);% Electron number

Unew=UL+U0*(N-N0);% Self-consistent potential

change=abs(U-Unew);

U=U+0.05*(Unew-U);

end

curr(ii)=(q*q*dE/2/pi/hbar)*sum(M.*(f1-f2));

volt(ii)=V;Uscf(ii)=U;ns(ii)=N/W/L;ii=ii+1;

end

current=q*g*(4/3)*W*sqrt(2*m*q*mu0)*q*mu0/

4/pi/pi/hbar/hbar;

max(curr)/current

h=plot(volt,curr,’r’);

%h=plot(volt,curr,’r+’);

%h=plot(volt,Uscf,’r’);

%h=plot(volt,ns,’r’);

set(h,’linewidth’,[3.0])

set(gca,’Fontsize’,[40])

xlabel(’ Voltage (V_{D}) ---> ’);

ylabel(’ Current (A) ---> ’);

% Electrostatic rectifier

clear all

% Constants

hbar=1.06e-34;q=1.6e-19;
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%Parameters

m=0.2*9.1e-31;g=2;ep=4*8.854e-12;

% mass, degeneracy factor, permittivity

kT=0.025;mu0=0*0.05;

% Thermal energy, equilibrium electrochemicalpotential

W=1e-6;L=1e-6;tox=2e-9;% dimensions

% Energy grid

dE=0.0001;E=[0:dE:2];NE=size(E,2);

D=(g*W*L*q*m/2/pi/hbar/hbar).*ones(1,NE);

% Density of states

M=(g*2*W/2/pi/hbar).*sqrt(2*m*q*E);% Number of modes

f0=1./(1+exp((E-mu0)./kT));

% Equilibrium Fermi function

N0=sum(dE*D.*f0);% Equilibrium electron number

U0=0*q*tox/ep/L/W;% Charging energy

alpha=0;% Drain induced barrier lowering

% I-V characteristics

ii=1;dV=0.01;for V=-0.1:dV:0.1

UL=-alpha*V;ii

change=100;U=UL;

% Self-consistent loop

while change>1e-6

f1=1./(1+exp((E-mu0+U)./kT));

f2=1./(1+exp((E-mu0+U+V)./kT));

f=(f1+f2)./2;

N=sum(dE*D.*f);% Electron number

Unew=UL+U0*(N-N0);% Self-consistent potential

change=abs(U-Unew);

U=U+0.05*(Unew-U);

end

curr(ii)=(g*q*q*dE/2/pi/hbar)*sum(M.*(f1-f2));

volt(ii)=V;Uscf(ii)=U;ns(ii)=N/W/L;ii=ii+1;

end



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 99

The nanotransistor 99

h=plot(volt,curr,’r’);

%h=plot(volt,Uscf,’r’);

%h=plot(volt,ns,’r’);

set(h,’linewidth’,[3.0])

set(gca,’Fontsize’,[40])

xlabel(’ Voltage (V_{D}) ---> ’);

ylabel(’ Current (A) ---> ’);
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Chapter 8

Diffusion equation for ballistic
transport

8.1 Introduction

Related video lecture available at course website, Unit 3: L3.2.

The title of this chapter may sound contradictory, like the elastic re-

sistor. Doesn’t the diffusion equation describe diffusive transport? How

can one use it for ballistic transport? An important idea we are trying to

get across with our bottom-up approach is the essential unity of these two

regimes of transport and hopefully this chapter will help.

In Chapter 7 we introduced the continuity equation

dI

dz
= 0 (same as Eq.(7.16)) (8.1)

and the diffusion equation

I

A
= −σ0

q

dµ

dz
(same as Eq.(7.17)) (8.2)

where σ0 is the energy-averaged conductivity (Eq.(6.6)). In Chapter 9 we

will see how this equation is formally obtained from the Boltzmann equa-

tion. For the moment let us talk about what we do with these equations.

The standard approach is to solve Eqs.(8.1), (8.2) with the boundary

conditions

µ(z = 0) = µ1 (8.3a)

µ(z = L) = µ2 (8.3b)

103

https://www.youtube.com/watch?v=FaNgjIPpeHo
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z = 0 z = L

µ2

µ1

Source Drain
Channel

Electron
Current

Conventional
Current

I

Fig. 8.1 Solution to Eqs.(8.1), (8.2) with the boundary conditions in Eq.(8.3). Note
that we are using I to represent the electron current as explained earlier (see Fig.3.3).

It is easy to see that the linear solution sketched in Fig.8.1 meets

the boundary conditions in Eq.(8.3) and at the same time satisfies both

Eqs.(8.1, 8.2) since a linear µ(z) has a constant slope given by

dµ

dz
= − µ1 − µ2

L

so that from Eq.(8.2) we have a constant current with dI/dz = 0:

I =
σ0A

q

µ1 − µ2

L

Note that µ1 − µ2 = qV (Eq.(2.1)), so that

I =
σ0A

L
V (8.4)

which is the standard expression and not the generalized one we have been

discussing

I =
σ0A

L+ λ
V (8.5)
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that includes ballistic channels as well. Can we obtain this result (Eq.(8.5))

from the diffusion equation (Eq.(8.2))?

Many would say that a whole new approach is needed since quantities

like the conductivity or the diffusion coefficient mean nothing for a ballistic

channel. The central result I wish to establish in this chapter is that we can

still use Eq.(8.2) provided we modify the boundary conditions in Eq.(8.3)

to reflect the interface resistance that we have been talking about:

µ(z = 0) = µ1 −
qIRB

2
(8.6a)

µ(z = L) = µ2 +
qIRB

2
(8.6b)

RB being the inverse of the ballistic conductance GB discussed earlier (see

Eqs.(4.6), (4.12)):

RB =
λ

σ0A
=

h

q2M
(8.7)

The new boundary conditions in Eqs.(8.6) can be visualized in terms of

lumped resistors RB/2 at the interfaces as shown in Fig.8.2 leading to

additional potential drops as shown.

It is straightforward to see that this new boundary condition applied

to a uniform resistor leads to the new Ohm’s law in Eq.(8.5). Since µ(z)

varies linearly from z = 0 to z = L, the current is obtained from Eq.(8.2)

I =
σ0A

q

µ(0)− µ(L)

L

Using Eqs.(8.6)

I =
σ0A

q

(
µ1 − µ2

L
− qIRB

L

)
Since, σ0ARB = λ (Eq.8.7),

I

(
1 +

λ

L

)
=
σ0A

q

(
µ1 − µ2

L

)
Noting that µ1 − µ2 = qV (Eq.(2.1)) this yields Eq.(8.5).
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z = 0 z = L

µ2

µ1

Source Drain
Channel

RB/2 RB/2

Fig. 8.2 Eqs.(8.1), (8.2) can be used to model both ballistic and diffusive transport

provided we modify the boundary conditions in Eq.(8.3) to Eq.(8.6) reflect the two
interface resistances, each equal to RB/2.

But how do we justify this new boundary condition (Eqs.(8.6))? It fol-

lows from the new Ohms law (Eq.(8.5)) if we assume that the extra resis-

tance corresponding to L = 0 is equally divided between the two interfaces.

For a better justification, we need to introduce two different electrochemical

potentials µ+ and µ− for electrons moving along +z and −z respectively. In

previous chapters we talked about electrochemical potentials inside the con-

tacts which are large regions that always remain close to equilibrium and

hence are described by Fermi functions (see Eqs.(2.7)) with well-defined

electrochemical potentials.

By contrast in this chapter we are using µ(z) to represent quantities

inside the out-of-equilibrium channel, where it is at best an approximate

concept since the electron distribution among the available states need not

follow a Fermi function. Even if it does, electronic states carrying current

along +z must be occupied differently from those carrying current along

−z, or else there would be no net current. This difference in occupation

is reflected in different electrochemical potentials µ+ and µ− and we will

show that the current is proportional to the difference (See Eq.(8.23) in

Section 8.3)

I =
q

h
M(µ+(z)− µ−(z)) (8.8)
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which can also be rewritten in the form

I =
1

qRB
(µ+(z)− µ−(z)) (8.9)

=
σ0A

qλ
(µ+(z)− µ−(z)) (8.10)

using Eq.(4.4b). The correct boundary conditions for µ+ and µ− are

µ+(z = 0) = µ1 (8.11)

µ−(z = L) = µ2 (8.12)

which can be understood by noting that at z = 0 the electrons moving

along +z have just emerged from the left contact and hence have the same

distribution and electrochemical potential, µ1. Similarly at z = L the elec-

trons moving along −z have just emerged from the right contact and thus

have the same potential µ2 (Fig.8.3).

µ
2
= µ−

(z = L)

µ
1
= µ+

(z = 0)

µ+

µ-

µ

z = 0 z = L
Source Drain

Channel

Fig. 8.3 Spatial profile of electrochemical potentials µ+, µ− across a diffusive channel.

In chapter 9, I will show that the current is related to the potentials µ+

and µ− by an equation

I = −σ0A

q

(
dµ+

dz

)
= −σ0A

q

(
dµ−

dz

)
(8.13)
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that looks just like the diffusion equation (Eq.(8.2)) which applies to the

average potential:

µ(z) =
µ+(z) + µ−(z)

2
(8.14)

Eq.(8.13) can be solved with the boundary conditions in Eqs.(8.6) to

obtain the plot shown in Fig.8.3 for µ+, µ− and their average indeed looks

like Fig.8.2 for µ with its discontinuities at the ends. However, it is not

necessary to abandon the traditional diffusion equation (Eq.(8.2)) in favor

of the new diffusion equation (Eq.(8.13)). We can obtain the same results

simply by modifying the boundary conditions for µ(z) as follows:

µ(z = 0) =

(
µ+ + µ−

2

)
(z=0)

=

(
µ+ − µ+ − µ−

2

)
(z=0)

= µ1−
(
qIRB

2

)

making use of Eqs.(8.6). Similarly

µ(z = L) =

(
µ− +

µ+ − µ−

2

)
(z=L)

= µ2 +

(
qIRB

2

)

These are exactly the new boundary conditions for the standard diffusion

equation that we mentioned earlier (Eqs.(8.6)).

A disclaimer

The simple description provided above is an approximate one designed to

convey a qualitative physical picture. The out-of-equilibrium occupation

of different states is in general quite complicated and cannot necessarily be

captured with just two potentials µ+ and µ−, even for an elastic resistor

at low bias. Indeed the rest of this chapter is intended to give the reader

a feeling for the underlying concepts and issues. In the next chapter we

introduce the Boltzmann equation which is the gold standard for semiclas-

sical transport against which all approximate pictures have to be measured.

In subsequent chapters (Chapters 10, 11, 12) we will discuss different as-

pects related to the difficult but very important concept of electrochemical

potentials or quasi-Fermi levels under non-equilibrium conditions.
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8.2 Electrochemical Potentials Out of Equilibrium

Related video lecture available at course website, Unit 3: L3.3.

As I mentioned earlier, it is conceptually straightforward to talk about

electrochemical potentials inside the contacts which are large regions that

always remain close to equilibrium and hence are described by Fermi func-

tions (see Eq.(2.7)) with well-defined electrochemical potentials. But in an

out-of-equilibrium channel, the electron distribution among the available

states need not follow a Fermi function. In general one has to solve a full-

fledged transport equation like the semiclassical Boltzmann equation to be

introduced in the next chapter which allows us to calculate the full occupa-

tion factors f(z;E). More generally for quantum transport one can use the

non-equilibrium Green’s function (NEGF) formalism discussed in Part B

to solve for the quantum version of f(z;E). Can we really represent these

distribution functions using electrochemical potentials µ+(z) and µ−(z)?

Interestingly for a perfectly ballistic channel with good contacts, such

a representation in terms of µ+(z) and µ−(z) is exact and not just an

approximation. All drainbound electrons (traveling along +z, see Fig.8.4)

are distributed according to the source contact with µ+ = µ1:

f+(z;E) = f1(E) ≡ 1

1 + exp

(
E − µ1

kT

) (8.15)

while all sourcebound electrons (traveling along −z) are distributed accord-

ing to the drain contact with µ− = µ2:

f−(z;E) = f2(E) ≡ 1

1 + exp

(
E − µ2

kT

) (8.16)

This is justified by noting that the drainbound channels from the source

are filled only with electrons originating in the source and so these channels

remain in equilibrium with the source with a distribution function f1(E).

Similarly the sourcebound channels from the drain are in equilibrium with

the drain with a distribution function f2(E).

Suppose at some energy f1(E) = 1 and f2(E) = 0 so that there are lots

of electrons waiting to get out of the source, but none in the drain. We

https://www.youtube.com/watch?v=ep5evr0c57A
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would then expect the drainbound lanes of the electronic highway to be

completely full (“bumper-to-bumper traffic”), while the sourcebound lanes

would all be empty as shown below in Fig.8.4.

0

f+

L

f1= 1

f2=0f-

z = 0 z = L
Source Drain

Channel

Fig. 8.4 Spatial profile of the occupation factors f+, f− across a ballistic channel.

Of course this assumes that electrons do not turn around either along the

way or at the ends. This means ballistic channels with good contacts where

there are so many channels available that electrons can exit smoothly with

a very low probability of turning around. If we either have bad contacts or

diffusive channels, the solution in Eqs.(8.15), (8.16) wouldn’t work.

For diffusive channels with good contacts, Eqs.(8.15), (8.16) suggest

a plausible guess for what we might expect the distributions to look like

in a diffusive channel. We assume the same Fermi-like function but with

spatially varying electrochemical potentials reflecting the fact that electrons

from the drainbound channels continually transfer over to the sourcebound

lanes:

f+(z;E) =
1

1 + exp

(
E − µ+(z)

kT

) (8.17a)

f−(z;E) =
1

1 + exp

(
E − µ−(z)

kT

) (8.17b)

If we accept these forms for the occupation factors, then it is straightforward

to translate a plot of occupation factors f (like the one in Fig.8.4) into a

corresponding plot for the electrochemical potentials by noting that at low

bias, the deviation of f from a reference value f0 is proportional to the

deviation of the corresponding µ from the corresponding reference value of



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 111

Diffusion equation for ballistic transport 111

µ0 :

f(E) − f0(E) ≈
(
−∂f0

∂E

)
(µ− µ0) (same as Eq.(2.12))

For example, this relation can be used to translate Fig.8.4 into Fig.8.5.

0

µ+

L

µ1

µ2
µ-

z = 0 z = L
Source Drain

Channel

Fig. 8.5 Spatial profile of the electrochemical potentials µ+, µ− across a ballistic chan-

nel, obtained from Fig.8.4 by translating fs into µs using Eq.(2.12).

Note that Eq.2.12 is a “guess” that in general requires careful scrutiny

and justification, if we are interested in quantitative results. For example,

in an elastic resistor, every energy is independent and in general each one

could exhibit a different spatial variation in the potential if the mean free

path is energy-dependent. This means we should write the potentials as

µ±(z;E). We will talk further about similar issues in the next chapter when

we discuss the Boltzmann equation.

8.3 Current from QFL’s

Related video lecture available at course website, Unit 3: L3.4.

Let me finish up this chapter by establishing a key result that stated

earlier without proof in Eq.8.8. Usually we talk about the net current I

which can be expressed as the difference between the drainbound flux I+

and the sourcebound flux I− :

I(z) = I+(z) − I−(z) (8.18)

https://www.youtube.com/watch?v=Ym0FbZRTErs
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The current I+ equals the amount of charge exiting from the right per unit

time. In a time ∆t, all the charge in a length vz∆t exits, so that

I+ = q × (Electrons per unit length)× vz

νz Δ t

I+

The number of electrons per unit length is equal to half the density of

states (since only half the states carry current to the right) per unit length,

D(E)/2L, times the fraction f+ of occupied states, so that

I+(z;E) = q
D(E)

2L
u(E)︸ ︷︷ ︸

M(E)/h

f+(z;E)

Here u is the average νz as defined in Eq.(4.8) and making use of the

definition of the number of channels M from Eq.(4.13) we have

I+(z;E) = q
M(E)

h
f+(z;E) (8.19)

Similarly

I−(z;E) = q
M(E)

h
f−(z;E) (8.20)

This allows us to write the current from Eq.(8.8)

I(z) =

∫ +∞

−∞
dE(I+(z;E) − I−(z;E))

=
q

h

∫ +∞

−∞
dE(f+(z;E) − f−(z;E))M(E) (8.21)
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Once again, to get from distribution functions f± to electrochemical po-

tentials µ±, we make use of the low bias result (Eq.(2.12) to write

f+(z;E) − f−(z, E) =

(
−∂f0

∂E

)
(µ+(z) − µ−(z)) (8.22)

and obtain Eq.(8.8)

I(z) =
q

h
(µ+(z) − µ−(z))

∫ +∞

−∞
dE

(
−∂f0

∂E

)
M(E)︸ ︷︷ ︸

≡M

(8.23)

provided we identify M with the thermally averaged M(E) as indicated in

Eq.(8.23).
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Chapter 9

Boltzmann equation

Related video lecture available at course website, Unit 3: L3.8.

9.1 Introduction

Interestingly so far in this book we have hardly ever mentioned the electric

field, in contrast to most treatments of electronic transport which start by

considering the electric field induced force as the driving term. It may seem

paradoxical that we could obtain the conductivity without ever mentioning

the electric field! Electric fields are typically visualized as the gradient

of an electrostatic potential U/q. By contrast, we have been using the

electrochemical potential µ as the basis for our discussions. It is important

to recognize the difference between the two “potentials”:

µ︸︷︷︸
Electrochemical

= (µ − U)︸ ︷︷ ︸
Chemical

+ U︸︷︷︸
Electrostatic

(9.1)

µ is a measure of the energy up to which the states are filled, while U deter-

mines the energy shift of the available states, so that µ−U is a measure of

the degree to which the states are filled and hence the number of electrons.

In the last chapter we obtained the equation

I

A
= −σ0

d(µ/q)

dz
(9.2)

But what we really showed was that

115

https://www.youtube.com/watch?v=3Cg37roiK4w
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D(z,E)

U(z)

µ(z)

µ - U

Fig. 9.1 The two potentials: Electrostatic U/q and electrochemical µ/q. D(z;E) de-
notes the spatially varying density of states.

I

A
= −σ0

d(µ− U)/q

dz
(9.3)

assuming zero electric field, dU/dz = 0. So how do we know what the

correct equation is, when we include U?

It would seem that we needed to solve a whole new problem including the

effect of the field (= d(U/q)/dz) on electrons. However, this is unnecessary

because the basic principles of equilibrium statistical mechanics require the

current to be zero for a constant µ, just as there can be no heat current if

the temperature is constant. Hence the current expression must have the

form given in Eq.(9.2) which can be written as the sum of a drift term and

a diffusion term

I

A
= −σ0

d(µ− U)/q

dz︸ ︷︷ ︸
Diffusion

−σ0
d(U/q)

dz︸ ︷︷ ︸
Drift

(9.4)

both of which must be described by the same coefficient σ, a requirement

that leads to the Einstein relation between drift and diffusion. And that is

why we can find σ considering only the diffusion of electrons with U = 0,

obtain Eq.(9.3) and just replace it with Eq.(9.2) which correctly accounts

for “everything”. There is really no need to work out the drift problem

separately. What we called the diffusion equation is really the drift-diffusion

equation even though we did not consider drift explicitly.

Couldn’t we instead have neglected diffusion completely and just gone

with the drift term? That way we could stick to the view that current
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is driven by electric fields and not have to bother with electrochemical

potentials. The problem is that if we take this view then one has to invoke

mysterious quantum mechanical forces to explain why all electrons are not

affected by the field. In our discussion the energy window for transport

(FT , see Fig.2.3) arises naturally from the difference in the “agenda” of the

two contacts (see Eq.(2.11))

f1(E) − f2(E) =

(
−∂f0

∂E

)
(µ1 − µ2)

as discussed in Chapters 2 and 3.

The point is that regardless of which potential we choose to work with, it

finally affects transport through the occupation factor, f . In this chapter we

will justify our neglect of drift more explicitly by introducing the Boltzmann

Transport Equation (BTE) which is the standard starting point for all

discussions of the transport of particles. We too could have used it as the

starting point for but we did not do so because it is harder to digest with

its multiple independent variables, compared to the ordinary differential

equation in Chapter 8, which follows from relatively elementary arguments.

Even in this chapter we will not really do justice to the BTE. We will

introduce it briefly and use it to show that for low bias, the current indeed

depends only on dµ/dz and not on dU/dz, thus putting our discussion of

steady-state, low bias transport without electric fields on a firmer footing

and identifying possible issues with it.

Note the two qualifying phrases, namely “steady-state” and “low bias”.

We will show later in this chapter that for time varying transport, the ne-

glect of electric fields can lead to errors, but we will not discuss it further

in this book. However, even under steady-state conditions, electric fields

can play an important role in determining the full current-voltage charac-

teristics, once we go beyond low bias, as we saw in Chapter 7.

9.2 BTE from “Newton’s laws”

In Chapter 8 we introduced electron distribution functions f± and electro-

chemical potentials µ± describing the drainbound and sourcebound currents

I±. Both the drainbound and sourcebound current, however, is composed

of electrons traveling at different angles having different z-momemtum pz,

even though they all have the same energy (we are still talking about an

elastic resistor) and hence the same total momentum. To include the effect

of the electric field we need “momentum-resolved” distribution functions.
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Source DrainChannel

I+

I-
z

The BTE describes the evolution of such “momentum-resolved” distri-

bution functions f(z, pz, t) that tell us the occupation of states with a given

momentum pz and velocity vz at a location z at time t :

∂f

∂t
+ vz

∂f

∂z
+ Fz

∂f

∂pz
= Sopf (9.5)

where Fz is the force on the electrons, and Sopf symbolically represents the

complex scattering processes that continually redistribute electrons among

the available velocity states. The BTE with the right hand side set to zero

(that is without scattering processes)

∂f

∂t
+ vz

∂f

∂z
+ Fz

∂f

∂pz
= 0 (9.6)

is completely equivalent to describing a set of particles each with position

z(t) and momenta that evolve according to the semiclassical laws of motion:

vz ≡
dz

dt
=

∂E

∂pz
(9.7a)

Fz ≡
∂pz
dt

= −∂E
∂z

(9.7b)

where E(z, pz, t) is the total energy. Eqs.(9.7) describe semiclassical dy-

namics in single particle terms where the position z(t) and momenta pz(t)

for each of the electrons is a dependent variable evolving in time. By con-

trast, the BTE provides a collective description with all three independent

variables z, pz and t on an equal footing. To get from Eqs.(9.7) to (9.6) we

start by noting that in the absence of scattering, we can write

f(z, pz, t) = f(z − vz∆t, pz − Fz∆t, t−∆t)
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reflecting the fact that any electron with a momentum pz at z at time t,

must have had a momentum of pz −Fz∆t, at a little earlier at time t−∆t

.

Next we expand the right hand side to the first term in a Taylor series

to write

f(z, pz, t) = f(z, pz, t)−
∂f

∂z
vz∆t −

∂f

∂pz
Fz∆t−

∂f

∂t
∆t

Eq.(9.6) follows readily on canceling out the common terms. The left hand

side of the BTE thus represents an alternative way of expressing the laws

of motion. What makes it different from mere mechanics, however, is the

stochastic scattering term on the right which makes the distribution func-

tion f approach the equilibrium Fermi function when external driving terms

are absent. This last point of course is not meant to be obvious. It requires

an extended discussion of the scattering operator Sop that we talk a little

more about in Chapter 15 when we discuss the second law. For our purpose

it suffices to note that a common approximation for the scattering term is

the relaxation time approximation (RTA)

Sopf ∼= − f − f
τ

(9.8)

which assumes that the effect of the scattering processes is proportional to

the degree to which a given distribution f differs from the local equilibrium

distribution.

One comment about why we call this approach semiclassical. The BTE

is classical in the sense that it is based on a particle view of electrons. But

it is not fully classical, since it typically includes quantum input both in the

scattering operator Sop and in the form of the energy-momentum relation.

For example, graphene is often described by a linear energy-momentum

relation

E = ν0p

a result that is usually justified in terms of the bandstructure of the

graphene lattice requiring quantum mechanics that came after Boltzmann’s

time. This is also why we put Newton’s laws within quotes in the section

title. But once we accept this extension, many transport properties of

graphene can be understood in classical particulate terms using the BTE

that Boltzmann taught us to use.
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9.3 Diffusion equation from BTE

We start by combining the RTA (Eq.(9.8)) with the full BTE (Eq.(9.5)) to

obtain for steady-state (∂/∂t = 0),

vz
∂f

∂z
+ Fz

∂f

∂pz
= − f − f

τ
(9.9)

In the presence of an electric field we can write the total energy as

E(z, pz) = ε(pz) + U(z) (9.10)

where ε(pz) denotes the energy-momentum relation with U = 0 and this

gets shifted locally by U(z) as sketched in Fig.9.2.

µ0

pz pz

z=z1 z=z2

U(z1)

E = ε(pz )+U(z)

U(z2)

Fig. 9.2 The energy momentum relation with U = 0 is shifted locally by U(z). At
equilibrium the electrochemical potential µ0 is spatially constant.

The first point to note is that the equilibrium distribution with a con-

stant electrochemical potential µ0

f0(z, pz) =
1

exp

(
E(z, pz)− µ0

kT

)
+ 1

(9.11)

satisfies the BTE in Eq.(9.6). The right hand side of Eq.(9.9) is zero simply

because f = f0, but it takes a little differential calculus to see that the left

hand side is zero too. Defining

X0 ≡ E(z, pz) − µ0 = ε(pz) + U(z)− µ0 (9.12)
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we have

vz
∂f0

∂z
+ Fz

∂f

∂pz
=

(
∂f0

∂X0

) (
vz
∂X0

∂z
+ Fz

∂X0

∂pz

)

=

(
∂f0

∂X0

) (
vz
∂E

∂z
+ Fz

∂E

∂pz

)
= 0

making use of Eqs.(9.7).

µ(z)

pz pz

z=z1 z=z2

U(z1)

E = ε(pz )+U(z)

U(z2)

Fig. 9.3 Same as Fig.9.2, but the electrochemical potential µ(z) varies spatially reflect-

ing a non-equilibrium state.

Out of equilibrium, we assume two separate distribution functions

f±(z, pz) as in Eqs.(8.17a,b) for the right-moving (vz > 0) and the left-

moving (vz < 0) electrons with separate spatially varying electrochemical

potentials µ±(z):

f±(z, pz) =
1

exp

(
E(z, pz)− µ±(z)

kT

)
+ 1

(9.13)

whose average is denoted by µ = (µ+ + µ−)/2. Using Eq.(9.13), the left

hand side of BTE (see Eq.(9.9)) reduces to

(
∂f

∂X

) (
vz
∂X

∂z
+ Fz

∂X

∂pz

)
=

(
∂f

∂X

) (
−vz

∂µ±

∂z

)
(9.14)

where

X± ≡ E(z, pz)− µ±(z)
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We now assume small deviations in µ(z) from the local equilibrium value

so that we can write the left hand side as

(
∂f

∂X

)
X=X

(
−vz

∂µ±

∂z

)
and use our standard Taylor series expansion (see Eq.(2.12)) to write the

right hand side of BTE as

− f± − f
τ

≈
(
∂f

∂X

)
X=X

µ±(z)− µ
τ

Combining the two sides

vz
∂µ±

∂z
= −µ

±(z)− µ
τ

(9.15)

This gives us two seperate equations for the two electrochemical poten-

tials µ+ and µ− for the right-moving (vz > 0) and left-moving (vz < 0)

electrons

∂µ+

∂z
= −µ

+ − µ
vzτ

,
∂µ−

∂z
= −µ

− − µ
vzτ

Since µ = (µ+ + µ−)/2, we obtain

∂µ+

∂z
= −µ

+ − µ−

λ
=

∂µ−

∂z
(9.16)

with λ = 2vzτ . Combining with Eq.(8.10) for the current, we obtain the

result (Eq.(8.13)) stated without proof in Chapter 8. Note that we have

included electric fields explicitly and shown that their effect cancels out.

9.3.1 Equilibrium Fields can Matter

We believe, however, that there is an important subtlety worth pointing

out. Although the externally applied electric field does not affect the low

bias conductance, any inbuilt fields that exist within the conductor under

equilibrium conditions can affect its low bias conductance. Let me explain.
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Note that in our treatment above we assumed that under non-equilibrium

conditions, the electrochemical potential is a function of z (Eq.(9.13)) and

the resulting linearized equation (Eq.(9.16)) does not involve the field Fz =

dU/dz. However, the field term would not have dropped out so nicely if we

were to assume that the electrochemical potential is not just a function of

z, but of both z and pz. Instead of Eq.(9.15) we would then obtain

vz
∂µ

∂z
+ Fz

∂µ

∂pz
= −µ(z, pz)− µ0

τ
(9.17)

However, the additional term involving the field Fz does not play a role

in determining linear conductivity because it is ∼ V 2, V being the applied

voltage. At equilibrium with V = 0, µ = µ0, so that both derivatives

appearing on the left are zero. Under bias, in principle, both are non-zero.

But the point is that while vz is a constant, the applied field Fz is also ∼ V .

So while the first term on the left is ∼ V , the second term is ∼ V 2.

But this argument would not hold if Fz were not the applied field, but

internal inbuilt fields independent of V that are present even at equilib-

rium. Equilibrium requires a constant µ and NOT a constant U . The equi-

librium condition depicted in Fig.9.2 is quite common in real conductors,

with varying U(z) corresponding to non-zero fields Fz. Indeed this picture

could also represent an interface between dissimilar materials (called “het-

erostructures”) where the discontinuity in band edges is often modeled with

effective fields.

The point is that such equilibrium fields can affect the low bias conduc-

tance. For an ideal homogeneous conductor we do not have such fields. But

even then we need to make two contacts in order to measure the resistance.

Each such contact represents a heterostructure qualitatively similar to that

shown in Fig.9.2 with inbuilt effective (if not real) fields. In Chapter 11 we

will discuss the Hall effect where we have to keep the Fz term in Eq.(9.17)

in order to account for the presence of an external magnetic field.

9.4 The two potentials

In this book we will generally focus on steady-state transport involving the

injection of electrons from a source and their collection by a drain (Fig.9.4).

We have seen that the low bias conductance can be understood in terms of

the electrochemical potential µ, without worrying about the electrostatic

potential U . However, we would like to briefly consider ac transport through
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a nanowire far from any contacts where we have a local voltage V (z, t) and

current I(z, t) (Fig.9.5), because this provides a contrasting example where

it is important to pay attention to the difference between the two potentials

even for low bias, in order to obtain the correct inductance and capacitance.

Source Drain

VI

z

Fig. 9.4 So far we have talked of steady-state transport involving the injection of elec-

trons by a source and their collection by a drain contact.

~

IV

z

Fig. 9.5 AC or time varying transport along a nanowire can be described in terms of a

voltage V (z, t) and a current I(z, t).

For this problem too we start from the BTE with the RTA approxima-

tion as in the last section, but we do not set ∂/∂t = 0. Instead we start

from

∂f

∂t
+ vz

∂f

∂z
+ Fz

∂f

∂pz
= −f − f0

τ

and linearize it assuming a distribution of the form (compare Eq.(9.13))
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f(z, pz, t) =
1

exp

(
E(z, pz, t)− µ(z, t)

kT

)
+ 1

(9.18)

Compared to the steady-state problem (Eq.(9.15)) we now have two extra

terms involving the time derivatives of E and µ:

∂µ

∂t
+ vz

∂µ

∂z
− ∂E

∂t
= −µ(z, t)− µ0

τ
(9.19)

As we did in the last Section with Eq.(9.15), we can separate Eq.(9.19) into

two equations for µ+ and µ−, whose sum and difference are identified with

voltage and current to obtain a set of equations

∂(µ/q)

∂z
= −(LK + LM )

∂I

∂t
− I

σA
(9.20a)

∂(µ/q)

∂t
= −

(
1

CQ
+

1

CE

)
∂I

∂z
(9.20b)

that look just like the transmission line equations with a distributed series

inductance and resistance and a shunt capacitance.

The algebra getting from Eq.(9.19) to Eqs.(9.20) is a little long-winded and

since time-varying transport is only incidental to our main message we have

relegated the details to Appendix E. Those who are really interested can

look at the original paper on which this discussion is based (Salahuddin et

al., 2005). But note the two inductors and the two capacitors in series. The

kinetic inductance LK and the quantum capacitance CQ per unit length,

arise from transport-related effects

LK =
h

q2

1

〈2Mvz〉
(9.21a)

CQ =
q2

h

〈
2M

vz

〉
(9.21b)

while the LM and the CE are just the normal magnetic inductance and the

electrostatic capacitance from the equations of magnetostatics and electro-

statics. The point I wish to make is that the fields enter the expression for



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 126

126 Lessons from Nanoelectronics: A. Basic Concepts

the energy E(z, pz, t) and if we ignore the fields we would miss the ∂E/∂t

term in Eq.(9.19) to obtain

∂µ

∂t
+ vz

∂µ

∂z
= −µ(z, t)− µ0

τ
(9.22)

and after working through the algebra obtain instead of Eqs.(9.20)

∂(µ/q)

∂z
= −LK

∂I

∂t
− I

σA
(9.23a)

∂(µ/q)

∂t
= − 1

CQ

∂I

∂z
(9.23b)

Do these equations approximately capture the physics? Not unless we are

considering wires with very small cross-sections so that M is a small number

making LK � LM and CQ � CE . We could recover the correct answer

from Eqs.(9.23) by replacing the µ with µ − U and then using the laws of

electromagnetics to replace ∂U
∂t with 1

CE

∂I
∂z and ∂U

∂z with LM
∂I
∂t .

But these replacements may not be obvious and it is more straightfor-

ward to go from Eq.(9.19) to (9.20) as spelt out in Appendix E. Note that

if we specialize to steady-state (∂/∂t = 0), both Eqs.(9.19) and (9.22) give

us back our old diffusion equation (Eq.(8.2)). As we argued earlier, for

low bias steady-state transport, the applied electric field can be treated as

incidental.
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Chapter 10

Quasi-Fermi levels

10.1 Introduction

Electrochemical potentials have played an important role in our discussion,

starting from Chapter 2 where I stressed that electron flow is driven by the

difference in the electrochemical potentials µ1 and µ2 in the two contacts.

However, talking about electrochemical potentials inside the channel, as we

did later in Chapter 8 when discussing the diffusion equation, often raises

eyebrows. This is because an electrochemical potential of µ implies that

the occupation of all available states are described by the corresponding

Fermi function (Eq.(2.2))

f(E) =
1

1 + exp

(
E − µ
kT

)
This is approximately true of large contacts which always remain close

to equilibrium, but not necessarily true of small conductors even for small

applied voltages. As we saw in Chapter 8, it was important to introduce two

separate electrochemical potentials µ+ and µ− in order to understand the

interface resistance that is the key feature of the new Ohm’s law (Eq.(4.5b)).

Non-equilibrium electrochemical potentials of this type can be very use-

ful in understanding current flow and is widely used by device engineers. It

is common to use two different potentials (often called quasi-Fermi levels)

for conduction and valence bands and in Chapter 12 we will talk about other

examples of quasi-Fermi levels and argue that controlling such potentials

with creatively designed “smart” contacts could lead to unique devices.

In spite of the obvious utility of the concept, many experts are uneasy

about invoking non-equilibrium electrochemical potentials inside nanoscale

127
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devices which they view as ill-defined concepts that cannot be measured.

Instead they feel conceptually on solid ground by sticking to terminal de-

scriptions in terms of the electrochemical potentials at the contacts. In

this chapter, I would like to address some of these issues related to non-

equilibrium potentials and their measurability using a simple example which

will also allow us to connect our discussion to the Landauer formulas and

the Büttiker formula that form the centerpiece of the transmission formal-

ism widely used in mesoscopic physics.

T
1-T

T
1-T

Left Right

µ1

µ2

µ+

µ-

Fig. 10.1 Potential variation across a defect.

Source

µ1

Drain

µ2

Probe 1

µ1
*

Probe 2

µ2
*

T

V

Voltmeter, draws
negligible current

I

Fig. 10.2 Four-terminal measurement of conductance of an otherwise ballistic one-

dimensional conductor having a single “defect” in the middle, through which electrons
have a probability T of transmitting.

So far we have talked about normal resistors with uniformly distributed
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scatterers characterized by a mean free path. Instead, following Landauer,

let us consider an otherwise ballistic channel with a single localized defect

that lets a fraction T of all the incident electrons proceed along the orig-

inal direction, while the rest 1 − T get turned around (see Fig.10.1). We

could follow our arguments from Chapter 8 to obtain the spatial variation

of the potentials µ+ and µ− across the scatterer, and use it to deduce

the resistance of the scatterer. But experts are often uneasy about non-

equilibrium potentials and one way to bypass these questions is to consider

a four-terminal measurement (Fig.10.2) using two additional voltage probes

that draw negligible current, to measure the voltage drop across the defect.

We will show that if the voltage probes are identical and weakly coupled

(non-invasive) then this four-terminal conductance G4t is given by

G4t =
I

(µ∗1 − µ∗2)/q
= M

q2

h

T

1− T
(10.1)

M being the number of channels or modes in the conductor introduced at

the end of Chapter 4. But if we were to determine the conductance using the

actual voltage applied to the current-carrying terminals we would obtain a

lower conductance:

G2t =
I

(µ1 − µ2)/q
= M

q2

h
T (10.2)

Source Drain

T

1/G4t

1/G2t

Fig. 10.3 The two-terminal resistance can be viewed as the four-terminal resistance in

series with the interface resistance.

The difference between the two-terminal (Eq.(10.2)) and four-terminal

(Eq.(10.1)) resistances reflects the same interface resistance

1

G2t
− 1

G4t
=

h

q2M
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that differentiates the new Ohm’s law (Eq.(4.5b)) from the standard one

(Eq.(1.1)).

Although the interface resistance was recognized for metallic resistors

in the late 1960s and is known as the Sharvin resistance, its ubiquitous

role is not widely appreciated even today. In the early 1980s there was

considerable confusion and discussion about the difference between the two

conductance formulas in Eqs.(10.1) and (10.2) and Imry is credited with

identifying the difference as a quantized Sharvin resistance related to the

interfaces. With the rise of mesoscopic physics, Eq.(10.2) has come to be

widely used and known as the Landauer formula while Landauer’s origi-

nal formula (Eq.(10.1)) is relatively forgotten, and not many recognize the

difference.

The reader may wonder why the four-terminal Landauer formula came

to be “forgotten”. After all resistance measurements are commonly made in

the four terminal configuration in order to exclude any contact resistance.

Don’t such measurements require Eq.(10.1) for their interpretation? Sort

of, but not exactly. Let me explain.

One problem in the early days of mesoscopic physics was that the volt-

age probes were strongly coupled to the main conductor and behaved like

“additional defects” whose effect could not simply be ignored. In order to

interpret real experiments using four-terminal configurations, Büttiker (see

Büttiker 1988) found an elegant solution by writing the current Im at ter-

minal m of a multi-terminal conductor in terms of the terminal potentials

µn:

Im =
1

q

∑
m

Gmn (µm − µn) (10.3)

where Gm,n is the conductance determined by the transmission Tm,n be-

tween terminals m and n. With just two terminals, Büttiker’s formula

reduces to

I1 = (1/q) G12 (µ1 − µ2) = −I2
which is the same as the two-terminal Landauer formula (Eq.(10.2)) if we

identify G12 as (q2/h)M . But the power of Eq.(10.3) lies in its ability to

provide a quantitative basis for the analysis of multi-terminal structures

like the one in Fig.10.2.

Knowing Gmn, if we knew all the potentials µm, we could use Eq.(10.3)

to calculate the currents Im at all the terminals. Of course for the voltage
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probes 1∗ and 2∗ we do not know the voltages they will float to and so we

do not know µ∗1 or µ∗2, to start with. But we do know the currents I∗1 and

I∗2 , each of which must be zero, since the high impedance voltmeter draws

negligible current.

The point is that if we know either µm or Im at each terminal m we

can solve Eq.(10.3) to obtain whatever we do not know. In this chap-

ter we will look at a specific problem, namely the voltage drop across a

defect (Fig.10.1) and show that with weakly coupled non-invasive probes

the Büttiker formula indeed gives the same answers as we get by looking

directly at the electrochemical potentials µ+ and µ− inside the conduc-

tor. This is reassuring because the approach due to Büttiker deals directly

with measurable terminal quantities and so appears conceptually on more

comfortable ground.

The development of scanning probe microscopy (SPM) has made it pos-

sible to use nanoscale tunneling contacts as voltage probes whose effect

is indeed negligible. Measurements using such “non-invasive” probes do

provide experimental support for the four-terminal Landauer formula, but

there is a subtlety involved.

I +

µprobe
I -

µ + µ -

g -g +

Fig. 10.4 Simple circuit model for a voltage probe.

What a voltage probe measures is some weighted average of the two

potentials µ+ and µ−. The exact weighting depends on the construction

of the probes. We could model it by associating conductances g+ and g−

with the transmission of electrons from the + and the − streams into the

probes respectively. Setting the net probe current to zero we can write
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g+ (µ+ − µprobe) + g− (µ− − µprobe) = 0

so that

µprobe =
g+

g+ + g−︸ ︷︷ ︸
α

µ+ +
g−

g+ + g−︸ ︷︷ ︸
1−α

µ− (10.4)

For atomic scale probes that are much smaller than an electron wave-

length we expect the two conductances to be similar so that the weighting

factor ∼ 50%, so that the probe measures the average potential

µprobe = (µ+ + µ−)/2

For larger probes, however, it is possible for a voltage probe to have a pro-

nounced bias for one stream or the other leading to a weighting factor differ-

ent from 50%. If this weighting happens to be different for the two probes

1∗ and 2∗, it could change the measured resistance from that predicted by

Eq.(10.1). Indeed, experimental measurements have even shown negative

resistance, something that cannot be understood in terms of Eq.(10.1).

However, some of this is due to quantum interference effects that make

the simple semiclassical description in terms of µ± inadequate as we will

see in Part B. However, one could use a more sophisticated quantum ver-

sion of Eq.(10.4) or use the Büttiker formula, with the conductances Gm,n
calculated from an appropriate quantum transport model.

The bottom line is that if we know the correct internal state of the

conductor in terms of a set of non-equilibrium electrochemical potentials,

we can predict what a specific non-invasive voltage probe will measure and

the result should match what the Büttiker formula predicts. The reverse,

however, is not true. Knowing what a specific probe will measure, we

cannot deduce the internal state of the conductor.

With that rather long “introduction” let us now look at the two Lan-

dauer formulas (Eqs.(10.1) and (10.2)) and the Büttiker formula (Eq.(10.3))

in a little more detail.

10.2 The Landauer formulas (Eqs.(10.1) and (10.2))

Related video lecture available at course website, Unit 3: L3.5.

https://www.youtube.com/watch?v=RKs4nPGUYr4
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I+(Left) I+(Right)

T

I-(Left) I-(Right)

Getting back to the problem of finding the potential variation across a

defect in an otherwise ballistic conductor (Fig.10.1), we start by relating

the outgoing currents to the incoming currents as follows

I+(Right) = TI+(Left) + (1− T )I−(Right)

I−(Left) = (1− T )I+(Left) + TI−(Right)

We can then convert the currents to occupation factors (see Eqs.(8.19) and

(8.20))

f+(Right) = Tf+(Left) + (1− T )f−(Right)

f−(Left) = (1− T )f+(Left) + Tf−(Right)

and then to potentials using the Taylor series (Eq.(2.11)) argument as be-

fore

µ+(Right) = Tµ+(Left) + (1− T )µ−(Right)

= Tµ1 + (1− T )µ2 (10.5)

µ−(Left) = (1− T )µ+(Left) + Tµ−(Right)

= (1− T )µ1 + T µ2 (10.6)

The algebra can be simplified by choosing the potential for one of the con-

tacts as zero and the other as one. The actual potential differences can

then be obtained by multiplying by the actual µ1 − µ2 = qV .
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µ=1

µ=0

T
1- T

µ+

µ-

Fig. 10.5 Spatial profile of µ+ and µ− across a scatterer normalized to an overall po-

tential difference of one. The actual potential differences can be obtained by multiplying

by the actual µ1 − µ2 = qV .

Eqs.(10.5) and (10.6) then give us the picture shown in Fig.10.5 leading to

µ+ − µ− = T (µ1 − µ2)

as long as both µ+ and µ− are evaluated at the same location on the left

or on the right of the scatterer.

Using

I =
q

h
M(µ+ − µ−) (see Eq.(8.8))

for the current we obtain the standard Landauer formula (Eq.(10.2)). To

obtain the first Landauer formula we find the drop in either µ+ or µ− across

the scatterer:

µ+(Left) − µ+(Right) = (1− T )(µ+ − µ−) (10.7a)

µ−(Left) − µ−(Right) = (1− T )(µ+ − µ−) (10.7b)

and then divide the current by it to obtain the result stated in Eq.(10.1):

G4t =
q2

h
M

T

1− T
Note, however, that we are looking at the electrochemical potentials inside

the conductor. How does this relate to the voltage measured by non-invasive

voltage probes implemented using scanning tunneling probes (STP)?

Assuming that the probe measures the average of µ+ and µ− we obtain

the plot shown in Fig.10.6 using the results from Fig.10.5. What if the probe

measures a weighted average of µ+ and µ− with some α (see Eq.(10.4))

other than 50%? As long as α is the same for both probes, the drop across

the scatterer would still be given by

µprobe(Left) − µprobe(Right) = (1− T )(µ1 − µ2) (10.8)
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thus leading to the same Landauer formula (Eq.(10.1)). But if the weight-

ing factor were different for the two probes then the result would not match

Eq.(10.1). As an extreme example if α were zero on the left and one on the

right,

µprobe(Left) − µprobe(Right) = (1− 2T )(µ1 − µ2)

leading to a negative resistance for T > 0.5.

Source Drain
Vprobe

STP

µ=
1

µ=0
T/2

1- (T/2)

RB/2 Rscatterer RB/2

Fig. 10.6 A scanning tunneling probe (STP) measures the average electrochemical po-

tential (µ+ + µ−)/2.

Clearly the concept of non-equilibrium potentials µ+ and µ− should

be used wisely with caution. But it does lead to intuitive understandable

results. The potential drops across the defect but not across the ballistic re-

gions, suggesting that the defect represents a resistance given by Eq.(10.1).

Note, however, that we are still talking about elastic resistors. We have an

IR drop in the voltage, but no corresponding I2R in Joule dissipation. All

dissipation is still in the contacts.

10.3 Büttiker Formula (Eq.(10.3))

Related video lecture available at course website, Unit 3: L3.6.

Eq.(10.3) deals directly with the experimentally measured terminal

quantities bypassing any questions regarding the internal variables. The

https://www.youtube.com/watch?v=-1nvhxRtRUY
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point we wish to stress is the general applicability of this result irrespective

of whether the resistor is elastic or not. Indeed, as we will see we can obtain

it invoking very little beyond linear circuit theory. We start by defining a

multi-terminal conductance

Gm,n ≡ −
∂Im

∂(µn/q)
, m 6= n (10.9a)

Gm,m ≡ +
∂Im

∂(µm/q)
(10.9b)

Why do we have a negative sign for m 6= n, but not for m = n? The

motivation can be appreciated by looking at a representative multi-terminal

structure (Fig.10.7). An increase in µ1 leads to an incoming or positive

current at terminal 1, but leads to outgoing or negative currents at the other

terminals. The signs in Eqs.(10.9) are included to make the coefficients

come out positive as we intuitively expect a conductance to be.

Source

µ1

Drain

µ2=0T

V

I1

I1*
I2

I2*
µ1*=0 µ2*=0

Fig. 10.7 Thought experiment based on the four-terminal measurement set-up in

Fig.10.2.

In terms of these conductance coefficients, we can write the current as

Im = Gm,m
µm
q
−
∑
n 6=m

Gm,n
µn
q

(10.10)

The conductance coefficients must obey two important “sum rules” in or-

der to meet two important conditions. Firstly, the currents predicted by
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Eq.(10.10) must all be zero if all the µs are equal, since there should be no

external currents at equilibrium. This requires that

Gm,m =
∑
n 6=m

Gm,n (10.11)

Secondly, for any choice of µs, the currents Im must add up to zero. This

requires that

Gm,m =
∑
n 6=m

Gn,m (10.12)

but it takes a little algebra to see this from Eq.(10.10). First we sum over

all m ∑
m

Im = 0 =
∑
m

Gm,m
µm
q
−
∑
m

∑
n 6=m

Gm,n
µn
q

and interchange the indices n and m for the second term to write

0 =
∑
m

Gm,m
µm
q
−
∑
m

∑
n6=m

Gn,m
µm
q

which can be true for all choices of µm only if Eq.(10.12) is satisfied. We

can combine Eqs.((10.11) and (10.12)) to obtain the “sum rule” succinctly:

Gm,m =
∑
n6=m

Gm,n =
∑
n 6=m

Gn,m (10.13)

Making use of the sum rule (Eq.(10.13)) we can re-write the first term in

Eq.(10.10) to obtain Eq.(10.3):

Im =

(
1

q

)∑
n

Gm,n(µm − µn) (same as Eq.(10.3))

Note that it is not necessary to restrict the summation to n 6= m, since

the term with n = m is zero anyway. An alternate form that is sometimes

useful is to write

Im =
∑
n

gm,n
µn
q

(10.14)

where the response coefficients defined as

gm,n ≡ −Gm,n , m 6= n (10.15)

gm,m ≡ Gm,m (10.16)

The sum rule in Eq.(10.13) can be rewritten in term of this new response

coefficient: ∑
n

gm,n =
∑
n

gn,m = 0 (10.17)



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 138

138 Lessons from Nanoelectronics: A. Basic Concepts

10.3.1 Application

In Section 10.2 we analyzed the potential profile across a single scatterer

with transmission probability T . Based on this discussion we would expect

that two non-invasive probes inserted before and after the scatterer should

float to potentials 1 − (T/2) and T/2 as indicated in Fig.10.6. But will

Büttiker’s approach get us the same result?

µ1 µ2

1 2T

2*
T/21- (T/2)

1*

Fig. 10.8 Based on Fig.10.6, we expect that two non-invasive probes inserted before

and after a scatterer with transmission probability T to float to potentials 1− (T/2) and
T/2 respectively.

We start from Eq.(10.14) noting that we have four currents and four

potentials, labeled 1, 2, 1∗ and 2∗:


I1
I2
I∗1
I∗2

 =
Mq

h

[
A B

C D

]
µ1

µ2

µ∗1
µ∗2

 (10.18)

where A, B, C and D are each (2×2) matrices.

{
I∗1
I∗2

}
=

{
0

0

}
Since we have

{
µ∗1
µ∗2

}
= −D−1C

{
µ1

µ2

}
(10.19)

Now we can write C and D in the augmented form
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[
C D

]
=

[
−t1 −t2 r 0

−t′2 −t′1 0 r′

]
(10.20)

where the elements t1, t2, t′1 and t′2 of the matrix [C D] can be visualized

as the probability that an electron transmit from 1 to 1∗, 2 to 1∗, 2 to 2∗

and 1 to 2∗ respectively as sketched in Fig.10.9. We have assumed that

both probes 1∗ and 2∗ are weakly coupled so that any direct transmission

between them can be ignored.

The sum rule in Eq.(10.13) then requires that

r = t1 + t2 (10.21a)

r′ = t′2 + t′1 (10.21b)

1

1* 2*
t1

t2' t2

t1'

2T

Fig. 10.9 The elements t1, t2, t′1 and t′2 of the matrix [C] can be visualized as the
probability that an electron transmit from 1 to 1∗, 2 to 1∗, 2 to 2∗ and 1 to 2∗ respectively.

This yields

µ∗1 =
t1

t1 + t2
µ1 +

t2
t1 + t2

µ2 (10.22a)

µ∗2 =
t′2

t′1 + t′2
µ1 +

t′1
t′1 + t′2

µ2 (10.22b)

So far we have kept things general, making no assumptions other than

that of weakly coupled probes. Now we note that for our problem (Fig.10.9),

t1 can be written as

t1 = τ + (1− T )τ (10.23)

since an electron from 1 has a probability of τ to get into probe 1∗ directly

plus a probability of 1 − T times τ to get reflected from the scatterer and

then get into probe 1∗. Similarly t2 can be written as

t2 = Tτ (10.24)
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since an electron from 2 has to cross the scatterer (probability T ) and then

enter the weakly coupled probe 1∗ (probability τ) . Similarly we can argue

t1 = t′1 , t2 = t′2. Using these results in Eqs.(10.22) and setting µ1 = 1,

µ2 = 0, we then obtain,

µ∗1 = 1− (T/2) (10.25a)

µ∗2 = T/2 (10.25b)

in agreement with what we expected from the last section (Fig.10.6). As

mentioned earlier, this is reassuring since the Büttiker formula deals only

with terminal quantities, bypassing the subtleties of non-equilibrium elec-

trochemical potentials.

However, the real strength of Eq.(10.3) lies in its model-independent

generality. It should be valid in the linear response regime for all con-

ductors, simple and complex, large and small. The conductances Gmn in

Eq.(10.3) can be calculated from a microscopic transport model like the

Boltzmann equation introduced in Chapter 9 or the quantum transport

model discussed in Part B. Sometimes they can even be guessed and as

long as we are careful about not violating the sum rules we should get

reasonable results.

10.3.2 Is Eq.(10.3) obvious?

Some might argue that Eq.(10.3) is not really telling us much. After all,

we can always view any structure as a network of effective resistors like the

one shown in Fig.10.10 for three terminals? Wouldn’t the standard circuit

equations applied to this network give us Eq.(10.3)?

The answer is “yes” if we consider only normal circuits for which elec-

trons transmit just as easily from m to n as from n to m so that

Gm←n = Gn←m

where we have added the arrows in the subscripts to denote the standard

convention for the direction of electron transfer. Eq.(10.3), however, goes

far beyond such normal circuits and was intended to handle conductors in

the presence of magnetic fields for which

Gm←n 6= Gn←m

For such conductors, Eq.(10.3) is not so easy to justify. Indeed if we were

to reverse the subscripts m and n in Eq.(10.3) to write

Im =

(
1

q

)∑
n

Gnm (µm − µn) −→WRONG!
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µ1

µ2 µ3

Fig. 10.10 The Büttiker formula (Eq.(10.3)) can be visualized as a network of resistors,

only if the conductances are reciprocal, that is, if Gmn = Gnm.

it would not even be correct. Its predictions would be different from those

of Eq.(10.3) for multi-terminal non-reciprocal circuits (Fig.10.11).

1

2

1

2

3

Fig. 10.11 A magnetic field makes an electron coming in from contact 2 veer towards

contact 1, but makes an electron coming from contact 1 veer away from contact 2. Is

G1,2 6= G2,1? Yes, if there are more than two terminals, but not in a two-terminal
circuit.

10.3.3 Non-Reciprocal Circuits

This may be a good place to raise an interesting property of conductors

with non-reciprocal transmission of the type expected from edge states.

Consider the structure shown in Fig.10.11 with a B-field that makes an

electron coming in from contact 2 veer towards contact 1, but makes an

electron coming from contact 1 veer away from contact 2. Is G1,2 6= G2,1?
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The answer is “no” in the linear response regime as evident from the

sum rule (Eq.(10.13)) which for a structure with two terminals requires

that

G1,1 = G1,2 = G2,1

However, there is no such requirement for a structure with more than two

terminals. For example with three terminals, Eq.(10.13) tells us that

G1,1 = G1,2 + G1,3 = G2,1 + G3,1

which does not require G1,2 to equal G2,1.

The effects of such non-reciprocal transmission have been observed

clearly with “edge states” in the quantum Hall regime (discussed at the

end of Chapter 11). This idea of “edge states” providing unidirectional

ballistic channels over macroscopic distances is a very remarkable effect,

but it has so far been restricted to low temperatures and high B-fields

making it not too relevant from an applied point of view. That may change

with the advent of new materials like “topological insulators” which show

edge states even without B-fields.

But can we have non-reciprocal transmission without magnetic fields?

In general the conductance matrix (which is proportional to the trans-

mission matrix) obeys the Onsager reciprocity relation (see Section 10.3.4

below)

Gn,m(+B) = Gm,n(−B) (10.26)

requiring the current at n due to a voltage at m to equal the current at

m due to a voltage at n with any magnetic field reversed. Doesn’t this

Onsager relation require the conductance to be reciprocal

Gn,m = Gm,n

when B = 0? The answer is yes if the structure does not include magnetic

materials. Otherwise we need to reverse not just the external magnetic field

but the internal magnetization too.

Gn,m(+B,+M) = Gm,n(−B,−M) (10.27)

For example if one contact is magnetic, Onsager relations would require

the G1,2 in structure (a) to equal G2,1 in structure (b) with the contact

magnetization reversed as sketched above. But that does not mean G1,2

equals G2,1 in the same structure, (a) or (b).

And so based on our current understanding a “topological insulator”

which is a non-magnetic material could not show non-reciprocal conduc-

tances at zero magnetic field with ordinary contacts, but might do so if

magnetic contacts were used. But this is an evolving story whose ending is

not yet clear.
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1

2

3

(b)

EQUALS

1

2

3

(a)

10.3.4 Onsager relations

Before moving on, let me quickly outline how we obtain the Onsager rela-

tions (Eq.(10.26)) requiring the current at ‘n’ due to a voltage at ‘m’ to be

equal to the current at ‘m’ due to a voltage at ‘n’ with any magnetic field

reversed. This is usually proved starting from the multi-terminal version of

the Kubo formula (Chapter 5)

Gm,n =
1

2kT

∫ +∞

−∞
dτ〈Im(t0 + τ)In(t0)〉eq (10.28)

involving the correlation between the currents at two different terminals.

Consider a three terminal structure with a magnetic field (B > 0) that

makes electrons entering contact 1 bend towards 2, those entering 2 bend

towards 3 and those entering 3 bend towards 1.

I1(t) I2(t)

I3(t)

We would expect the correlation

〈I2(t0 + τ)I1(t0)〉eq
to look something like this sketch with the correlation extending further for

positive τ . This is because electrons go from 1 to 2, and so the current I1
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at time t0 is strongly correlated to the current I2 at a later time (τ > 0),

but not to the current at an earlier time.

I2(t0 + ) I1(t0 ) eq, B > 0

If we reverse the magnetic field (B < 0), it is argued that the trajectories

of electrons are reversed, so that

〈I1(t0 + τ)I2(t0)〉eq, B<0 = 〈I2(t0 + τ)I1(t0)〉eq, B>0 (10.29)

This is the key argument. If we accept this, the Onsager relation

(Eq.(10.26)) follows readily from the Kubo formula (Eq.(10.28)).

What we have discussed here is really the simplest of the Onsager rela-

tions for the generalized transport coefficients relating generalized forces

to fluxes. For example, in Chapter 13 we will discuss additional coeffi-

cients like GS relating a temperature difference to the electrical current.

There are generalized Onsager relations that require (at zero magnetic field)

GP = TGS , GP being the coefficient relating the heat current to the po-

tential difference.

This is of course not obvious and requires deep arguments that have

prompted some to call the Onsager relations the fourth law of thermo-

dynamics (see for example, Yourgrau et al. 1966). Interestingly, however,

in Chapter 13 we will obtain transport coefficients that satisfy this relation

GP = TGS straightforwardly (see Eqs.(13.6) and (13.17)) without any pro-

found arguments.

We could cite this as one more example of the power and simplicity of the

elastic resistor that comes from disentangling mechanics from thermody-

namics.
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Hall effect

11.1 Introduction

Let me briefly explain what the Hall effect is about. Consider a two-

dimensional conductor (see Fig.11.1) carrying current, subject to a per-

pendicular magnetic field along the y-direction which exerts a force on the

electrons perpendicular to its velocity.

F =
dp

dt
= −qv ×B (11.1)

Source Drain

VI

z
x

Electron Current

Fig. 11.1 A magnetic field B in the y-direction makes electrons from the source veer

“up”wards.

This would cause an electron from the source to veer “up”wards and

an electron from the drain to veer “down”wards as shown. Since there are

more electrons headed from source to drain, we expect electrons to pile up

on the top side causing a voltage VH to develop in the x-direction transverse

to current flow (see Fig.11.2).

145
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Source

µ1 = 1

Drain

µ2 = 0

µ1*

µ2*

L

W

Fig. 11.2 Basic structure with two voltage probes whose potential difference measure

the Hall voltage, qVH = µ∗1 − µ∗2.

The Hall effect has always been important since its discovery around

1880, and has acquired a renewed importance since the discovery of the

quantum Hall effect in 1980 at high magnetic fields. In this book we have

seen the conductance quantum q2/h appear repeatedly and it is very com-

mon in the context of nanoelectronics and mesoscopic physics. But the

quantum Hall effect was probably the first experimental observation where

it played a clear identifiable role and the degree of precision is so fantastic

that the National Bureau of Standards uses it as the resistance standard.

We will talk briefly about it later at the end of this chapter. For the moment

let us focus on the conventional Hall effect at low magnetic fields.

One reason it is particularly important is that it changes sign for n-

and p-type materials, thus providing an experimental technique for telling

the difference. Like the thermoelectric current to be discussed in Chapter

13, this is commonly explained by invoking “holes” as the positive charge

carriers in p-type materials. This is not satisfactory because it is really the

electrons that move even in p-type conductors. Both n-type and p-type

conductors have negative charge carriers.

For the thermoelectric effect we will see that its sign is determined by

the slope of the density of states D(E), that is whether it is an increasing

or a decreasing function of the energy E. By contrast, the sign of the Hall

effect is determined by the sign of the effective mass defined as the ratio

of the momentum p to the velocity dE/dp (see Chapter 6). As a result

although the magnetic force (see Eq.(11.1)) is the same for both n- and

p-type conductors, giving the same dp/dt, the resulting dv/dt has opposite

signs. This makes electrons in p-conductors veer in the opposite direction

giving rise to a Hall voltage of the opposite sign. Clearly this requires

the existence of an E(p) relation underlying the density of states function.
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Perhaps it is for this reason that amorphous semiconductors which lack a

well-defined E(p) often show strange results for the Hall effect and yet show

reasonable thermoelectric effect.

The simple theory of the Hall effect given in freshman physics texts goes

like this. First the current is written as

I = q(N/L)vd (11.2)

with the drift velocity given by the product of the mobility and the electric

field in the z-direction:

vd = µ (V/L) (11.3)

These two relations are normally combined to yield the Drude formula (see

Eq.(6.1))

I

V
= q

N

WL
µ︸ ︷︷ ︸

σ

W

L
(11.4)

For the Hall effect, it is argued that an electric field VH/W must appear in

the x-direction to offset the magnetic force

VH
W

= vdB (11.5)

Combining Eq.(11.5) with Eq.(11.2) one obtains the standard expression

for the Hall resistance

RH =
VH
I

=
B

q(N/LW )
(11.6)

One reason the Hall effect is widely used is that Eq.(11.6) allows us to

determine the electron density N/LW from the slope of the Hall resistance

versus B-field curve. This looks like a straightforward transparent theory

for a well-established effect. What more could we add to it?

The main concern we have about this derivation is the same concern

that we voiced regarding the Drude formula, namely that if electric field

were indeed what drives currents then all electrons should feel its effect.

Indeed Eq.(11.6) for the Hall resistance conveys the impression that the

Hall effect depends on the total electron density N/LW over all energies.

But we believe this is not correct.

Like the other transport coefficients we have discussed, the Hall resis-

tance too is a “Fermi surface property” that depends only on the electrons
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in an energy window ∼ a few kT around E = µ0 and not on the total num-

ber of electrons obtained by integrating over energy. We will show that the

Hall resistance for a single energy channel of an elastic resistor is given by

RH(E) =
2BLW

qD(E)v(E)p(E)
(11.7)

which can be averaged over an energy window ∼ of a few kT around E = µ0

using our standard broadening function:

1

RH
=

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
1

RH(E)
(11.8)

Note that in general we should integrate the conductance 1/RH rather

than the resistance RH since different energy channels all have the same

voltage so that they conduct “in parallel” as circuit experts would put it.

Eq.(11.8) and (11.7) can be reduced to the standard result (Eq.(11.6)) by

making use of the single band relation obtained in Chapter 6

D(E)v(E)p(E) = N(E) · d (same as Eq.(6.9))

with d = 2 for a two-dimensional conductor and relating the average of

N(E) to the total number of electrons as we did in Section 6.5.

But if the single band relation (Eq.(6.9)) is not applicable one should use

the expression in Eq.(11.8) rather than Eq.(11.6). In any case, Eq.(11.8)

shows that the effect really does not involve electrons at all energies. One

reason this point causes some confusion is the existence of equilibrium cur-

rents inside the sample in the presence of a magnetic field which involve all

electrons at all energies.

However, these are dissipationless currents of the type that exist even

if we put a hydrogen atom in a magnetic field and have nothing to do with

the transport coefficients we are talking about. In any transport model it

is important to eliminate these non Fermi surface currents. A similar issue

arises with respect to spin currents even without any magnetic fields (which

we will discuss in Part B).

Getting back to the problem of determining the Hall voltage, as we saw

in Chapter 10 there are two approaches: (a) calculate the non-equilibrium

electrochemical potential inside the conductor or (b) treat it as a four ter-

minal structure using the Büttiker equation. We will not discuss the second
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1 = 0 2 = 0

Equilibrium
Currents

Fig. 11.3 Equilibrium currents can exist in any conductor in the presence of a magnetic

field.

one here since the basic idea was already discussed at the end of Chapter

10. Instead we will focus on the first approach which gives insights into the

variation of the electrochemical potential inside the channel. But first let

us briefly discuss the dynamics of electrons in a B-field.

11.2 Why n- and p- Conductors Are Different

µ0

D(E)

N(E)

D(E)

E E

N(E)

Fig. 11.4 The Hall resistance changes sign for n- and p-type conductors and is inversely

proportional to N(E) at E = µ0.

Why do n- and p-type conductors show opposite signs of the Hall effect?

The basic difference is that in n-type conductors, the velocity is parallel

to the momentum, while in p-type conductors, it is anti-parallel because

v = dE/dp, and in p-type conductors the energy decreases with increasing
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p (Fig.11.4). To see why the relative sign of p and v matters, let us consider

the magnetic force described by Eq.(11.1) in a little more detail.

z

x

€ 

θ

For any isotropic E(p) relation, the velocity and momentum are collinear

(parallel or anti-parallel) pointing, say at an angle θ to the z-axis, so that

p = p cos θ ẑ + p sin θ x̂

v = v cos θ ẑ + v sin θ x̂

Inserting into Eq.(11.1) we obtain

dθ

dt
=

qvB

p
(11.9)

showing that the angle θ increases linearly with time so that the velocity

and momentum vectors rotate uniformly in the z-x plane. But the sense of

rotation is opposite for n- and p-type conductors because the ratio p/v has

opposite signs. This is the ratio we defined as mass (see Eq.(6.11)) and is

constant for parabolic dispersion (Eq.(6.12)).

ωc =

∣∣∣∣qvBp
∣∣∣∣
E=µ0

=

∣∣∣∣qBm
∣∣∣∣
E=µ0

(11.10)

But for a linear dispersion (Eq.(6.13) the mass increases with energy,

so that the cyclotron frequency decreases with increased carrier density, as

is observed in graphene. The magnetic field tries to make the electron go

round and round in a circle with an angular frequency ωc. However, it gets

scattered after a mean free time τ , so that if ωcτ � 1 the electron never

really gets to complete a full rotation. This is the low field regime where the
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Hall resistance in given by Eq.(11.6), while the high field regime character-

ized by ωcτ � 1 leads to the quantum Hall effect mentioned earlier. Let us

now discuss our first approach to the problem of determining the Hall resis-

tance (Eq.(11.7)) based on looking at the non-equilibrium electrochemical

potentials inside the conductor.

11.3 Spatial Profile of Electrochemical Potential

As I mentioned earlier, the textbook derivation of the Hall resistance

(Eq.(11.6)) looks fairly straightforward, but we are attempting to pro-

vide a different expression (Eq.(11.7)) motivated by the same reasons that

prompted us to describe an alternative expression for the conductivity back

in Chapter 6.

In our elastic resistor model, the role of the drift velocity in the text-

book derivation is played by the potential separation

δµ = µ+ − µ−

between drainbound and sourcebound states, so that instead of Eq.(11.2))

we have (see Eq.(8.23))

I(E) =
q

h
M(E)

(
−∂f0

∂E

)
δµ (11.11)

with
M(E)

h
=

D(E)v(E)

πL
(11.12)

where we have used the result for 2D conductors from Eq.(4.13).

Instead of Eq.(11.3), we have the potential separation related to the applied

voltage by

δµ =
qV λ

L+ λ
∼= qV

λ

L
(11.13)

This relation can be obtained by noting that δµ is equal to the fraction

of the applied qV that is dropped across the interface resistance RB (see

Fig.8.2):

δµ = qV
RB
R

= qV
G

GB

Making use of Eq.(4.5b) we obtain Eq.(11.13).
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Just as Eqs.(11.2) and (11.3) yield the Drude expression for the conduc-

tivity, similarly Eqs.(11.11) and (11.12) can be combined to yield the more

general conductivity expression discussed earlier (see Eq.(6.5)).

For the Hall effect we also need a replacement for Eq.(11.5)

VH
W

= vd B

which we will show is given by

VH
W

=
2

π

δµ

p
B (11.14)

Eq.(11.14) together with Eqs.(11.11 and 11.12) gives us the result for Hall

resistance stated earlier in Eq.(11.7). Unfortunately we do not have a one-

line argument for Eq.(11.14) like the one used for Eq.(11.5). Instead I need

to describe a two-page argument using the BTE discussed in Chapter 9.

Source

1

Drain

2

1*

2*

L

W

x

z

+
1

2

-
qV

µ

Fig. 11.5 Spatial variation of µ± along z.
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11.3.1 Obtaining Eq.(11.14) from BTE

Back in Chapter 9 we obtained a solution for a subset of this problem based

on a solution of

vz
∂µ

∂z
= −µ− µ0

τ
(11.15)

and obtained the solutions for the electrochemical potentials µ+ and µ−

sketched above in Fig.11.5. The solutions could be written in the form

µ(z, θ) = µ(z) +
2

π
δµ cos θ (11.16)

where we have separated out a z-dependent part µ̄ from the momentum-

dependent part at a specific location, z. The latter needs a little discussion.

Source

µ1

Drain

µ2

µ1*

µ2*

z

x

θ

Since we are discussing an elastic resistor for which electrons have a fixed

energy E and hence a fixed momentum p, it is convenient to use cylindrical

coordinates for the momentum (p, θ) instead of (px, pz). Suppose we only

had electrons traveling along θ and its exact reverse direction. Making use

of Eq.(11.13) we could write

µ(z) = µ(z) +
δµ

2
= µ(z) +

qV

2L
λ(θ) (11.17)

Since we only have electrons along a single direction θ, we can write

λ(θ) = 2νzτ = 2ντ cos θ

so that from Eq.(11.17)

µ(z) = µ(z) +
qV

L
ντ cos θ (11.18)

Eq.(11.16) follows on using Eq.(11.13) again, but this time using the usual

θ-independent mean free path is given in 2D by Eq.(4.10)

λ =
π

2
ντ
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The question is how we expect the solution in Eq.(11.16) to change

when we turn on the magnetic field so that it exerts a force on the elec-

trons. For this we could use a linearized version of the BTE like Eq.(9.17),

but retaining both z- and x- components since we have a two-dimensional

problem

vx
∂µ

∂x
+ vz

∂µ

∂z
+ Fx

∂µ

∂px
+ Fz

∂µ

∂pz
= −µ− µ0

τ
(11.19)

Note that Eq.(11.15) is a “subset” of this equation which includes three

extra terms. The last two coming from the magnetic force (Eq.(11.1)) can

be written as

Fx
∂µ

∂px
+ Fz

∂µ

∂pz
= F · ∇pµ =

Fθ
p

∂µ

∂θ
+ Fr

∂µ

∂p

The force due to a magnetic field has no radial component, only a θ com-

ponent:

Fr = 0, Fθ = −qvB

This is because the velocity is purely radial and so when we take a cross-

product with a magnetic field in the z-direction, we get a vector that is

purely in the θ-direction. This allows us to rewrite Eq.(11.19) in the form

vx
∂µ

∂x
+ vz

∂µ

∂z
− qvB

p

∂µ

∂θ
= −µ− µ0

τ
(11.20)

Noting that our solution in Eq.(11.16) satisfies Eq.(11.15), it is easy to

check that if we add an extra term varying only with x to it, the resulting

expression

µ(z, θ, x) = µ(z) +
2

π
δµ cos θ − 2

π

δµ

p
qBx (11.21)

will satisfy Eq.(11.20). From this solution we obtain the desired result in

Eq.(11.14) by writing

−qVH = µ(x = W ) − µ(x = 0) = − 2

π

δµ

p
qBW
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11.4 Edge states

As we mentioned in the introduction, a very important discovery is the

quantum Hall effect observed when the B-fields are so high that electrons

from the source “hug” one edge, while electrons from the drain hug the

other edge of the sample due to the formation of the so-called “skipping

orbits” (Fig.11.6)

Source

µ1 = 1  

Drain

µ2 = 0

Fig. 11.6 Skipping orbits in high B-fields leads to a “divided highway” with drainbound

electrons on one side and sourcebound electrons on the other.

Under these conditions one edge of the channel is at an electrochemical

potential equal to that at the source, while the other edge is at a poten-

tial equal to the drain, so that the potential drop across the width (or the

Hall voltage) is equal to that between the source and the drain. This is

very different from the ordinary Hall effect when the Hall voltage given by

Eq.(11.14) is a small fraction of the applied voltage. What makes the quan-

tum Hall effect so extraordinary is that the Hall resistance (Hall voltage

divided by the current) is given by

R =
h

q2 i
(11.22)

where i is an integer to a fantastic degree of precision, making this a re-

sistance standard used by the National Bureau of Standards. It is as if we

have an unbelievably perfect ballistic conductor whose only resistance is

the interface resistance.

Since these conductors are often hundreds of micrometers long, this per-

fect ballisticity is amazing and was recognized with a Nobel prize in 1985

(von Klitzing K. et al. 1980). One can ascribe this incredible ballisticity to

the formation of a “divided” electronic highway (Fig.11.6) with drainbound

electrons so well-separated from the sourcebound electrons that backscat-

tering is extremely unlikely (Fig.11.6). This simple picture, however, is a

little too simple. It does not for example tell us the significance of the in-

teger i in Eq.(11.22) which requires some input from quantum mechanics,

as we will see in Part B.
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Chapter 12

Smart contacts

A key insight of modern nanoelectronics is the concept of an interface re-

sistance RB that is in series with the standard length-dependent resistance

Eq.1.8):

R = RB

(
1 +

L

λ

)
The interface resistance depends solely on the properties of the channel and

cannot be eliminated even with an ideal contact.

µ
2
= µ−

(z = L)

µ
1
= µ+

(z = 0)

µ+

µ-

µ

z = 0 z = L
Source Drain

Channel

Fig. 12.1 Spatial profile of electrochemical potentials µ+, µ− across a diffusive channel.

(Same as Fig.8.3)

As we saw in Chapter 8, the key concept in identifying this interface

resistance was the recognition that when a current flows, the electrochem-

ical potentials µ+ and µ− for the drainbound and sourcebound states are

different (Fig.12.1). From Eq.(11.13) we could write (Note: µ1 − µ2 = qV )

157
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δµ ≡ µ+ − µ− =
µ1 − µ2

1 + L/λ
(12.1)

The contacts held at different potentials µ1 and µ2 drive the two groups of

states (drainbound and sourcebound) out of equilibrium, while backscat-

tering processes described by the mean free path try to restore equilibrium.

Eq.(12.1) describes the result of these competing forces.

Normally we do not like to deal with multiple electrochemical potentials.

The diffusion equation for example (see Eq.(7.17)),

I

A
= −σ0(z)

q

dµ

dz
(12.2)

works in terms of a single potential µ(z) and what we saw in Chapter 8 was

how we could avoid talking about the two potentials µ+(z) and µ−(z) by

defining µ(z) as the average of the two and including interface resistances

into the boundary conditions by replacing Eq.(8.3) with Eq.(8.6).

Non-equilibrium flow of electrons requires two contacts with separate

electrochemical potentials µ1 and µ2 in the two contacts, and a spatially

varying µ(z) in between. But many feel uncomfortable with the notion of

multiple electrochemical potentials or Quasi-Fermi Levels (QFLs) inside the

channel and it is common to sweep it under the proverbial rug, as described

above.

I have always discussed the notion of QFLs (see for example, Chapter 2

of Datta (1995)) as a useful way of visualizing non-equilibrium states inside

the channel that can provide valuable insight but in the past I have not

stressed it too much since it seemed difficult to measure the QFLs µ+ and

µ− shown in Fig.12.1.

This situation, however, seems to be changing and the point I wish to

make in this chapter is that this separation of the electrochemical potentials

for different groups of states is really far more ubiquitous and cannot always

be swept under the rug. Indeed I would like to go further and argue that the

most interesting devices of the future could well be the ones where multiple

electrochemical potentials will represent the essential physics.

Let me present two examples. The first is an old example from an old

device, the p-n junction for which the need for two separate electrochemical

potentials for the conduction and valence bands is well-recognized. The

second is a more recent example from the fast-developing field of spintronics
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where distinct QFLs for up and down spins are becoming quite common

aided by the development of magnetic contacts that can be used to measure

the spin QFLs.

12.1 p-n Junctions

Fig.12.2 shows a grayscale plot of the density of states D(z, E). The white

band indicates the bandgap with a non-zero DOS both above and below

it on each side which are shifted in energy with respect to each other. A

positive voltage is applied to the right with respect to the left, so that µ2

is lower than µ1 as shown.

1

E

z

2

Fig. 12.2 Simplified grayscale plot of the spatially varying density of states D(z, E)

across a p-n junction.

If we look at a narrow range of energies around µ1 it communicates

primarily with contact 1. If we look at a narrow range of energies around

µ2 it communicates primarily with contact 2. We could draw an idealized

diagram with each of these two groups communicating just with one contact

and cut off from the other as shown in Fig.12.3. In reality of course neither

group is completely cutoff from either contact, and people who design real

devices often go to great lengths to achieve better isolation, but let us not

worry about such details.

Would the idealized device in Fig.12.3 allow any current to flow? None

at all, if it were an elastic resistor. There is no energy channel that will let

an electron get all the way from left to right. The ones connected to the



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 160

160 Lessons from Nanoelectronics: A. Basic Concepts

left are disconnected from the right and those connected to the right are

disconnected from the left.

µ1
µ2

Fig. 12.3 An idealized version of the p-n junction in Fig.12.2.

But current can flow even with such ideal contacts because of inelastic pro-

cesses that allow electrons to change energies along the channel. Electrons

can then come in from the left, change energy and then exit to the right as

sketched in Fig.12.4.

Inelastic 
scatterers

µ1
µ2

Fig. 12.4 Current flow in the idealized device of Fig.12.3 is facilitated by distributed

inelastic processes.

Indeed this is exactly how currents flow in long p-n junctions, by trans-

ferring from the upper group of states down to the lower group by inelastic

processes, which are generally referred to as recombination-generation (R-

G) processes, since people like to think in terms of electrons in the upper

group recombining with a “hole” in the lower group. But as we mentioned

in Chapter 6 this is really an unnecessary complication and one could sim-

ply think purely in terms of electrons transferring inelastically from one

group of states to another.

The point to note is that this class of devices cannot be described with

one electrochemical potential and to capture the correct physics, it is essen-

tial to treat the two groups of states separately, introducing two different

electrochemical potentials, labeled with the index n
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In
A

= −σ0,n(z)

q

dµn
dz

(12.3)

These currents are all coupled together by inelastic processes generally

called recombination-generation or “RG” processes in the context of p-n

junctions

dIn
dz

=
∑
m

RGm→n −RGn→m (12.4)

that take electrons from one group of states m to the other n. This is

indeed the way p-n junctions are modeled.

It is well-known that the current in a p-n junction is given by an ex-

pression of the form

I = I0
(
eqV/νkT − 1

)
(12.5)

where the number ν as well as the coefficient I0 are determined by the

nature of the inelastic or RG processes. The conductivities of either of the

two groups of states play hardly any role in determining this current.

The physical reason for this is clear. The rate-determining step in cur-

rent flow is the inelastic process transferring electrons from one group of

states to the other. Transport within any of these groups only adds an

unimportant resistance in series with the basic device.

Everything we have talked about in this book has been about the con-

ductivities σn of the homogeneous p-type or n-type materials. And this is

exactly the physics that is relevant to the operation of the most popular

electronic device today, namely the Field Effect Transistor (FET) whose

conductivity is controlled by a gate electrode through the electrostatic po-

tential U .

But the p-n junction is a totally different device from the FET both in

terms of its current-voltage characteristics and the physics that underlies

it. It is the basic device structure used to construct solar cells and the

principle it embodies is key to a broad class of energy conversion devices.

So let me take a short detour to elaborate on this principle.

12.1.1 Current-Voltage Characteristics

Consider for example the device in Fig.12.5 assuming that the upper group

of states (labeled A) is clustered around an energy εA while the lower group

(labeled B) is clustered around εB .
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µ1
µ2

A

B
ω

Fig. 12.5 Same as Fig.12.4 with the two groups of states labeled A and B. Electronic

transitions between A and B are facilitated by inelastic interactions.

The essential physics of such p-n junction like devices is contained not in

Eq.(12.3), but in Eq.(12.4) which for two levels A and B can be written as

I ∼ DBAfA
(
εA
)(

1− fB
(
εB
))

− DABfB
(
εB
)(

1− fA
(
εA
))

(12.6)

where the coefficients DBA and DAB denote the strength of the inelastic

processes inducing the transitions from A to B and from B to A respectively

(note that the transition occurs from the second subscript to the first).

Interestingly these two rates DAB and DBA are generally NOT equal.

DAB involves absorbing an amount of energy

~ω = εA − εB

from the surroundings, while DBA involves giving up the same amount of

energy.

A fundamental principle of equilibrium statistical mechanics (see Chap-

ter 15) is that if the entity causing the inelastic scattering is at equilibrium

with a temperature T0, then it is always harder to absorb energy from it

than it is to give up energy to it and the ratio of the two processes is given

by

DAB

DBA
= exp

(
− ~ω
kT0

)
(12.7)

We can write the current from Eq.(12.6) in the form

DABfB
(
εB
)(

1− fA
(
εA
))(

X − 1

)
(12.8)
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where X ≡ DBA

DAB

fA
(
εA
)

1− fA
(
εA
) 1− fB

(
εB
)

fB
(
εB
) (12.9)

Making use of Eqs.(12.8) and (12.9) and the following property of Fermi

functions (Eq.(2.2))

1− f0

(
ε
)

f0

(
ε
) = exp

(
ε− µ0

kT

)
(12.10)

we can rewrite Eq.(12.9) as

X = exp

(
~ω
kT0
− ~ω
kT

)
(12.11)

Since Level A is connected to contact 1 and Level B to contact 2, if the

inelastic processes taking electrons from A to B are not too strong, level A

is almost in equilibrium with contact 1 and level B with contact 2, so that

µA − µB ≈ µ1 − µ2 = qV

If T0 = T , we can write the current from Eq.(12.8) as

I ∼
(
X − 1

)
∼ eqV/kT − 1

which is the ideal I-V relation for p-n junctions stated earlier (see Eq.(12.5))

with ν = 1. Other values of ν are also obtained in practice but that requires

a more detailed discussion beyond the scope of this book.

The more important point I want to stress is that this device can be

used for energy conversion. If the scatterers are at a temperature different

from that of the device (T0 6= T ) then one can have a current flowing even

without any applied voltage. This short circuit current is given by

Isc ≡ I(V = 0) ∼ exp

{
~ω
k

(
1

T0
− 1

T

)}
− 1 (12.12)

One could in principle use a device like this to convert a temperature

difference (T0 6= T ) into an electrical current. The short circuit current

has the opposite sign for T0 > T and for T > T0. Readers familiar with

Feynman’s ratchet and pawl lecture (Feynman 1963, cited in Chapter 15)

may notice the similarity. The ratchet reverses direction depending on

whether its temperature is lower or higher than the ambient.

One could view more practical devices like solar cells as embodi-

ments of the same principle, the light from the sun having a temperature
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T0 ∼ 6000 ◦C characteristic of the surface of the sun, much larger than the

ambient temperature.

From Eq.(12.8) it is easy to see that under open circuit conditions (I =

0), we must have X = 1, so that from Eq.(12.11) we have

qVOC
~ω

= 1− T

T0

The left hand side represents the energy extracted per photon under very

low current (near open circuit) conditions, so that this could be called the

Carnot efficiency of a solar cell viewed as a “heat engine”. However, since

T0 � T , this Carnot efficiency is very close to 100% and my colleague

Ashraf often points out that other factors related to the small angular

spectrum of solar energy are important in lowering the ideal efficiency to

much lower values.

12.1.2 Contacts are fundamental

µ1
µ2

A

B
ω

e-e-

(a)

µ1 µ2ω

(b)

Fig. 12.6 (a) Asymmetric contacts are central to the operation of the “solar cell”. (b)

If contacted symmetrically no electrical output is obtained.

The point I want to make is how important the discriminating contacts

are in the design of this class of devices which we could generally refer to

as “solar cells” (Fig.12.6). The external source raises electrons from the B

states to the A states from where they exit through the left contact, while

the empty state left behind in B is filled up by an electron that comes in

through the right contact. Every electron raised from B to A thus causes

an electron to flow in the external circuit.

But if the contacts are connected “normally” injecting and extracting

equally from either group (Fig.12.6) then we cannot expect any current to

flow in the external circuit, from the sheer symmetry of the arrangement.
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After all, why should electrons flow from left to right any more that they

would flow from right to left?

It is this asymmetric contacting that makes p-n junctions fundamen-

tally different from the Field Effect Transistor (FET) that we started our

chapters with, both in terms of the current-voltage characteristics and the

physics underlying it. It is of course well recognized that the physics of p-n

junctions demands two different electrochemical potentials. What is not as

well recognized is the generic nature of this phenomenon. Let us now look

at a more recent example.

12.2 Spin potentials

Related video lecture available at course website, Unit 3: L3.9.

12.2.1 Spin valve

One of the major developments in the last two decades is the spin valve, a

device with two magnetic contacts (Fig.12.7) If they are magnetized in the

same direction (parallel configuration, P) the resulting resistance is lower

than if they are magnetized in opposite directions (anti-parallel configura-

tion, AP). Since its first demonstration in 1988, it rapidly found application

as a “reading” device to sense the information stored in a magnetic memory

and the discovery was recognized with a Nobel prize in 2007.

(a) Parallel (P)

rr Rch

RR Rch

(b) Anti-Parallel (AP)

R

r

r

R

Rch

Rch

Fig. 12.7 Spin valve: (a) Parallel (P) configuration. (b) Anti-parallel (AP) configura-
tion.

https://www.youtube.com/watch?v=epEnZNbjvPg
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So far we have only mentioned spin as part of a “degeneracy factor, g”

(Section 6.4.1), the idea being that electronic states always come in pairs,

one corresponding to each spin. We could call these “up” and “down” or

“left” and “right” or even “red” and “blue” as we have done in Fig.12.7.

Note that the two spins are not spatially separated even though we have

separated the red and the blue channel for clarity. Ordinarily, the two

channels are identical and we can calculate the conductance due to one and

remember to multiply by two.

But in spin valve devices the contacts are magnets that treat the two

spin channels differently and the operation of a spin valve can be understood

in fairly simple terms if we postulate that each spin channel has a different

interface resistance with the magnet depending on whether it is parallel

(majority spin) or anti-parallel (minority spin) to the magnetization.

If we assume the interface resistance for majority spins to be r and for

minority spins to be R (r < R) we can draw simple circuit representations

for the P and AP configurations as shown, with Rch representing the chan-

nel resistance. Elementary circuit theory then gives us the resistance for

the parallel configuration as

RP =

(
1

2r +Rch
+

1

2R+Rch

)−1

(12.13)

and that for the anti-parallel configuration as

RAP =
r +R+Rch

2
(12.14)

The essence of the spin valve device is the difference between RP and

RAP and we would expect this to be most pronounced when the channel

resistance is negligible and everything is dominated by the interfaces. We

obtain a simple result for the maximum magnetoresistance or MR if we set

Rch = 0

MR ≡ RAP
RP

− 1 =
(R− r)2

4rR
(12.15)
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which can be written in terms of the polarization:

P ≡ R− r
R+ r

(12.16a)

MR =
P 2

1− P 2
(12.16b)

I should mention here that the expression commonly seen in the literature

has an extra factor of 2 compared to Eq.(12.16)

MR =
2P 2

1− P 2

which is applicable to magnetic tunnel junctions (MTJs) that use short

tunnel junctions as channels instead of the metallic channels we have been

discussing. We get this extra factor of 2, if we assume that two resistors

R1 and R2 in series give a total resistance of KR1R2, K being a constant,

instead of the standard result R1+R2 expected of ordinary Ohmic resistors.

The product dependence captures the physics of tunnel resistors.

While spin valves showed us how to use magnets to inject spins and

control spin potentials, later researchers have shown how to use non-

equilibrium spins to turn nanoscale magnets thus integrating spintronics

and magnetics into a single and very active area of research with exciting

possibilities for which the reader may want to look at some of the current

literature.

Our objective is simply to point out the existence of different internal

potentials for different spins. The key to spin valve operation is the differ-

ent interface resistances, r and R, associated with each spin for magnetic

contacts as shown in the simple circuit in Fig.12.7. The same circuit also

shows that the potential profile will be different for the two spin channels,

since each channel has a different set of resistances.

It is now well established that magnetic contacts can generate different

spin potentials, but we will not discuss this further. Instead let me end

by talking about a recent discovery showing that spin potentials can be

generated even without magnetic contacts in channels with high spin-orbit

coupling.

There is great current interest in a new class of materials called topolog-

ical insulators where the electronic eigenstates at a surface exhibit “spin-

momentum locking” such that their spin is perpendicular to their momen-

tum, and their cross-product is in the direction of the surface normal. What



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 168

168 Lessons from Nanoelectronics: A. Basic Concepts

Fig. 12.8 Spatial profile of QFLs µ+, µ− and electrochemical potential µ across a

diffusive channel. Also shown is a voltage probe used to measure the local potential.

this means is that the QFLs µ+ and µ− shown in Fig.12.8 translate into

spin QFLs µup and µdn.

But why is it more exciting to have separate quasi-Fermi levels for up and

down spins than for right and left-moving electrons? Because there is no

simple way to measure the latter, but the progress in the last two decades

has shown that magnetic contacts can be used to measure the former. Let

me explain.

12.2.2 Measuring the spin voltage

Consider the factors that determine the potential µP measured by a probe

like the one shown in Fig.12.8. We can use a circuit representation

(Fig.10.4) similar to the one we introduced for weakly coupled non-invasive

probes in Chapter 10 (see Eq.(10.4)).

There we saw that an external probe communicates with right moving

and left moving states through conductances g+ and g−. Similarly we could

model an external probe as communicating with the two spin channels

through conductances gup and gdn as shown in Fig.12.9, so that setting the

probe current IP equal to zero, we have from simple circuit theory
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IP = 0 = gup(µup − µP ) + gdn(µdn − µP )

→ µP =
gupµup + gdnµdn

gup + gdn
(12.17)

very similar to Eq.(10.4) with gup and gdn in place of g+ and g−.

Fig. 12.9 Simple circuit model for voltage probe.

What makes this result very interesting is that it is possible to use

magnetic probes to change the conductances gup and gdn simply by rotating

their magnetization as established through the tremendous progress in the

field of spintronics in the last twenty five years.

Defining the average potential µ and the spin potential µS as

µ =
µup + µdn

2
(12.18a)

µS =
µup − µdn

2
(12.18b)

we can rewrite Eq.(12.18) with a little algebra as

µP = µ+ P
µS
2

(12.19a)

P ≡ gup − gdn

gup + gdn
(12.19b)

where P denotes the probe polarization. A non-magnetic probe has equal

conductances gup and gdn for both spins making the polarization P equal

to zero. But magnets have unequal density of states at the Fermi energy
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for up and down spins resulting in unequal conductances gup and gdn and

hence a non-zero P which could be positive or negative depending on the

magnet.

If we reverse the magnetization of the magnet, the sign of P will reverse

(either negative to positive, or positive to negative) since the role of up and

down are reversed. Using this fact we can write from Eq.(12.19)

µP (+m)− µP (−m) = 2PµS (12.20)

which affords a straightforward approach for measuring the spin potential

µS , simply by looking at the change in the probe potential on reversing its

magnetization.

12.2.3 Spin-momentum locking

Let us now get back to our earlier discussion about a special class of ma-

terials called topological insulators in which the QFLs for right- and left-

moving states translate into those for up and down states which can then

be measured with a magnetic probe as we just discussed. However, this

translation from µ+ and µ− to µup and µdn occurs more generally in a

large class of materials with strong “spin-orbit (SO) coupling” (we will dis-

cuss this more in Part B) which exhibit surface states that have unequal

numbers M and N of up-spin and down spin modes propagating to the

right (Fig.12.10).

Fig. 12.10 Surface states in materials with high spin-orbit coupling have equal number

of modes M for right moving upspins and leftmoving downspins, but a different number
of modes N for left moving upspins and right moving downspins.

Note that the situation depicted in Fig.12.10 is different from ordinary

materials as well as from magnetic materials. Ordinarily the number of

modes is the same for left-moving and right-moving states for both up and
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down spins:

M(up+) = M(dn+) = M(up−) = M(dn−) = M

Magnetic materials on the other hand have different numbers of modes for

upspins and downspins:

M(up+) = M(up−) = M ; M(dn+) = M(dn−) = N

What we are discussing here is different (Fig.12.10)

M(up+) = M(dn−) = M ; M(dn+) = M(up−) = N

This situation arises in non-magnetic materials with high spin-orbit cou-

pling which we will discuss in Part B. For the moment let us accept the

picture shown in Fig.12.10 and note that in these materials, the upspin and

downspin potentials µup and µdn represent different averages of µ+ and µ−

µup =
Mµ+ +Nµ−

M +N
and µdn =

Nµ+ +Mµ−

M +N
(12.21)

which yields a spin potential (see Eq.(12.18))

µS =
µup − µdn

2
= p

µ+ − µ−

2
(12.22)

where we have defined the channel polarization as

p ∼ M −N
M +N

(12.23)

In Eq.(12.23) we are not using the equality sign since we have glossed

over a “little” detail involving the fact that right moving electrons travel

in different directions along the surface, so that their spins also have an

angular distribution, which on averaging gives rise to a numerical factor.

Making use of Eqs.(8.8 and 4.12) we can write

I = GB
µ+ − µ−

q
(12.24)

we can rewrite the spin potential from Eq.(12.21) in terms of the current

I:

µS =
q

2GB
pI (12.25)
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Note that the channel polarization “p” appearing in Eq.(12.25) is a chan-

nel property that determines the intrinsic spin potential appearing in the

channel. It is completely different from the probe polarization “P” defined

in Eq.(12.19) which is a magnet property that comes into the picture only

when we use a magnetic probe to measure the intrinsic spin potential µS
induced in the channel by the flow of current (I).

This is a remarkable result that shows a new way of generating spin po-

tentials. The spin valves discussed in Section 12.2.1 generated spin poten-

tials through the spin-dependent interface resistance of magnetic contacts.

By contrast Eq.12.25 tells us that a spin voltage can be generated in chan-

nels with spin-momentum locking simply by the flow of current without the

need for magnetic contacts, arising from the difference between M and N.

This is our view of the Rashba-Edelstein (RE) effect which has been

observed in a wide variety of materials like topological insulators and narrow

gap semiconductors. Similar effects are also observed in heavy metals where

it is called the spin Hall effect (SHE) and is often associated with bulk

scattering mechanisms, but there is some evidence that it could also involve

the surface mechanism described here. We will not discuss this current-

induced spin potential any further since our understanding is still evolving.

We mention it here simply because it connects spin voltages to the

notion of quasi-Fermi levels that we have been discussing in the last few

chapters and also gives the reader a feeling for the amazing progress in

spintronics that has made it possible to control and measure spin potentials.

Note that in this chapter we are using a semiclassical picture that re-

gards up and down spins simply as two types of electrons, like “red” and

“blue” electrons. This picture allows us to understand many spin-related

phenomena, but not all. Many phenomena involve additional subtleties

that require the quantum picture and hence can only be discussed in depth

in Part B.

12.3 Concluding remarks

Throughout this book we have discussed how the contacts in an ordinary

device drive drainbound and sourcebound states out of equilibrium faster

than backscattering processes can restore equilibrium. The primary mes-

sage I hope to convey in this part is that QFLs are quite real and can be

generated and measured through the use of “smart contacts”. We illustrate

this with several examples.
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In p-n junctions, contacts drive the two bands out of equilibrium, faster

than R-G processes can restore equilibrium. In spin valve devices magnetic

contacts drive upspin and downspin states out of equilibrium faster than

spin-flip processes can restore equilibrium. In either case there are groups

of states A, B etc that are driven out of equilibrium by smart contacts that

can discriminate between them.

On the other hand in materials with high spin-orbit coupling, a current

injected through ordinary contacts generates a spin potential due to the

phenomenon of “spin-momentum locking” leading to unequal values of M

and N (Fig.12.10). But to detect the spin potential we need a smart con-

tact. This observation is related to the Rashba-Edelstein (RE) and perhaps

the spin Hall effect (SHE) as discussed earlier.

Alternatively we could reverse the voltage and current terminals and

invoke reciprocity (Section 10.3.3) to argue that a current injected through

a smart contact will generate a voltage at the ordinary contacts. This is

related to the inverse Rashba-Edelstein (IRE) and perhaps the inverse spin

Hall effect (ISHE).

More and more of such examples can be expected in the coming years,

as we learn to control current flow not just with gate electrodes that control

the electrostatic potential, but with subtle contacting schemes that engineer

the electrochemical potential(s). Many believe that nature does just that

in designing many biological “devices”, but that is a different story.

In the context of man-made devices there are many possibilities. Per-

haps we will figure out how to contact s-orbitals differently from p-orbitals,

or one valley differently from another valley, leading to fundamentally dif-

ferent devices. But this requires a basic change in approach.

Traditionally, the work of device design has been divided neatly between

three groups of specialists: physicists and material scientists who innovate

new materials using atomistic theory, device engineers who worry about

contacts and related issues using macroscopic theory and circuit designers

who interconnect devices to perform useful functions.

Future devices that seek to function effectively may well require an ap-

proach that integrates materials, contacts and even circuits at the atomistic

level. Perhaps then we will be able to create devices that rival the marvels

of nature like photosynthesis.
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Chapter 13

Thermoelectricity

13.1 Introduction

Conductance measurements ordinarily do not tell us anything about the

nature of the conduction process inside the conductor. If we connect the

terminals of a battery across any conductor, electron current flows out of

the negative terminal back to its positive terminal. Since this is true of all

conductors, it clearly does not tell us anything about the conductor itself.

Conventional
Current

All
conductors

Electron
Current

On the other hand, thermoelectricity, that is, electricity driven by a

temperature difference, is an example of an effect that does. A very simple

experiment is to look at the current between a hot probe and a cold probe

(Fig.13.1). For an n-type conductor (see Fig.6.1) the direction of the exter-

nal current will be consistent with what we expect if electrons travel from

the hot to the cold probe inside the conductor, but for a p-type conductor

(see Fig.6.2) the direction is reversed, consistent with electrons traveling

from the cold to the hot probe. Why?

It is often said that p-type conductors show the opposite effect because

the carriers have the opposite sign. As we discussed in Chapter 6, p-type

conductors involve the flow of electrons near the top of a band of ener-

177
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gies and it is convenient to keep track of the empty states above µ rather

than the filled states below µ. These empty states are called “holes” and

since they represent the absence of an electron, they behave like positively

charged entities.

HotCold

HotCold

(a) n-type
conductor

(b) p-type
conductor

Electron
Current

Fig. 13.1 Thermoelectric currents driven by temperature differences flow in opposite

directions for n- and p-type conductors.

However, this is not quite satisfactory since what moves is really an

electron with a negative charge. “Holes” are at best a conceptual conve-

nience and effects observed in a laboratory should not depend on subjective

conveniences.

µ

n-
type

D(E) D(E)

p-
type

E

Fig. 13.2 In n-type conductors the electrochemical potential is located near the bottom
of a band of energies, while in p-type conductors it is located near the top. In n-
conductors D(E) increases with increasing E, while in p-conductors it decreases with

increasing E.

As we will see in this chapter the difference between n- and p-conductors
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requires no new principles or assumptions beyond what we have already

discussed, namely that the current is driven by the difference between f1

and f2. The essential difference between n- and p- conductors is that while

one has a density of states D(E) that increases with energy E, the other

has a D(E) decreasing with E.

Earlier in Chapter 11 we discussed the Hall effect which too changes

sign for n-type and p-type conductors and this too is commonly blamed

on negative and positive charges. The Hall effect, however, has a totally

different origin related to the negative mass (m = p/v) associated with

E(p) relations in p-conductors that point downwards. By contrast the

thermoelectric effect does not require a conductor to even have a E(p)

relation. Even small molecules show sensible thermoelectric effects (Baheti

et al. 2008).

The basic idea is easy to see starting from our old expression for the

current obtained in Chapter 3:

I =
1

q

∫ +∞

−∞
dEG(E)(f1(E)− f2(E)) (same as Eq.(3.5)) (13.1)

So far the difference in f1 and f2 has been driven by difference in elec-

trochemical potentials µ1 and µ2. But it could just as well be driven by a

temperature difference, since in general

f1(E) =
1

exp

(
E − µ1

kT1

)
+ 1

(13.2)

f2(E) =
1

exp

(
E − µ2

kT2

)
+ 1

(13.3)

But why would such a current reverse directions for an n-type and a p-type

conductor? To see this, consider two contacts with the same electrochemical

potential µ, but with different temperatures as shown in Fig.13.3.

The key point is that the difference between f1(E) and f2(E) has a

different sign for energies E greater than µ and for energies less than µ (see

Fig.13.3). In an n-type channel, the conductance G(E) is an increasing

function of energy, so that the net current is dominated by states with
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f2(E)f1(E) f1 – f2

COLDHOT

E − µ

kT

+ve

- ve

Fig. 13.3 Two contacts with the same µ, but different temperatures: f1− f2 is positive

for E > µ, and negative for E < µ.

µ

n-
type

f1-f2
E − µ

kT

G(E) G(E)

p-
type

Fig. 13.4 For n-type channels, the current for E > µ dominates that for E < µ, while
for p-type channels the current for E < µ dominates that for E > µ. Consequently,

electrons flow from hot to cold across an n-type channel, but from cold to hot in a

p-type channel.

energy E > µ and thus flows from 1 to 2, that is from hot to cold (Fig.13.4).

But in a p-type channel it is the opposite. The conductance G(E) is a

decreasing function of energy, so that the net current is dominated by states

with energy E < µ and thus flows from 2 to 1, that is from cold to hot.

13.2 Seebeck Coefficient

Related video lecture available at course website, Unit 4: L4.2.

https://www.youtube.com/watch?v=Svf3VyvVXWw
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µ1,T1 µ2,T2

IElectron
Current

We can use Eq.(13.1) directly to calculate currents without making any

approximations. But it is often convenient to use a Taylor series expansion

like we did earlier (Eq.(2.11)) to obtain results that are reasonably accurate

for low “bias”. We could write approximately from Eq.(13.1)

I = G0(V1 − V2) + GS(T1 − T2) (13.4)

where we have defined V1 and V2 as µ1/q and µ2/q. The conductance is

given by

G0 =

∫ +∞

−∞
dE G(E)

(
∂f0

∂µ

)

=

∫ +∞

−∞
dE

(
−∂f0

∂E

)
G(E) (13.5)

as we have seen before in Section 2.4. The new coefficient GS that we have

introduced is given by

GS =
1

q

∫ +∞

−∞
dE G(E)

(
∂f0

∂T

)

=

∫ +∞

−∞
dE

(
−∂f0

∂E

)
E − µ0

qT
G(E) (13.6)

This last step, relating the derivatives with respect to T and with respect

to E, requires a little algebra (see Appendix A). One point regarding the

notation: I should really use a different symbol for the averaged conduc-

tance G0 (which we have not used elsewhere in this book) to distinguish it

from the energy-dependent conductance G(E). To avoid confusion, in this

chapter I will try to write G(E) whenever I mean the latter.
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Eq.(13.6) expresses mathematically the basic point we just discussed.

Energies E greater and less than µ0, contribute with opposite signs to the

thermoelectric coefficient, GS . It is clear that if we wanted to design a

material with the best Seebeck coefficient, S we would try to choose a

material with all its density of states on one side of µ0 since anything on

the other side contributes with an opposite sign and brings it down. We

can visualize Eq.(13.4) as shown in Fig.13.5, where the short circuit current

is given by

ISC = GS(T1 − T2) (13.7)

Experimentally what is often measured is the open circuit voltage

V1 − V2 = VOC = −ISC
G0

= −GS
G0

(T1 − T2) (13.8)

Note that we are using I and V for electron current and electron voltage

µ/q whose sign is opposite that of the conventional current and voltage. For

n-type conductors, for example, GS is positive, so that Eq.(13.8) tells us

that VOC is negative if T1 > T2. This means that the contact with the

higher temperature has a negative electron voltage (see Section 3.2.2 where

our convention is explained) and hence a positive conventional voltage. By

convention this is defined as a negative Seebeck coefficient.

S ≡ VOC
T1 − T2

= −GS
G0

(13.9)

€ 

Isc

V1 V2I
G

V1 V2I

1/G

Voc

+-

Fig. 13.5 Circuit representations of Eqs.(13.7) and (13.8).
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13.3 Thermoelectric figures of merit

The practical importance of thermoelectric effects arise from the possibility

of converting waste heat into electricity and from this point of view the

important figure of merit is the amount of power that could be generated

from a given T1 − T2. What load resistor RL will maximize the power

delivered to it (Fig.13.6)? A standard theorem in circuit theory says (this

is not too hard to prove for yourself) that the answer is a “matched load”

for which RL equal to 1/G0:

Pmax =
VOC

2G0

4
= S2G0

(T1 − T2)2

4
(13.10)

The quantity S2G0 is known as the power factor and is one of the

standard figures of merit for thermoelectric materials.

HOT
T1

COLD
T2

I

RL=1/G

Fig. 13.6 A thermoelectric generator can convert a temperature difference into an elec-
trical output.

However, there is a second figure of merit that is more commonly used.

To see where this comes from, we first note that when the contacts at differ-

ent temperatures, we expect a constant flow of heat through the conductor

due to its heat conductance GK

GK(T1 − T2)

which has to be supplied by the source that maintains the temperature

difference. Actually this is not quite right, it only gives the heat flow under

open circuit conditions and ignores a component that depends on I. But

this is good enough for our purpose which is simply to provide an intuitive

feeling for where the standard thermoelectric figure of merit comes from.

The ratio of the maximum generated power to the power that is supplied

by the external source is a good measure of the efficiency of the thermo-

electric material in converting heat to electricity and can be written as
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HOT
T1

COLD
T2

I

RL=1/G

GK

Pmax
GK(T1 − T2)

=
S2G0T

GK︸ ︷︷ ︸
≡ZT

T1 − T2

4T
(13.11)

where T is the average temperature (T1 + T2)/2. The standard figure of

merit for thermoelectric materials, called its ZT product, is proportional

to the ratio of S2G0 to GK :

ZT ≡ S2G0T

GK
=
S2σT

κ
(13.12)

where κ is the thermal conductivity related to the thermal conductance GK
by the same geometric factor A/L connecting the corresponding electrical

quantities G0 and σ0.

Indeed the Ohm’s law for heat conduction (known as Fourier’s law) also

needs the same correction for interface resistance namely the replacement

of L with L + λ. However, while the electrical conductivity arises solely

from charged particles like electrons, the thermal conductivity also includes

a contribution from phonons which describes the vibrations of the atoms

comprising the solid lattice. Ordinarily it is the phonon component that

dominates the thermal conductivity and we will discuss it briefly in the next

chapter. For the moment let us talk about the heat carried by electrons,

something we have not discussed so far at all.

13.4 Heat current

Related video lecture available at course website, Unit 4: L4.3.

We have discussed the thermoelectric currents in a material with any

arbitrary conductance function G(E). The nice thing about the elastic

https://www.youtube.com/watch?v=ZWBdZIEcMiE


November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 185

Thermoelectricity 185

resistor is that channels at different energies all conduct in parallel, so

that we can think of one energy at a time and add them up at the end.

Consider a small energy range located between E and E+dE, either above

or below the electrochemical potentials µ1 and µ2 as shown in Fig.13.5. As

we discussed in the introduction, these two channels will make contributions

with opposite signs to the Seebeck effect. Now, it has long been known that

the Seebeck effect is associated with a Peltier effect. How can we understand

this connection?

Earlier in Chapter 3 we saw that for an elastic resistor the associated

Joule heat I2R is dissipated in the contacts (see Fig.3.2). But if we consider

the n-type or p-type channels in Fig.13.5 apparent that unlike Fig.3.2, both

contacts do not get heated.

Source Drain

µ1 ε

(a) n-type 
channel

µ2
Source Drain

µ1

(b) p-type 
channel

ε µ2

Fig. 13.7 A one-level elastic resistor having just one level with E = ε , (a) above or (b)
below the electrochemical potentials µ1,2.

Fig.13.8 is essentially the same as Fig.3.2 except that we have shown the

heat absorbed from the surroundings rather than the heat dissipated. For

n-type conductors the heat absorbed is positive at the source, negative at

the drain, indicating that the source is cooled and the drain is heated. For p-

type conductors it is exactly the opposite. This is the essence of the Peltier

effect that forms the basis for practical thermoelectric refrigerators. Note

that the sign of the Peltier coefficient like that of the Seebeck coefficient is

related to the sign of E − µ and not the sign of q.

To write the heat current carried by electrons, we can simply extend

what we wrote for the ordinary current earlier:

I =
1

q

∫ +∞

−∞
dEG(E)(f1(E)− f2(E)) (same as Eq.(3.5))

Noting that an electron with energy E carrying a charge −q also extracts

an energy E−µ1 from the source and dumps an energy E−µ2 in the drain,

we can write the heat currents IQ1 and IQ2 extracted from the source and

drain respectively as
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ChannelSource

µ1 µ2

Heat
Absorbed
+ve: n-type
-ve: p-type

Drain

ε − µ1

ε ε

µ2 − εHeat
Absorbed
-ve: n-type
+ve: p-type

Fig. 13.8 Same as Fig.3.2 but showing the heat absorbed (rather than dissipated) at
each contact. For n-type conductors the heat absorbed is positive at the source, negative

at the drain showing that the electrons COOL the source and HEAT the drain. For p-

type conductors it is exactly the opposite.

IQ1 =
1

q

∫ +∞

−∞
dE

E − µ1

q
G(E)(f1(E)− f2(E)) (13.13)

IQ2 =
1

q

∫ +∞

−∞
dE

µ2 − E
q

G(E)(f1(E)− f2(E)) (13.14)

The energy extracted from the external source per unit time is given by

IE = V I =
µ1 − µ2

q
I (13.15)

Making use of the current equation Eq.(3.5) we can rewrite IE in the form

IE =
1

q

∫ +∞

−∞
dE

µ1 − µ2

q
G(E)(f1(E)− f2(E))

which can be combined with the equations for IQ1 and IQ2 above to show

that the sum of all three energy currents is zero

IQ1 + IQ2 + IE = 0

as we would expect due to overall energy conservation.
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13.4.1 Linear response

Just as we linearized the current equation (Eq.(3.5)) to obtain an expression

for the current in terms of voltage and temperature differences (Eqs.(13.4)),

we can linearize the heat current equation to obtain

IQ = GP (V1 − V2) +GQ(T1 − T2) (13.16)

where GP =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
E − µ0

q
G(E) (13.17a)

GQ =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
(E − µ0)2

q2T
G(E) (13.17b)

These are the standard expressions for the thermoelectric coefficients due

to electrons which are usually obtained from the Boltzmann equation.

I should mention that the quantity GQ we have obtained is not the

thermal conductance GK that is normally used in the ZT expression cited

earlier (Eq.(13.12)). One reason is what we have stated earlier, namely

that GK also has a phonon component that we have not yet discussed. But

there is another totally different reason. The quantity GK is defined as the

heat conductance under electrical open circuit conditions (I = 0):

GK =

(
∂IQ

∂(T1 − T2)

)
I=0

while it can be seen from Eq.(13.16) that GQ is the heat conductance under

electrical short circuit conditions (V = 0):

GQ =

(
∂IQ

∂(T1 − T2)

)
V1=V2

However, we can rewrite Eqs.(13.4) and (13.16) in a form that gives us the

open circuit coefficients (as noted in Fig.3.3, V and I represent the electron

voltage µ/q and the electron current, which are opposite in sign to the
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conventional voltage and current)

(V1 − V2) =
1

G0
I

S, Seebeck︷ ︸︸ ︷
−GS
G0

(T1 − T2) (13.18a)

IQ =
GP
G0︸︷︷︸

Peltier,Π

I −

(
GQ −

GPGS
G0

)
︸ ︷︷ ︸

Heat Conductance,GK

(T1 − T2) (13.18b)

We have indicated the coefficients that are normally measured experi-

mentally and are named after the experimentalists who discovered them.

Eqs.(13.4) and (13.16), on the other hand, come more naturally in theoret-

ical models because of our Taylor series expansion and it is important to be

aware of the difference. Incidentally, using the expressions in Eqs.(13.6) and

(13.17), we can see that the Peltier and Seebeck coefficients in Eq.(13.18)

obey the Kelvin relation

Π = TS (13.19)

which is a special case of the fundamental Onsager relations that the linear

coefficients are required to obey (Section 10.3.4).

13.5 The delta function thermoelectric

Related video lecture available at course website, Unit 4: L4.4.

µ0 ε

Source Drain

ε + Δε

It is instructive to look at a so-called “delta function” thermoelectric,

which is a hypothetical material with a narrow conductance function lo-

https://www.youtube.com/watch?v=JGv_oV5vfUA
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cated at energy ε with a width ∆ε that is much less than kT . It is straight-

forward to obtain the thermoelectric coefficients of this delta function ther-

moelectric formally starting from the general relations we have obtained in

this chapter, reproduced below for convenience:

G0 =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
G(E) (same as Eq.(13.5))

GS =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
E − µ0

qT
G(E) (same as Eq.(13.6))

GP =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
E − µ0

q
G(E)

GQ =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
(E − µ0)2

q2T
G(E) (same as Eq.(13.17))

We argue that factors like E−µ0 can be pulled out of the integrals assuming

they are almost constant over the very narrow energy range where G(E) is

non-zero. This gives

G0 = G(ε)∆ε

(
− ∂f0

∂E

)
E=ε

(13.20a)

GS =

(
ε− µ0

qT

)
G0 (13.20b)

GP =

(
ε− µ0

q

)
G0 (13.20c)

GQ =

(
(ε− µ0)2

q2T

)
G0 (13.20d)

From Eqs.(13.20) we obtain the coefficients for the delta function thermo-

electric:

S = −GS
G0

= −ε− µ0

qT
(13.21a)

Π = −GP
G0

= −ε− µ0

q
(13.21b)

GK = GQ −
GPGS
G0

= 0 (13.21c)
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Let us now see how we can understand these results from intuitive

arguments without any formal calculations. The Seebeck coefficient in

Eq.(13.21) is the open circuit voltage required to maintain zero current.

Since the channel conducts only at a single energy, in order for no current

to flow, the Fermi functions at this energy must be equal:

f1(ε) = f2(ε)→ ε− µ1

kT1
=

ε− µ2

kT2

Hence

ε− µ1

kT1
=

ε− µ2

kT2
=

(ε− µ1) − (ε− µ2)

k(T1 − T2)
= − µ1 − µ2

k(T1 − T2)

Noting that the Seebeck coefficient is defined as

S ≡ (µ1 − µ2)/q

(T1 − T2)
(with I = 0)

we obtain

S = −ε− µ1

qT1
= −ε− µ2

qT2
≈ − (ε− µ0)

qT

in agreement with the result in Eq.(13.21a).

The expression in Eq.(13.21b) for the Peltier coefficient too can be un-

derstood in simple terms by arguing that every electron carries a charge

−q and a heat ε−µ0, and hence the ratio of the heat current to the charge

current must be (ε− µ0)/(−q).
That brings us to the zero current heat conductance in Eq.(13.21c)

which tells us that the heat current is zero under open circuit conditions,

that is when the regular charge current is zero. This seems quite reasonable.

After all if there is no electrical current, how can there be a heat current?

But if this were the whole story, then no thermoelectric would have any

heat conductance, and not just delta function thermoelectrics.

The full story can be understood by considering a two-channel thermo-

electric with a temperature difference. Under open circuit conditions, there

is a voltage between the two contacts with µ1 < µ2. Although the total

current is zero, the individual currents in each level are non-zero. They are

equal and opposite, thereby canceling each other out. But the correspond-

ing energy currents do not cancel, since the channel with higher energy

carries more energy. Zero charge current thus does not guarantee zero heat
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T 1

µ1

Hot Cold

No
Current

T2

µ2

current, except for a delta function thermoelectric with its sharply peaked

G(E).

Since the delta function thermoelectric has zero heat conductance, the

ZT product (see Eq.(13.12)) should be very large and it would seem that

is what an ideal thermoelectric should look like. However, as we mentioned

earlier, even if the electronic heat conductance were zero, we would still

have the phonon contribution which would prevent the ZT -product from

getting too large. We will talk briefly about this aspect in the next chapter.

13.5.1 Optimizing Power Factor

Let us end this chapter by discussing what factors might maximize the

power factor S2G0 (see Eq.(13.10)) for a thermoelectric. If getting the

highest Seebeck coefficient S were our sole objective then it is apparent

from Eq.(13.6) that we should choose our energy as far from µ0 as possible.

But that would make the conductance G0 from Eq.(13.5) unacceptably low,

because the factor −(∂f0/∂E) dies out quickly as the energy E moves away

from µ0.

From Eqs.(13.20) and (13.21) we have

S2G0 = G(ε)∆ε

(
ε− µ0

qT

)2(
− ∂f0

∂E

)
E=ε

= G(ε)
∆ε

kT

(
k

q

)2

x2 ex

(ex + 1)2︸ ︷︷ ︸
≡F (x)

, where x ≡ ε− µ0

kT
(13.22)

It is apparent from Fig.13.9 that the function F (x) has a maximum around

x ∼ 2, suggesting that ideally we should place our level approximately



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 192

192 Lessons from Nanoelectronics: A. Basic Concepts

F(x)

€ 

x

Fig. 13.9 Plot of F (x) ≡ x2ex

(ex+1)2

2kT above or below the electrochemical potential µ0. The corresponding

Seebeck coefficient and power factor are approximately given by

S ≈ 2
k

q
(13.23a)

S2G0 ≈ 0.5

(
k

q

)2

G(ε)
∆ε

kT
(13.23b)

The best thermoelectrics typically have Seebeck coefficients that are not

too far from the 2(k/q) = 170 µV/K expected from Eq.(13.23a). They are

usually designed to place µ0 a little below the bottom of the band so that

the product of G(E) and −(∂f0/∂E) looks like a “delta function” around

a little above the bottom of the band as shown in the sketch on the left.

The problem is that the corresponding values of conductance are not as

large as they could possibly be if µ0 were located higher up in the band as

sketched on the right. This would be characteristic of metals.

But metals show little promise as thermoelectric materials, because their

Seebeck coefficients are far less than k/q, since the electrochemical potential

lies in the middle of a band of states and there are nearly as many states

above µ0 as there are below µ0. For this reason the field of thermoelectric

materials is dominated by semiconductors which show the highest power

factors. However, the power factor determines only the numerator of the

ZT product in Eq.(13.12). As we mentioned earlier the heat conductance

in the denominator is dominated by phonon transport involving a physics

that is very different from the electronic transport properties that this book
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G(E)
f0 / E

E

ε
µ0

G(E)

E

f0 / E

µ0

is largely about. In the next chapter we will digress briefly to talk about

phonon transport.
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Chapter 14

Phonon transport

14.1 Introduction

We have seen earlier that the electrical conductivity is given by (Eq.(6.22))

σ =
q2

h

(
Mλ

A

)
(14.1)

where the number of channels per unit area M/A and the mean free path

are evaluated in an energy window ∼ a few kT around µ0. The degeneracy

factor g (Section 6.4.1) due to spins and valleys is assumed to be included

in M .

In this chapter we will extend the transport theory for electrons to

handle something totally different, namely phonons and obtain a similar

expression for the thermal conductivity due to phonons

κph =
π

3

k2T

h

(
Mλ

A

)
ph

(14.2)

where the number of channels per unit area M/A and the mean free path λ

are evaluated in a frequency window ~ω ∼ a few kT . There is a degeneracy

factor of g = 3 due to three polarizations that is assumed to be included in

M .

Our purpose in this chapter is two-fold. The first is to provide an

interesting perspective in the hunt for high-ZT thermoelectrics. We have

seen in Chapter 13 that with careful design it is possible to achieve a Seebeck

coefficient ∼ 2k/q while maximizing the numerator in Eq.(13.12). We can

write

195
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ZT ≈ 4
k2T

q2

(
σ

κ+ κph

)
≈ 4

k2T

q2

σ

κph
(14.3)

if we assume that the thermoelectric has been designed to provide a Seebeck

coefficient S ∼ 2k/q and the heat conductivity is dominated by phonons.

Using Eq.(14.3) with Eqs.(14.1) and (14.2) we have

ZT ≈ Mλ/A

(Mλ/A)ph
(14.4)

where we have dropped a factor of ∼ 1 since it is just an approximate

number anyway.

This is an interesting expression suggesting that once a material has

been optimized to provide a respectable Seebeck coefficient (S), the ZT

product we obtain simply reflects the ratio of Mλ/A for electrons and

phonons. As we discussed at the end of the last chapter, the process of

achieving a high S usually puts us in a regime with a low M/A for electrons.

M/A for phonons on the other hand is often much higher ∼ 1 nm−2 at room

temperature, so that the ratio of M/As in Eq.(14.4) is ∼ 0.1 or less. But

electrons tend to have a longer mean free path, resulting in a ZT ∼ 1 for

the best thermoelectrics.

The most promising approach for improving ZT at this time seems

to be to try to suppress the mean free path for phonons without hurting

the electrons (the so-called “electron crystal, phonon glass”). The highest

ZT was about 1 for a long time and has recently increased to 3. Experts

say that an increase of ZT to 4 to 10 would have a major impact on its

practical applications and researchers hope that nanostructured materials

might enable this increase.

Whether they are right, only future experiments can tell, but it is clearly

of interest to understand the principles that govern ZT in nanoscale materi-

als and we hope this chapter will contribute to this understanding. But my

real objective is to demonstrate the power of the elastic resistor approach

that allows us not only to obtain linear transport coefficients for electrons

easily, but also extend the results to a totally different entity (the phonons)

with relative ease.

14.2 Phonon heat current

As we mentioned earlier the thermal conductance of solids has a significant

phonon component in addition to the electronic component we just talked
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about. I will not go into this in any depth. My purpose is simply to show

how easily our elastic transport model is extended to something totally

different.

The atoms comprising the solid lattice are often pictured as an array of

masses connected by springs as sketched above. The vibrational frequencies

of such a system are described by a dispersion relation analogous to the

E(k) relation that describes electron waves, with playing the role of k,

and playing the role of E. The key difference with electrons is that unlike

electrons, there is no exclusion principle. Millions of phonons can be packed

into a single channel creating a sound wave that we can even hear, if the

frequency is low enough.

One consequence of this lack of a exclusion principle is that the equilib-

rium distribution of phonons is given by a Bose function

n(ω) ≡ 1

exp

(
~ω
kT

)
− 1

(14.5)

instead of the Fermi function for electrons introduced in Chapter 2

f(E) ≡ 1

exp

(
E − µ
kT

)
+ 1

(same as Eq.(2.2))

One difference with Eq.(14.5) is just the +1 instead of the −1 in the

denominator, which restricts f(E) to values between 0 and 1, unlike the

n(ω) in Eq.(14.5). The other difference is the absence of an electrochemical

potential µ in Eq.(14.5) which is attributed to the lack of conservation of
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phonons. Unlike electrons, they can appear and disappear as long as other

entities are around to take care of energy conservation.

These results are of course not meant to be obvious, but they represent

basic results from equilibrium statistical mechanics that are discussed in

standard texts. In Chapter 15 on the Second Law, we will try to say a little

more about the basics of equilibrium statistical mechanics. We make use of

these equilibrium results but we cannot really do justice to them without

a major detour from our main objective of presenting a new approach to

non-equilibrium problems.

Anyway, the bottom line is that our result for the charge current carried

by electrons

I =
q

h

∫ +∞

−∞
dE

(
Mλ

L+ λ

)(
f1(E)− f2(E)

)
can be modified to represent the heat current due to phonons

IQ =
1

h

∫ +∞

0

d(~ω)

(
Mλ

L+ λ

)
ph

~ω
(
n1(ω)− n2(ω)

)
(14.6)

simply by making the replacements q → ~ω, E → ~ω and the Fermi func-

tions with the Bose functions:

n1(ω) ≡ 1

exp

(
~ω
kT1

)
− 1

n2(ω) ≡ 1

exp

(
~ω
kT2

)
− 1

and changing the lower integration limit to zero.

Again we can linearize Eq.(14.6) to write (see Appendix A)

IQ ≈ GK(T1 − T2) (14.7)

where the thermal conductance due to phonons can be written as

GK =
k2T

h

∫ +∞

0

dx

(
Mλ

L+ λ

)
ph

x2ex

(ex − 1)2
, x ≡ ~ω

kT
(14.8)

Note that just as the elastic resistor model for electrons ignores effects

due to the inelastic scattering between energy channels, this model for

phonons ignores effects due to the so-called “anharmonic interactions” that

cause phonons to convert from one frequency to another. While ballistic

electron devices have been widely studied for nearly two decades, much less

is known about ballistic phonon devices.



November 30, 2016 21:56 ws-book9x6 Lessons from Nanoelectronics: A. Basic Concepts ws-book9x6 page 199

Phonon transport 199

14.2.1 Ballistic Phonon Current

Before moving on let us take a brief detour to point out that the ballistic

conductance due to phonons is well-known though in a slightly different

form, similar to the Stefan-Boltzmann law for photons. From Eq.(14.8) we

can write the ballistic heat conductance as

[
Gκ

]
ballistic

=
k2T

h

∫ +∞

0

dx Mph
x2ex

(ex − 1)2
(14.9)

To evaluate this expression we need to evaluate the number of modes which

is related to the number of wavelengths that fit into the cross-section, as

we discussed for electrons (see Eq.(6.20))

Mph =
πA

(wavelength)2
3︸︷︷︸

number of polarizations

but we have a degeneracy factor of 3 for the three allowed polarizations.

Noting that for phonons (cs: acoustic wave velocity)

wavelength =
cs

ω/2π

we have Mph =
3ω2A

4πc2s
=

3k2T 2A

4π~2cs2
x2

From Eq.(14.9),

[
GK

]
ballistic

=
3k4T 3

8π2~3c2s

∫ +∞

0

dx
x4ex

(ex − 1)2︸ ︷︷ ︸
=4π4/15

=
π2k4T 3

10~3c2s

Making use of this expression we can write the ballistic heat current from

Eq.(14.7) as

[
IQ

]
ballistic

=
π2k4T 3

10~3c2s
∆T

However, the ballistic current is usually written in a different form making

use of the relation T 3∆T = ∆(T 4) :
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[
IQ

]
ballistic

=
π2k4

40~3c2s
∆T 4 =

π2k4

40~3c2s
(T1

4 − T2
4) (14.10)

The corresponding result for photons is known as the Stefan-Boltzmann

relation for which the numerical factor differs by a factor of 2/3 because

the number of polarizations is 2 instead of 3. But this is just a detour. Let

us get back to diffusive phonon transport.

14.3 Thermal conductivity

Returning to Eq.(14.8) for the thermal conductance due to phonons, we

could define the thermal conductivity

κ =
k2T

h

∫ +∞

0

dx

(
Mλ

A

)
ph

x2ex

(ex − 1)2
(14.11)

such that Gκ =
κA

λ+ L

Note the similarity with the electrical conductivity due to electrons:

σ =
q2

h

∫ +∞

−∞
dx

(
Mλ

L+ λ

)
x2ex

(ex − 1)2

The function

FT (x) ≡ ex

(ex + 1)2

appearing in all electronic transport coefficients is different from the func-

tion

3

π2

x2ex

(ex − 1)2

appearing in Eq.(14.11) but they are of similar shape as shown. The factor

3/π2 is needed to make the area under the curve equal to one, as it is for

the broadening function FT (x) for electrons (see Eq.(2.3)).

So we can think of electrical and thermal conductance at least qualita-

tively in the same way. Just as the electrical conductivity is given by the

product
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Fig. 14.1 Broadening function for phonons compared to that for electrons, FT (x).

These are the window functions defined by Jeong et al. (2011), see Eqs.(7e,f).

q2

h︸︷︷︸
38µs

(
Mλ

A

)

the thermal conductivity is given by

π2

3

k2T

h︸ ︷︷ ︸
284pW/K

(
Mλ

A

)
ph

The factor π2/3 is just the inverse of the 3/π2 needed to normalize the

phonon broadening function. We mentioned at the end of the last chapter

that M/A for electrons tends to be rather small for good thermoelectric

materials whose electrochemical potential µ lies within a kT of the bottom

of the band.

One way to get around this is to use materials where the entire electronic

band of energies is a few kT wide, which is unusual. Unfortunately for the

phonon band this condition is common, giving an average M/A close to the

maximum value. The most popular thermoelectric material Bi2Te3 appears

to have a phonon bandwidth much less than kT , thus making the average

value of M/A for phonons relatively small. The phonon mean free path is

also relatively small, helping raise ZT . For example, M/A ∼ 4×1017 m−2,

λ ∼ 15 nm gives κ ∼ 2 W · m−1 · K−1, numbers that are approximately

representative of Bi2Te3.
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The possible role of nanostructuring in engineering a better thermoelec-

tric is still a developing story whose ending is not clear. At this time all we

can do is to present a different viewpoint that may help us see some new

options. And that is what we have tried to do here.
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Chapter 15

Second law

15.1 Introduction

Related video lecture available at course website, Unit 4: L4.5.

Back in Chapter 13, when discussing the heat current carried by elec-

trons we drew a picture (Fig.13.8) showing the flow of electrons and heat

in an elastic resistor consisting of a channel with two contacts (source

and drain) with a voltage applied across it (Fig.15.1a). Fig.15.1b shows

a slightly generalized version of the same picture that will be useful for the

present discussion: An elastic channel receiving N1 and N2 electrons with

contacts 1 and 2, held at potentials µ1 and µ2 respectively.

Of course both N1 and N2 cannot be positive. If N1 electrons enter the

channel from one contact an equal number must leave from the other con-

tact so that

N1 +N2 = 0 (15.1)

For generality, I have also shown an exchange of energy E0 (but not elec-

trons) with the surroundings at temperature T0, possibly by the emission

and absorption of phonons and/or photons. This exchange is absent in elas-

tic resistors. The principle of energy conservation requires that the total

energy entering the channel is zero

E1 + E2 + E0 = 0 (15.2)

This could be called an example of the first law of thermodynamics. How-

ever, there is yet another principle

E1 − µ1N1

T1
+
E2 − µ2N2

T2
+
E0

T0
≤ 0 (15.3)

203

https://www.youtube.com/watch?v=vTBpwsZaY4o
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ChannelSource Drain

V+ - I
(a) Physical structure (b) Flow of Electrons and Heat

ChannelSource
T1

Drain
T2

1N1 2N2

E1,N1 E2,N2

E1- 1N1
E2- 2N2

Surrounding
T0

E0

Heat Heat

Heat

(a) (b)

Fig. 15.1 (a) Physical structure (b) The flow of electrons and heat in (a) can be depicted

in general terms as shown. For an elastic resistor, E0 = 0.

known as the second law of thermodynamics. Unlike the first law, the

second law involves an inequality. While most people are comfortable with

the first law or the principle of energy conservation, the second law still

continues to excite debate and controversy. And yet in some ways the

second law embodies ideas that we know from experience. Suppose for

example we assume all contacts to be at the same temperature (T2 = T1 =

T0). In this case Eq.(15.3) simply says that the total heat absorbed from

the surroundings

(E1 − µ1N1) + (E2 − µ2N2) + E0 ≤ 0 (15.4)

Making use of Eq.(15.2), this implies

µ1N1 + µ2N2 ≥ 0 (15.5)

The total energy exchanged in the process E1 +E2 +E0 has two parts:

One that came from the thermal energy of the surroundings and the other

that came from the battery. Eq.(15.4) tells us that the former must be nega-

tive, and Eq.(15.5) tells us that the latter must be positive. In other words,

we can take energy from a battery and dissipate it as heat, but we cannot
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take heat from the surroundings and charge up our battery if everything is

at the same temperature.

This should come as no surprise to anybody. After all if we could use

heat from our surroundings to charge a battery (perhaps even run a car!)

then there would be no energy problem. But the point to note is that this

is not prohibited by the first law since energy would still be conserved. It

is the second law that makes a distinction between the energy stored in a

battery and the thermal energy in our surroundings.

The first is easily converted into the second, but not the other way

around because thermal energy is distributed among many degrees of free-

dom. We can take energy from one degree of freedom and distribute it

among many degrees of freedom, but we cannot take energy from many

degrees of freedom and concentrate it all in one. This intuitive feeling is

quantified and generalized by the second law (Eq.(15.3)) based on solid

experimental evidence.

For example if we have multiple “contacts” at different temperatures

then as we saw in Chapter 13 it is possible to take heat from the hotter

contact, dump a part of it in the colder contact, use the difference to charge

up a battery and still be compliance with the second law. Are all the things

we have discussed so far in compliance with the second law?

The answer is yes. For the elastic resistor E0 = 0, and we can write the

second law from Eq.(15.3) in the form

ε− µ1

T1
N1 +

ε− µ2

T2
N2 ≤ 0

where we have written E1 = εN1 and E2 = εN2, assuming that each

electron entering and exiting the channel has an energy of ε. Making use

of Eq.(15.1) this means that(
ε− µ1

T1
− ε− µ2

T2

)
N1 ≤ 0

Our description of the elastic resistor always meets this condition, since the

flow of electrons is determined by f1 − f2, as we saw in Chapter 3. N1 is

positive indicating electron flow from source to drain if f1(ε) > f2(ε) that

is, if

1

1 + exp

(
ε− µ1

kT

) >
1

1 + exp

(
ε− µ2

kT

)
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ε− µ1

T1
<
ε− µ2

T2

Similarly we can show that N1 is negative if

ε− µ1

T1
>
ε− µ2

T2

In either case we have

(
ε− µ1

T1
− ε− µ2

T2

)
N1 ≤ 0

thus ensuring that the second law is satisfied. But what if we wish to go

beyond the elastic resistor and include energy exchange within the channel.

What would we need to ensure that we are complying with the second law?

15.2 Asymmetry of absorption and emission

T , µ
Contact

+E,+N

-E,-N

The answer is that our model needs to ensure that for all processes

involving the exchange of electrons with a contact held at a potential µ

and temperature T , the probability of absorbing E, N be related to the

probability of emitting E, N by the relation

P (+E,+N)

P (−E,−N)
= exp

(
−E − µN

kT

)
(15.6)

If only energy is exchanged, but not electrons, then the relation is modified

to
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P (+E)

P (−E)
= e−E/kT (15.7)

To see how this relation (Eq.(15.6)) ensures compliance with the second

law (Eq.(15.3)), consider the process depicted in Fig.15.1 involving energy

and/or electron exchange with three different “contacts”. Such a process

should have a likelihood proportional to

P (E1, N1)P (E2, N2)P (E0)

while the likelihood of the reverse process will be proportional to

P (−E1,−N1)P (−E2,−N2)P (−E0)

In order for the former to dominate their ratio must exceed one:

P (+E1,+N1)P (+E2,+N2)P (+E0)

P (−E1,−N1)P (−E2,−N2)P (−E0)
≥ 1

If all processes obey the relations stated in Eqs.(15.6), we have

exp

(
− E1 − µ1N1

T1

)
exp

(
− E2 − µ2N2

T2

)
exp

(
− E0

T0

)
≥ 1 (15.8)

which leads to the second law stated in Eq.(15.3), noting that exp (−x)

is greater than one, only if x is less than zero. Note that the equality in

Eq.(15.3) corresponds to the forward probability being only infinitesimally

larger than the reverse probability, implying a very slow net forward rate.

To make the “reaction” progress faster, the forward probability needs to

exceed the reverse probability significantly, corresponding to the inequality

in Eq.(15.3).

So how do we make sure our model meets the requirement in Eq.(15.6)?

Consider for example a conductor with one inelastic scatterer in the middle

separating a region having an energy level at E1 from another having a

level at E2. Electrons flow from contact 1 to 2 by a process of emission

whose probability is given by

D2←1f1(E1)(1− f2(E2))

while the flow from 2 to 1 requires an absorption process with probability

D1←2f2(E2)(1− f1(E1))
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E1T1 , µ1

T2 , µ2

E2

D2←1

E1T1 , µ1

T2 , µ2

E2

D1←2

Since one process involves emission while the other involves absorption, the

rates should obey the requirement imposed by Eq.(15.6):

D2←1

D1←2
= e(E1−E2)/kT0 (15.9)

as we had stated earlier in Chapter 12 in a different context. T0 is the

temperature of the surroundings with which electrons exchange energy. The

current in such an inelastic resistor would be given by an expression of the

form (suppressing the arguments E1 and E2 for clarity)

I ∼ D2←1f1(1− f2)−D1←2f2(1− f1) (15.10)

which reduces to the familiar form for elastic resistors

I ∼ (f1 − f2)

only if

D2←1 = D1←2

corresponding to elastic scattering E2 = E1.

Ordinary resistors have both elastic and inelastic scatterers intertwined

and there is no simple expression relating the current to f1 and f2. The

bottom line is that any model that includes energy exchange in the chan-

nel should make sure that absorption and emission rates are related by

Eq.(15.6) if the surroundings are in equilibrium with a fixed temperature.

Any transport theory, semiclassical or quantum needs to make sure it com-

plies with this requirement to avoid violating the second law.
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1s

2p
x

15.3 Entropy

Related video lecture available at course website, Unit 4: L4.6.

The asymmetry of emission and absorption expressed by Eqs.(15.6) is

actually quite familiar to everyone, indeed so familiar that we may not

recognize it. We all know that if we take a hydrogen atom and place its

lone electron in an excited (say 2p) state, it will promptly emit light and

descend to the 1s state. But an electron placed in the 1s state will stay

there forever. We justify it by saying that the electron “naturally” goes to

its lowest energy state. But there is really nothing natural about this. Any

mechanical interaction (quantum or classical) that takes an electron from

2p to 1s will also take it from 1s to 2p.

The natural descent of an electron to its lowest energy state is driven

by a force that is not mechanical in nature. It is “entropic” in origin, as we

will try to explain. Basically it comes from a property of the surroundings

expressed by Eq.(15.6) which tells us that it is much harder to absorb

anything from a reservoir, compared to emitting something into it. At zero

temperature, a system can only emit and never absorb, and so an electron

in state 2p can emit its way to the lowest energy state 1s, but an electron

in state 1s can go nowhere.

This behavior is of course quite well-established and does not surprise

anyone. But it embodies the key point that makes transport and espe-

cially quantum transport such a difficult subject in general. Any theo-

retical model has to include entropic processes in addition to the familiar

mechanical forces. So where does the preferential tendency to lose energy

rather than gain energy from any “reservoir” come from? Eq.(15.6) can be

understood by noting that when the electron loses energy the contact gains

https://www.youtube.com/watch?v=ehc57j9Crdk
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in energy so that the ratio of the rate of losing energy to the rate of gaining

energy is equal to the ratio of the density of states at E0 + ε to that at E0

(Fig.15.2):

P (−ε)
P (+ε)

=
W (E0 + ε)

W (E0)

Here W (E) represents the number of states available at an energy range E

in the contact which is related to its entropy by the Boltzmann relation

S = k ln (W ) (15.11)

so that

P (−ε)
P (+ε)

= exp

(
S(E0 + ε)− S(E0)

k

)
(15.12)

Assuming that the energy exchanged ε is very small compared to that of

the large contact, we can write

S(E0 + ε)− S(E0) ≈ ε
(
dS

dE

)
E=E0

=
ε

T

with the temperature defined by the relation

1

T
=

(
dS

dE

)
E=E0

(15.13)

This is of course a very profound result saying that regardless of the detailed

construction of any particular reservoir, as long as it is in equilibrium,

dS/dE can be identified as its temperature.

If we accept this, then Eq.(15.11) gives us the basic relation that gov-

erns the exchange of energy with any “reservoir” in equilibrium with a

temperature T :

P (−ε)
P (+ε)

= eε/kT
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“System”“Reservoir”
E

W(E)

€ 

ε
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E
0

+ ε

€ 

E
0

1

2

Down > Up

P (− ε ) P (+ ε )
W (E0)

W (E0 + ε )

Fig. 15.2 Electrons preferentially go down in energy because it means more energy for

the “reservoir” with a higher density of states. It is as if the lower state has a far greater
“weight” as indicated in the lower panel.

Contact

T , µ
µµ

εε − µ

as we stated earlier (see Eq.(15.7)).

If the emission of energy involves the emission of an electron which

eventually leaves the contact with an energy µ, then ε should be replaced

by ε − µ, as indicated in Eq.(15.6). The key idea is the same as what we

introduced in Fig.13.8 when discussing thermoelectric effects, namely that

when an electron is added to a reservoir with energy ε, an amount ε− µ is

dissipated as heat, the remaining µ representing an increase in the energy

of the contact due to the added electron. Indeed that is the definition of

the electrochemical potential µ. Eventually the added electron leaves the

contact as shown.

15.3.1 Total entropy increases continually

Now that we have defined the concept of entropy, we can use it to restate

the second law from Eq.(15.3). If we look at Fig.15.1 we note that E1 −
µ1N1 represents the energy exchange with a “reservoir” at T1, E2 − µ2N2

represents the energy exchange with a “reservoir” at T2, and E0 represents

the energy exchange with a “reservoir” at T0.

Based on the definition of temperature in Eq.(15.13), we can write the

corresponding changes in entropy ∆S1, ∆S2 and ∆S0 as shown below
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ChannelSource
T1

Drain
T2

µ1N1 µ2N2

E1,N1 E2,N2

E1-µ1N1 E2-µ2N2

T0

E0

ΔS1 =
− (E1 − µ1N1)

T1
ΔS2 =

− (E2 − µ2N2 )

T2
ΔS0 =

− E0

T0

Note that these are exactly the same terms (except for the negative

sign) appearing in Eq.(15.3), which can now be restated as

(∆S)1 + (∆S)2 + (∆S)0 ≥ 0 (15.14)

In other words, the second law requires the total change in entropy of all

the reservoirs to be positive.

15.3.2 Free energy decreases continually

0
1
2


E Reservoir,T

Energy
Exchange

System
i

At zero temperature, any system in coming to equilibrium with its sur-

roundings, goes to its state having the lowest energy. This is because a

reservoir at zero temperature will only allow the system to give up energy,

but not to absorb any energy. Interestingly, at non-zero temperatures, one

can define a quantity called the free energy

F = E − TS (15.15)
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such that at equilibrium a system goes to its state with minimum free

energy. At T = 0, the free energy, F is the same as the total energy, E.

To see this, consider a system that can exchange energy with a reser-

voir such that the total energy is conserved. Using the subscript “R” for

reservoir quantities we can write

∆E + ∆ER = 0 (15.16a)

∆S + ∆SR ≥ 0 (15.16b)

which are basically the first and second laws of thermodynamics that we

have been discussing. Noting that

∆SR =
∆ER
T

we can combine Eqs.(15.16) to write

∆F ≡ ∆E − T∆S ≤ 0 (15.17)

which tells us that all energy exchange processes permitted by the first

and second laws will cause the free energy to decrease, so that the final

equilibrium state will be one with minimum free energy.

15.4 Law of equilibrium

Related video lecture available at course website, Unit 4: L4.7.

The preferential tendency to lose energy rather than gain energy from

any surrounding “reservoir” as expressed in Eq.(15.6) leads to a universal

law stating that any system in equilibrium having states i with energy Ei
and with Ni particles will occupy these states with probabilities

pi =
1

Z
e−(Ei−µNi)/kT (15.18)

where Z is a constant chosen to ensure that all the probabilities add up to

one. To see this we note that all reservoirs in equilibrium have the property

https://www.youtube.com/watch?v=--rGeY9S5Yw
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“Fock space”
N2

N1
P(E,N )

P(− E, − N )

E = E1 − E2 ,

N = N1 − N2

E1

E2

P (+E,+N)

P (−E,−N)
= exp

(
−E − µN

kT

)
(15.19)

Suppose we have a system with two states as shown exchanging energy

and electrons with the surroundings. At equilibrium, we require upward

transitions to balance downward transitions, so that

p2P (E,N) = p1P (−E,−N)

Making use of Eq.(15.6), we have

p1

p2
=
P (+E,+N)

P (−E,−N)
= exp

(
− (E1 − µN1)− (E2 − µN2)

kT

)
It is straightforward to check that the probabilities given by Eq.(15.18)

satisfy this requirement and hence represent an acceptable equilibrium so-

lution. How can we have a law of equilibrium so general that it can be

applied to all systems irrespective of its details? Because as we noted ear-

lier it comes from the property of the surroundings and not the system.

Eq.(15.18) represents the key principle or equilibrium statistical me-

chanics, Feynman (1965) called it the “summit”. But it looks a little dif-

ferent from the two equilibrium distributions we introduced earlier, namely

the Fermi function (Eq.(2.2)) and the Bose function (Eq.(14.5)).

Fig.15.3 shows these two functions which look the same at high energies

but deviate significantly at low energies. Electrons obey the exclusion prin-

ciple and so the occupation f(E) is restricted to values between 0 and 1.
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E − µ

kT
or
ω

kT

Bose
Function

Fermi
Function

Fig. 15.3 The Fermi function (Eq.(2.2)) and the Bose function (Eq.(14.5)).

The Bose function is not limited between 0 and 1 since there is no exclusion

principle.

Interestingly, however, both the Bose function and the Fermi function

are special cases of the general law of equilibrium in Eq.(15.18). To see this,

however, we need to introduce the concept of Fock space since the energy

levels appearing in Eq.(15.18) do not represent the one-electron states we

have been using throughout the book. They represent the so-called Fock

space states, a new concept that needs some discussion.

15.5 Fock space states

Consider a simple system with just one energy level, ε. In the one electron

picture we think of electrons going in and out of this level. In the Fock space

picture we think of the two possible states of the system, one corresponding

to an empty state with energy E = 0, and one corresponding to a filled state

with energy E = ε as shown.

One-electron picture

E = ε

“Fock space”

0

1
E = ε

€ 

E = 0

When an electron comes in the system goes from the empty state (0)

to the full state (1), while if an electron leaves, the system goes from 1 to

0. Applying the general law of equilibrium (Eq.(15.18)) to the Fock space
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states, we have

p0 = 1/Z and p1 =
e−x

Z

where x ≡ (ε− µ)/kT (15.20)

Since the two probabilities p0 and p1 must add up to one, we have

Z = 1 + e−x

p0 =
1

e−x + 1
= 1− f0(ε)

p1 =
e−x

e−x + 1
=

1

ex + 1
= f0(ε)

The probability of the system being in the full state, p1 thus equals the

Fermi function while the probability of the system being in the empty

state, p0 equals one minus the Fermi function, as we would expect.

15.5.1 Bose function

The Bose function too follows from Eq.(15.18), but we need to apply it

to a system where the number of particles go from zero to infinity. Fock

space states for electrons on the other hand are restricted to just zero or

one because of the exclusion principle.

Eq.(15.18) then gives us the probability of the system being in the N -

photon state as

pN =
e−Nx

Z
, where x ≡ ~ω

kT

To ensure that all probabilities add up to one, we have

Z =

∞∑
N=0

e−Nx =
1

1− e−x
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“Fock space”
for photons

0

1 E =

 

E = 0

2 E = 2

3 E = 3

so that the average number of photons is given by

n =

∞∑
N=0

NpN =
1

Z

∞∑
N=0

Ne−Nx

Noting that

∞∑
N=0

Ne−Nx = − d

dx

∞∑
N=0

e−Nx = − d

dx
Z

we can show with a little algebra that

n =
1

ex − 1

which is the Bose function stated earlier in Eq.(14.5).

The reason we have E−µ appearing in the Fermi function for electrons

but not ~ω−µ in the Bose function for photons or phonons is that the latter

are not conserved. As we discussed in Section 15.3, when an electron enters

the contact with energy E, it relaxes to an average energy of µ, and the

energy dissipated is E − µ. But when a photon or a phonon with energy

~ω is emitted or absorbed, the energy dissipated is just that. However,

there are conserved particles (not photons or phonons) that also obey Bose

statistics, and the corresponding Bose function has E − µ and not just E.
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15.5.2 Interacting electrons

The general law of equilibrium (Eq.(15.18)) not only gives us the Fermi and

Bose functions but in principle can also describe the equilibrium state of

complicated interacting systems, if we are able to calculate the appropriate

Fock space energies. Suppose we have an interacting system with two one-

electron levels corresponding to which we have four Fock space states as

shown labeled 00, 01, 10 and 11. The 11 state with both levels occupied

has an extra interaction energy U0 as indicated.

What is the average number of electrons if the system is in equilibrium with

an electrochemical potential µ? Once again defining,

x ≡ ε− µ
kT

we have from Eq.(15.18)

p00 =
1

Z

p01 = p10 =
e−x

Z

p11 =
e−2x

Z
e−U0/kT

The average number of electrons is given by

n = 0 · p00 + 1 · p01 + 1 · p10 + 2 · p11

=
2(e−x + e−2xe−U0/kT )

Z
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We could work out the details for arbitrary interaction energy U0, but it

is instructive to look at two limits. Firstly, the non-interacting limit with

U0 → 0 for which

Z = 1 + 2e−x + e−2x = (1 + e−x)2

so that with a little algebra we have

n =
2

1 + e(ε−µ)/kT
, U0 → 0 (15.21)

equal to the Fermi function times two as we might expect since there are

two non-interacting states. The other limit is that of strongly interacting

electrons for which Z = 1 + 2e−x so that

n =
1

1 +
1

2
e(ε−µ)/kT

, U0 →∞ (15.22)

a result that does not seem to follow in any simple way from the Fermi

function. With g one-electron states present, it takes a little more work to

show that the number is

n =
1

1 +
1

g
e(ε−µ)/kT

, U0 →∞ (15.23)

This result may be familiar to some readers in the context of counting

electrons occupying localized states in a semiconductor.

Equilibrium statistical mechanics is a vast subject and we are of course

barely scratching the surface. My purpose here is simply to give a reader

a feel for the concept of Fock space states and how they relate to the one

electron states we have generally been talking about.

This is important because the general law of equilibrium (Eq.(15.18))

and the closely related concept of entropy (Eq.(15.11)) are both formulated

in terms of Fock space states. We have just seen how the law of equilibrium

can be translated into one-electron terms for non-interacting systems. Next

let us see how one does the same for entropy.
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15.6 Alternative expression for entropy

Related video lecture available at course website, Unit 4: L4.8.

 
Equilibrium state, S = Nk n2

Consider a system of independent localized spins, like magnetic impu-

rities in the channel. At equilibrium, half the spins randomly point up and

the other half point down. What is the associated entropy? Eq.(15.11) de-

fines the entropy S as k ln (W ) being the total number of Fock space states

accessible to the system. In the present problem we could argue that each

spin has two possible states (up or down) so that a collection of N spins

has a total of 2N states:

W = 2N → S = k ln (W ) = Nk ln (2) (15.24)

This is correct, but there is an alternative expression that can be used

whenever we have a system composed of a large number of identical inde-

pendent systems, like the N spin collection we are considering:

S = −Nk
∑
i

p̃i ln (p̃i) (15.25)

where the p̃i denote the probabilities of finding an individual system in its

ith state. An individual spin, for example has a probability of 1/2 for being

in either an up or a down state, so that from Eq.(15.25) we obtain

S = −Nk
{

1

2
ln

(
1

2

)
+

1

2
ln

(
1

2

)}
= Nk ln (2)

exactly the same answer as before (Eq.(15.24)).

Eq.(15.25), however, is more versatile in the sense that we can use it

easily even if the p̃i happen to be say 1/4 and 3/4 rather than 1/2 for each.

Besides it is remarkably similar to the expression for the Shannon entropy

associated with the information content of a message composed of a string

https://www.youtube.com/watch?v=mIghh0B5rv4
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of N symbols each of which can take on different values i with probability

p̃i. In the next chapter I will try to elaborate on this point further.

Let me end this chapter simply by indicating how this new expression

for entropy given in Eq.(15.25) is obtained from our old one that we used

in Eq.(15.24). This is described in standard texts on statistical mechanics

(see for example, Dill and Bromberg (2003)).

15.6.1 From Eq.(15.24) to Eq.(15.25)

 

 

 

Ei , pi{ } Ei , pi{ } Ei , pi{ }

Ei , pi{ }Ei , pi{ }Ei , pi{ }

Ei , pi{ }Ei , pi{ }Ei , pi{ }

Consider a very large number N of identical systems each with energy

levels {Ei} occupied according to probabilities p̃i, such that the number of

these systems in state i is given by

Ni = Np̃i

The total number of ways in which we can have a particular set of Ni should

equal W , so that from standard combinatorial arguments we can write

W =
N !

N1!N2! . . .
Taking the logarithm and using Stirling’s approximation for large n

ln (n!) ∼= n ln (n)− n
we have ln (W ) = ln (N !)− ln (N1!)− ln (N2!)− . . .

= N ln (N)−Np̃1 ln (Np̃1)−Np̃2 ln (Np̃2)− . . .
Making use of the condition that all the probabilities p̃i add up to one, we

have

ln (W ) = −N(p̃1 ln (p̃1) + p̃2 ln (p̃2) + . . .) = −N
∑
i

p̃i ln (p̃i)

This gives us W in terms of the probabilities, thus connecting the two

expressions for entropy in Eq.(15.25) and Eq.(15.24).
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15.6.2 Equilibrium distribution from minimizing free en-

ergy

One last observation before we move on. In general the system could be

in some arbitrary state (not necessarily the equilibrium state) where each

energy level Ei is occupied with some probability p̃i. However, we have

argued that for the equilibrium state, the probabilities p̃i are given by

[p̃i]equilibrium =
1

Z
e−Ei/kT ≡ pi (15.26)

where Z is a constant chosen to ensure that all the probabilities add up

to one. We have also argued that the equilibrium state is characterized by

a minimum in the free energy F = E − TS. Can we show that of all the

possible choices for the probabilities p̃i, the equilibrium distribution is pi
the one that will minimize the free energy ?

Noting that the energy of an individual system is given by

E =
∑
i

Eip̃i

and using S/N from Eq.(15.24) we can express the free energy as

F =
∑
i

p̃i(Ei + kT ln (p̃i)) (15.27)

which can be minimized with respect to changes in p̃i

dF = 0 =
∑
i

dp̃i(Ei + kT ln (p̃i) + kT )

=
∑
i

dp̃i(Ei + kT ln (p̃i))

noting that the sum of all probabilities is fixed, so that∑
i

dp̃i = 0

We can now argue that in order to ensure that dF is zero for arbitrary

choices of dp̃i we must have

Ei + kT ln (p̃i) = 0

which gives us the equilibrium probabilities in Eq.(15.18).
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Even if the system is not in equilibrium we can use Eq.(15.27) to cal-

culate the free energy F of an out-of equilibrium system if we know the

probabilities p̃i. But the answer should be a number larger than the equi-

librium value. In the next chapter I will argue that in principle we can

build a device that will harness the excess free energy

∆F = F − Feq

of an out-of-equilibrium system to do useful work.

The excess free energy has two parts:

∆F︸︷︷︸
excess free energy

= ∆E︸︷︷︸
excess energy

− T ∆S︸︷︷︸
Information

(15.28)

The first part represents real energy, but the second represents information

that is being traded to convert energy from the surrounding reservoirs into

work. Let us now talk abut this “fuel value of information.”
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Chapter 16

Fuel value of information

Related video lecture available at course website, Unit 4: L4.9.

16.1 Introduction

A system in equilibrium contains no information, since the equilibrium state

is independent of past history. Usually information is contained in systems

that are stuck in some out of equilibrium state. We would like to argue that

if we have such an out-of-equilibrium system, we can in principle construct

a device that extracts an amount of energy less than or equal to

Eavailable = F − Feq (16.1)

where F is the free energy of the out-of-equilibrium system and Feq is the

free energy of the system once it is restored to its equilibrium state. Let

me explain where this comes from.

For example a collection of independent spins in equilibrium would be

randomly half up and half down at any temperature. So if we put them

into an all-up state, as shown below, we cannot talk about the temperature

of this system. But we could still use Eq.(15.24) to find its entropy, which

would be zero.

With this in mind we could rewrite the second law by replacing

E0

T0
with −∆S

in Eq.(15.3) :

E1 − µ1N1

T1
+
E2 − µ2N2

T2
−∆S ≤ 0 (16.2)

225

https://www.youtube.com/watch?v=-eW0Qh2SrYA
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ChannelSource
T1

Drain
T2

µ1N1 µ2N2

E1,N1 E2,N2

E1-µ1N1
E2-µ2N2

Out-of-
equilibrium
system

E0

Heat Heat

Heat

Fig. 16.1 An out-of-equilibrium system can in principle be used to construct a battery.

Consider the general scheme discussed in the last chapter, but with both contacts at the
same temperature T and with the electrons interacting with some metastable system.

Since this system is stuck in an out-of-equilibrium state we cannot in general talk about

its temperature.

 

Equilibrium state, S = Nk n (2) Out - of - equilibrium state, S = 0

Fig. 16.2 A collection of N independent spins in equilibrium would be randomly half up

and half down, but could be put into an out-of-equilibrium state with all spins pointing
up.

Energy conservation requires that

E1 + E2 = −E0 ≡ ∆E (16.3)

where ∆E is the change in the energy of the metastable system.

Combining Eqs.(16.2) and (16.3), assuming T1 = T2 = T, and making

use of N1 +N2 = 0, we have

(µ1 − µ2)N1 ≥ ∆E − T∆S = ∆F (16.4)

Ordinarily, ∆F can only be positive, since a system in equilibrium is at its

minimum free energy and all it can do is to increase its F . In that case,

Eq.(16.4) requires that N1 have the same sign as µ1−µ2, that is, electrons

flow from higher to lower electrochemical potential, as in any resistor.

But a system in an out-of-equilibrium state can relax to equilibrium

with a corresponding decrease in free energy, so that ∆F is negative, and

N1 could have a sign opposite to that of µ1−µ2, without violating Eq.(16.4).

Electrons could then flow from lower to higher electrochemical potential, as

they do inside a battery. The key point is that a metastable non-equilibrium

state can at least in principle be used to construct a battery.
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µ µ

LiCoO2

µ1 µ2
Li+

LixC6 Li

e- e-

C6CoO21-x

R R

In a way this is not too different from the way real batteries work. Take

the lithium ion battery for example. A charged battery is in a metastable

state with excess Lithium ions intercalated in a carbon matrix at one elec-

trode. As Lithium ions migrate out of the carbon electrode, electrons flow

in the external circuit till the battery is discharged and the electrodes have

reached the proper equilibrium state with the lowest free energy. The max-

imum energy that can be extracted is the change in the free energy. Usually

the change in the free energy F comes largely from the change in the real

energy E (recall that F = E − TS).

That does not sound too surprising. If a system starts out with an

energy E that is greater than its equilibrium energy E0, then as it relaxes,

it seems plausible that a cleverly designed device could capture the extra

energy E − E0 and deliver it as useful work. What makes it a little more

subtle, is that the extracted energy could come from the change in entropy

as well.

For example the system of localized spins shown in Fig.16.2 in going

from the all-up state to its equilibrium state suffers no change in the actual

energy, assuming that the energy is the same whether a spin points up or

down. In this case the entire decrease in free energy comes from the increase

in entropy:

∆E = 0 (16.5a)

∆S = Nk ln (2) (16.5b)

∆F = ∆E − T∆S = −NkT ln (2) (16.5c)
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According to Eq.(16.5) we should be able to build a device that will deliver

an amount of energy equal to NkT ln (2). In this chapter I will describe

a device based on the anti-parallel spin valve (Chapter 12) that does just

that. From a practical point of view, NkT ln (2), amounts to about 2.5 kJ

per mole, about two to three orders of magnitude lower than the available

energy of real fuels like coal or oil which comes largely from ∆E.

But the striking conceptual point is that the energy we extract is not

coming from the system of spins whose energy is unchanged. The energy

comes from the surroundings. Ordinarily the second law stops us from

taking energy from our surroundings to perform useful work. But the in-

formation contained in the non-equilibrium state in the form of “negative

entropy” allows us to extract energy from the surroundings without violat-

ing the second law.

From this point of view we could use the relation F = E − TS to

split up the right hand side of Eq.(16.1) into an actual energy and an info-

energy that can be extracted from the surroundings by making use of the

information available to us in the form of a deficit in entropy S relative to

the equilibrium value Seq:

Eavailable = E − Eeq︸ ︷︷ ︸
Energy

+ T (Seq − S)︸ ︷︷ ︸
Info−Energy

(16.6)

For a set of independent localized spins in the all-up state, the available

energy is composed entirely of info-energy: there is no change in the actual

energy.

16.2 Information-driven battery

Let us see how we could design a device to extract the info-energy from

a set of localized spins. Consider a perfect anti-parallel spin-valve device

(Chapter 12) with a ferromagnetic source that only injects and extracts

upspin electrons and a ferromagnetic drain that only injects and extracts

downspin electrons from the channel (Fig.16.3). These itinerant electrons

interact with the localized spins through an exchange interaction of the

form

u+D ⇐⇒ U + d (16.7)
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where u, d represent up and down channel electrons, while U , D represent

up and down localized spins. Ordinarily this “reaction” would be going

equally in either direction. But by starting the localized spins off in a state

with U � D, we make the reaction go predominantly from right to left and

the resulting excess itinerant electrons u are extracted by one contact while

the deficiency in d electrons is compensated by electrons entering the other

contact. After some time, there are equal numbers of localized U and D

spins and the reaction goes in either direction and no further energy can

be extracted.

But what is the maximum energy that can be extracted as the localized

spins are restored from their all up state to the equilibrium state? The

answer is NkT ln (2) equal to the change in the free energy of the localized

spins as we have argued earlier.

µ1 µ2

R

So
ur
ce

D
rain

(a)

µ µ

R

So
ur
ce

D
rain

(b)

Fig. 16.3 An info-battery: (a) A perfect anti-parallel spin-valve device can be used to

extract the excess free energy from a collection on N localized spins, all of which are

initially up. (b) Eventually the battery runs down when the spins have been randomized.

But let us see how we can get this result from a direct analysis of the

device. Assuming that the interaction is weak we expect the upspin channel

electrons (u) to be in equilibrium with contact 1 and the downspin channel

electrons (d) to be in equilibrium with contact 2, so that

fu(E) =
1

exp

(
E − µ1

kT

)
+ 1
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and fd(E) =
1

exp

(
E − µ2

kT

)
+ 1

(16.8)

Assuming that the reaction

u+D ⇐⇒ U + d

proceeds at a very slow pace so as to be nearly balanced, we can write

PD fu (1− fd) = PU fd (1− fu)

PU
PD

=
fu

1− fu
1− fd
fd

= e∆µ/kT (16.9)

where ∆µ ≡ µ1 − µ2

Here we assumed a particular potential µ1,2 and calculated the corre-

sponding distribution of up and down localized spins. But we can reverse

this argument and view the potential as arising from a particular distribu-

tion of spins.

∆µ = kT ln

(
PU
PD

)
(16.10)

Initially we have a larger potential difference corresponding to a pre-

ponderance of upspins (Fig.16.3, left), but eventually we end up with equal

up and down spins (Fig.16.3, right) corresponding to µ1 = µ2 = µ.

Looking at our basic reaction (Eq.(16.7)) we can see that everytime a D

flips to an U , a u flips to a d which goes out through the drain. But when

a U flips to a D, a d flips to a u which goes out through the source. So

the net number of electrons transferred from the source to the drain equals

half the change in the difference in the number of U and D spins:

n(Source→ Drain) = −∆NU

We can write the energy extracted as the potential difference times the

number of electrons transferred

E = −
∫ Final

Initial

∆µ dNU (16.11)
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Making use of Eq.(16.10) we can write

E = −NkT
∫ Final

Initial

(ln (PU )− ln (PD)) dPU

Noting that

dPU + dPD = 0

and that

S = −Nk(PU ln (PU ) + PD ln (PD)) (16.12)

we can use a little algebra to rewrite the integrand as

(ln (PU )− ln (PD))dPU = d(PU ln (PU ) + PD ln (PD)) = − dS
Nk

so that E = T

∫ Final

Initial

dS = T∆S

which is the basic result we are trying to establish, namely that the

metastable state of all upspins can in principle be used to construct a

battery that could deliver upto

T∆S = NkT ln (2)

of energy to an external load.

16.3 Fuel value comes From knowledge

A key point that might bother a perceptive reader is the following. We

said that the state with all spins up has a higher free energy than that for

a random collection of spins: F > F0, and that this excess free energy can

in principle be extracted with a suitable device.

But what is it that makes the random collection different from the

ordered collection. As Feynman put it, we all feel that it is unusual to see

a car with a license plate number 9999. But it is really just as remarkable

to see a car with any specific predetermined number say 1439. Similarly

if we really knew the spins to be in a very specific but seemingly random

configuration like the one sketched here, its entropy would be zero, just like

the all up configuration. The possibility of extracting energy comes not
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from the all up nature of the initial state, but from knowing exactly what

state it is in.

But how would we construct our conceptual battery to extract the en-

ergy from a random but known configuration? Consider a simple configu-

ration that is not very random: the top half is up and the bottom half is

down. Ordinarily this would not give us any open circuit voltage, the top

half cancels the bottom half. But we could connect it as shown in Fig.16.4

reversing the contacts for the left and right halves and extract energy.

µ1 µ2R

Fig. 16.4 A suitably designed device can extract energy from any known configuration

of spins.

Following the same principle we could construct a device to extract

energy from a more random collection too. The key point is to know the

exact configuration so that we can design the contacts accordingly.

Of course these devices would be much harder to build than the one

we started with for the all-up configuration. But these devices are just

intended to be conceptual constructs intended to illustrate a point. The

point is that information consists of a system being in an out of equilibrium

state and our knowing exactly which state it is in. This information can in

principle be used to create a battery and traded for energy.

In the field of information theory, Shannon introduced the word entropy

as a measure of the information content of a signal composed of a string of
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symbols i that appear with probability pi

H = −
∑
i

pi ln (pi) (16.13)

This expression looks like the thermodynamic entropy (see Eq.(15.11))

except for the Boltzmann constant and there are many arguments to this

day about the connection between the two. One could argue that if we

had a system with states i with equilibrium probabilities pi, then k × H
represents the entropy of an equilibrium system carrying no information.

As soon as someone tells us which exact state it is in, the entropy becomes

zero so that the entropy is lowered by (Nk)×H increasing its free energy

by (NkT )×H. In principle, at least we could construct a battery to extract

this excess free energy (NkT )×H.

16.4 Landauer’s principle

The idea that a known metastable state can be used to construct a battery

can be connected to Landauer’s principle which talks about the minimum

energy needed to erase one bit of information. In our language, erasure

consists of taking a system from an equilibrium state (Feq) to a known

standard state (F ):

Feq = NkT n (2) Erasure F = 0

Is there a minimum energy needed to achieve this? We have just argued

that once the spin is in the standard state we can construct a battery to

extract from it. In a cyclic process we could spend to go from Feq to F ,

and then construct a battery to extract from it, so that the total energy

spent over the cycle equals

Eerase − (F − Feq)

which must be greater than zero, or we would have a perpetual source of

energy. Hence
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Eerase ≥ (F − Feq)

which in this case yields Landauer’s principle:

Eerase ≥ NkT ln (2)

It seems to us, that erasure need not necessarily mean putting the spins

in an all-up state. More generally it involves putting them in a known state,

analogous to writing a complicated musical piece on a magnetic disk. Also,

the minimum energy of erasure need not necessarily be dissipated. It often

ends up getting dissipated only because it is impractical to build an info-

battery to get it back. Fifty years ago Landauer asked deep questions that

were ahead of his time. Today with the progress in nanoelectronics, the

questions are becoming more and more relevant, and some of the answers

at least seem fairly clear. Quantum mechanics, however, adds new features

some of which are yet to be sorted out and are being actively debated at

this time.

16.5 Maxwell’s demon

Our info-battery could be related to Maxwell’s famous demon (see for ex-

ample, Lex (2005)) who was conjectured to beat the second law by letting

hot molecules (depicted black) go from left to right and cold molecules (de-

picted gray) go from right to left so that after some time the right hand

side becomes hot and the left hand side becomes cold (Fig.16.5).

To see the connection with our “info-battery” in Fig.16.4 we could draw

the following analogy:

Hot molecules ↔ up− spin electrons

Cold molecules ↔ down− spin electrons

Demon ↔ collection of localized spins

Left of box ↔ source contact

Right of box ↔ drain contact

Our battery is run by a set of all up localized spins that flip electrons up

and send them to the source, while replacing the down-spin from the drain.
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Fig. 16.5 Maxwell’s demon creates a temperature difference by letting hot molecules
go preferentially to the right.

The demon sends hot molecules to the left and cold molecules to the right,

which is not exactly the same process, but similar.

The key point, however, is that the demon is making use of informa-

tion rather than energy to create a temperature difference just as our info-

battery uses the low entropy sate of the localized spins to create a potential

difference. Like our localized spins, the demon too must gradually transi-

tion into a high entropy state that will stop it from discriminating between

hot and cold molecules. Or as Feynman (1963) put it in one of his Lectures,

“ .. if we build a finite-sized demon, the demon himself gets so warm,

he cannot see very well after a while.”

Like our info-battery (Fig.16.4), eventually the demon stops functioning

when the entropy reaches its equilibrium value and all initial information

has been lost. We started in chapter 1 by noting how transport processes

combine two very different types of processes, one that is force-driven and

another that is entropy-driven. In these last two chapters, my objective has

been to give readers a feeling for the concept of an “entropic force” that

drives many everyday phenomena.

The fully polarized state with S = 0 spontaneously goes to the unpo-

larized state with S = Nk ln (2), but to make it go the other way we need

to connect a battery and do work on it. This directed flow physically arises

from the fact that the fully polarized state represents a single state while

the unpolarized state represents numerous (2N ) possibilities. It is this sheer
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S = 0 S = Nk ln(2)

number that drives the impurities spontaneously from the low entropy to

the high entropy state and not the other way. Many real life phenomena

are driven by such entropic forces which are very different from ordinary

forces that take a system from a single state to another single state.

Interestingly these deep concepts are now finding applications in the

design of Boltzmann machines that are having a major impact on the very

active field of machine learning. The Boltzmann law tells us how to cal-

culate the probability of different Fock space states (Section 15.5) in large

systems. Today people are figuring out how to solve important problems by

designing the interactions in large systems such that the highest probability

state in Fock space embeds the correct solution to the problem. But that

is a different story and this volume is already too long!

The main message I want to convey is that what makes the topic of

transport so complicated is the intertwining of force-driven and entropy-

driven phenomena. We have seen how the elastic resistor allows us to

separate the two, with entropic processes confined to the contacts, and the

channel described by semi-classical mechanics. It is time to move on to

Part B to look at the quantum version of the problem with the channel

described by quantum mechanics.
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This book is based on a set of two online courses originally offered in 2012 on

nanoHUB-U and more recently in 2015 on edX. These courses are now avail-

able in self-paced format at nanoHUB-U (https://nanohub.org/u) along

with many other unique online courses.

In preparing the second edition we decided to split the book into parts A

and B following the two online courses available on nanoHUB-U entitled

Fundamentals of Nanoelectronics

Part A: Basic Concepts Part B: Quantum Transport

Also of possible interest in this context: NEGF: A Different Perspective

A detailed list of video lectures available at the course website correspond-

ing to different sections of this volume (Part A: Basic Concepts) have been

listed at the beginning.

Even this Second Edition represents lecture notes in unfinished form. I plan

to keep posting additions/corrections at the book website.

This book is intended to be accessible to anyone in any branch of science

or engineering, although we have discussed advanced concepts that should

be of interest even to specialists, who are encouraged to look at my earlier

books for additional technical details.

Datta S. (1995). Electronic Transport in Mesoscopic Systems

Datta S. (2005). Quantum Transport: Atom to Transistor

Cambridge University Press
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https://nanohub.org/u
https://nanohub.org/courses/fon1
https://nanohub.org/courses/fon2
https://www.youtube.com/watch?v=Nilx8sfmEMo
https://nanohub.org/groups/lnebook
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Over 50 years ago David Pines in his preface to the Frontiers in Physics

lecture note series articulated the need for both a consistent account of a

field and the presentation of a definite point of view concerning it. That

is what we have tried to provide in this book, with no intent to slight any

other point of view or perspective.

The viewpoint presented here is unique, but not the topics we discuss. Each

topic has its own associated literature that we cannot do justice to. What

follows is a very incomplete list representing a small subset of the relevant

literature, consisting largely of references that came up in the text.

Chapter 1

Fig. 1.5 is reproduced from

McLennan M. et al. (1991) Voltage Drop in Mesoscopic Systems, Phys.

Rev. B, 43, 13846

A recent example of experimental measurement of potential drop across

nanoscale defects

Willke P. et al.(2015) Spatial Extent of a Landauer Residual-resistivity

Dipole in Graphene Quantified by Scanning Tunnelling Potentiom-

etry, Nature Communications, 6, 6399.

The transmission line model referenced in Section 1.8 is discussed in Section

9.4 and is based on

Salahuddin S. et al.(2005) Transport Effects on Signal Propagation in

Quantum Wires, IEEE Trans. Electron Dev. 52, 1734

Some of the classic references on the non-equilibrium Green’s function

(NEGF) method

Martin P.C. and Schwinger J. (1959) Theory of Many-particle Systems I,

Phys. Rev. 115, 1342

Kadanoff L.P. and Baym G. (1962) Quantum Statistical Mechanics, Fron-

tiers in Physics, Lecture note series, Benjamin/Cummings

Keldysh (1965) Diagram Technique for Non-equilibrium Processes, Sov.

Phys. JETP 20, 1018
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The quote on the importance of the “channel” concept in Section 1.8 is

taken from

Anderson P.W. (2010) 50 years of Anderson Localization, ed. E. Abra-

hams, Chapter 1, Thoughts on localization

The quote on the importance of physical pictures, even if approximate, in

Section 1.9 is taken from

Feynman R.P. (1963) Lectures on Physics, vol.II-2, Addison-Wesley.

Part I: What determines the resistance

Chapter 4

For an excellent physical discussion of diffusion processes and the diffusion

time (Eq.4.7)

Berg H.C. (1993) Random Walks in Biology, Princeton University Press.

Chapter 5

For an introduction to diagrammatic methods for conductivity calculation

based on the Kubo formula, the reader could look at

Doniach S. and Sondheimer E.H. (1974), Greens Functions for Solid

State Physicists, Frontiers in Physics Lecture Note Series, Ben-

jamin/Cummings

Also Section 5.5 of Datta (1995) cited at the beginning.

There is an extensive body of work on subtle correlation effects in elastic

resistors some of which have been experimentally observed. See for example,

Splettstoesser J. et al. (2010) Two-particle Aharonov-Bohm effect in Elec-

tronic Interferometers, Journal of Physics A: Mathematical and

Theoretical 43, 354027.

Part II: Simple model for density of states

Chapter 6

A seminal paper in the field
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Thouless, D. (1977). Maximum Metallic Resistance in Thin Wires, Phys.

Rev. Lett. 39, 1167

An example of experiments showing electron density dependence of graphene

conductance

Bolotin K.I. et al. (2008) Temperature Dependent Transport in Suspended

Graphene, Phys. Rev. Lett. 101, 096802

A recent book with a thorough discussion of graphene-related materials

Torres L.E.F.Foa et al. (2014) Introduction to Graphene-based Nanoma-

terials, Cambridge University Press

Chapter 7

This discussion is based on a model pioneered by Mark Lundstrom that is

widely used in the field.

Rahman A. et al. (2003) Theory of Ballistic Transistors, IEEE Trans.

Electron Dev. 50, 1853 and references therein.

Lundstrom M.S. and Antoniadis D. (2014) Compact Models and the

Physics of Nanoscale FETs, IEEE Trans. Electron Dev. 61, 225

and references therein.

Two experiments reporting the discovery of quantized conductance in bal-

listic conductors.

van Wees, B.J et al. (1988) Quantized Conductance of Points Contacts in

a Two-Dimensional Electron Gas, Phys.Rev.Lett. 60, 848.

Wharam, D.A. et al. (1988) One-Dimensional Transport and the Quanti-

sation of the Ballistic Resistance, J.Phys.C. 21, L209.

An experiment showing approximate conductance quantization in a hydro-

gen molecule

Smit R.H.M. et al. (2002) Measurement of the Conductance of a Hydrogen

Molecule, Nature 419, 906.

Part III: What and where is the voltage

Section 9.4 is based on Salahuddin S. et al. (2005) cited in Chapter 1.
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Chapter 10 is based on Chapters 2-3 of Datta (1995) cited in the beginning.

A couple of papers by the primary contributors to the subject of discussion:

Büttiker M. (1988) Symmetry of Electrical Conduction, IBM J. Res. Dev.

32, 317

Imry Y and Landauer R (1999) Conductance Viewed as Transmission, Rev.

Mod. Phys. 71, S306

To learn more about the Onsager relations the reader could look at a book

like

Yourgrau W., van der Merwe A., Raw G. (1982) Treatise on Irreversible

and Statistical Thermophysics, Dover Publications

Chapter 11

The paper that reported the first observation of the amazing quantization of

the Hall resistance:

von Klitzing K. et al. (1980) New Method for High-Accuracy Determi-

nation of the Fine Structure Constant Based on Quantized Hall

Resistance, Phys.Rev.Lett. 45, 494.

For more on edge states in the quantum Hall regime the reader could look

at Chapter 4 of Datta (1995) and references therein.

Chapter 12

An article on spin injection by one of the inventors of the spin valve

Fert A. et al. (2007) Semiconductors between Spin-Polarized Sources and

Drains, IEEE Trans. Electron Devices 54, 921

An article reviewing spin injection in semiconductors, the problems and

solutions

Schmidt G. (2005) Concepts for Spin Injection into Semiconductors a

Review J.Phys.D: Appl. Phys. 38, R107

To learn more about our viewpoint on electrochemical potentials in materials

with spin-momentum locking that is presented here, interested readers could

look at
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Sayed S., Hong S. and Datta S. (2016) Multi-Terminal Spin Valve on Chan-

nels with Spin-Momentum Locking, Scientific Reports 6, 35658 and

references therein.

Part IV: Heat & Electricity

Chapter 13

On the use of the Landauer approach for thermoelectric effects

Butcher P.N. (1990) Thermal and Electrical Transport Formalism for Elec-

tronic Microstructures with Many Terminals, J. Phys. Condens.

Matt. 2, 4869 and references therein.

On the thermoelectric effects in molecules

Baheti K. et al. (2008) Probing the Chemistry of Molecular Heterojunc-

tions Using Thermoelectricity, Nano Letters 8, 715.

Paulsson M. and Datta S. (2003) Thermoelectric Effect in Molecular Elec-

tronics, Phys. Rev. B 67, 241403(R)

Chapter 14

This discussion draws on my collaborative work with Mark Lundstrom and

Changwook Jeong.

Jeong C. et al. (2011) Full dispersion versus Debye model evaluation of lat-

tice thermal conductivity with a Landauer approach, J.Appl.Phys.

109, 073718-8 and references therein.

A couple of other references on the subject

Majumdar A. (1993) Microscale Heat Conduction in Dielectric Thin Films

Journal of Heat Transfer 115, 7

Mingo N. (2003) Calculation of Si nanowire thermal conductivity using

complete phonon dispersion relations, Phys. Rev. B 68, 113308

Chapter 15

To learn more about these deep concepts, the reader could look at the many

excellent texts on equilibrium statistical mechanics, such as

Dill K. and Bromberg S. (2003) Molecular Driving Forces, Statistical Ther-

modynamics in Chemistry and Biology, Garland Science

Kittel C. and Kroemer H.(1980) Thermal Physics, Freeman
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Feynman R.P. (1965) Statistical Mechanics, Frontiers in Physics Lecture

Note Series, Benjamin/Cummings

Chapter 16

The info-battery described here follows the discussion in

Datta S. (2008) Chapter 7: Nanodevices and Maxwell’s demon in Nano

Science and Technology eds. Tang Z., Sheng P., also available at

https://arxiv.org/abs/0704.1623

See also Strasberg P. et al.(2014) Second laws for an information driven

current through a spin valve, Phys. Rev. E 90, 062107

For more on Maxwell’s demon and related issues

Feynman R.P. (1963) Lectures on Physics, vol. I-46, Addison-Wesley.

Leff H.S. and Rex A.F. (2003), Maxwell’s Demon 2, IOP Publishing.
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Appendix A

Derivatives of Fermi and Bose
functions

A.1 Fermi function

f(x) ≡ 1

ex + 1
, x ≡ E − µ

kT
(A.1)

∂f

∂E
=
∂f

∂x

∂x

∂E
=
∂f

∂x

1

kT
(A.2a)

∂f

∂µ
=
∂f

∂x

∂x

∂µ
= −∂f

∂x

1

kT
(A.2b)

∂f

∂T
=
∂f

∂x

∂x

∂T
= −∂f

∂x

E − µ
kT 2

(A.2c)

From Eq.(A.2a) to Eq.(A.2c),

∂f

∂µ
= − ∂f

∂E
(A.3a)

∂f

∂T
= −E − µ

T

∂f

∂E
(A.3b)

Eq.(2.12) in Chapter 2 is obtained from a Taylor series expansion of the

Fermi function around the equilibrium point

f(E,µ) ≈ f(E,µ0) +

(
∂f

∂µ

)
µ=µ0

(µ− µ0)

From Eq.(A.3a),
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(
∂f

∂µ

)
µ=µ0

=

(
− ∂f
∂E

)
µ=µ0

Letting f(E) stand for f(E,µ), and f0(E) stand for f(E,µ0), we can write

f(E) = f0(E) +

(
− ∂f
∂E

)
µ=µ0

(µ− µ0)

which is the same as Eq.(2.12).

A.2 Bose function

n(x) ≡ 1

ex − 1
, x ≡ ~ω

kT
(A.4)

∂n

∂T
=
dn

dx

∂x

∂T
= − ~ω

kT 2

dn

dx

~ω
∂n

∂T
= −kx2 dn

dx
=

kx2ex

(ex − 1)2
(A.5)
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Appendix B

Angular averaging

This appendix provides the algebraic details needed to arrive at Eqs.(4.8)

to (4.10) starting from

u = 〈|vz|〉, D = 〈v2
zτ〉, λ =

2D

u

B.1 One dimension

u = v, D = v2τ 1D
+

B.2 Two dimensions

u =

+π∫
−π

dθ|v cos θ|

π∫
−π

dθ

= v

+π/2∫
−π/2

dθ cos θ

π/2∫
−π/2

dθ

=
2v

π

D = v2τ

2π∫
0

dθ cos2 θ

2π∫
0

dθ

=
v2τ

2

2D

z
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B.3 Three dimensions

u =

2π∫
0

dφ
π∫
0

dθ sin θ|v cos θ|

2π∫
0

dφ
π∫
0

dθ sin θ

= v

2π∫
0

dφ
π/2∫
0

dθ sin θ cos θ

2π∫
0

dφ
π/2∫
0

dθ sin θ

=
v

2

D = v2τ

2π∫
0

dφ
π/2∫
0

dθ sin θ cos2 θ

2π∫
0

dφ
π/2∫
0

dθ sin θ

=
v2τ

3

z

x

y

φ

θ
v

3D

B.4 Summary

u = 〈|vz|〉 = v{
1D︷︸︸︷
1 ,

2D︷︸︸︷
2

π
,

3D︷︸︸︷
1

2
}

D = 〈vz2τ〉 = v2τ{
1D︷︸︸︷
1 ,

2D︷︸︸︷
1

2
,

3D︷︸︸︷
1

3
}

λ ≡ 2D

u
= vτ{

1D︷︸︸︷
2 ,

2D︷︸︸︷
π

2
,

3D︷︸︸︷
4

3
}
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Appendix C

Current at high bias for
non-degenerate resistors

We saw in chapter 7 that charging effects can be included into our current

equation for elastic resistors by replacing G(E) with G(E − U):

I =
1

q

∫ +∞

−∞
dE G(E − U) (f1(E)− f2(E))→ same as Eq.(7.1)

where G(E) =
σA

L+ λ
→ σA

L
if we exclude interface resistance

In section 7.5 we argued that the presence of an electric field in the

channel causes an effective widening of the channel from the source to the

drain that should cause an increase in the conductance (see Fig.7.13) which

can be included in a full numerical model (Fig.7.14).

U(z)

µ(z)

U1
U2

µ2
µ1

z=0 z=L

Interestingly, if we assume that the electrochemical potential is outside

the band so that the Boltzmann approximation can be used for the Fermi
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function

f(E) ≈ e−(E − µ)/kT

then we will show shortly that Eq.(7.1) can be used with a little modification

I =
1

q

∫ +∞

−∞
dE G(E − U0) (f1(E)− f2(E)) (C.1)

G(E) =
σ(E) A

l
, where l ≡

∫ L

0

dz e(U(z) − U0)/kT

Unlike the point channel model, U(z) is spatially varying and we use its

maximum value as the reference potential U0. Consequently

U(z)− U0 ≤ 0

so that l ≤ L → σA

l
≥ σA

L

This increase in conductance reflects the effective increase in the channel

width from source to drain that we discussed earlier (Fig.7.13).

Derivation of Eq.(C.1):

This is a very nice result, but it can be derived only if we assume non-

degenerate Boltzmann statistics to express the conductivity from Eq.(6.6)

in the form

σ =

∫ +∞

−∞

dE

kT
σ(E) e−E/kT︸ ︷︷ ︸
σ̃

e(µ − U)/kT

and using it in the diffusion equation (Eq.(7.17)) to write

I

A
= − σ̃

q
e(µ−U)/kT dµ

dz

I

A
eU/kT = − σ̃kT

q

d

dz
eµ/kT

Integrating from z = 0 to z = L,

I

A

∫ L

0

dz e(U−U0)/kT︸ ︷︷ ︸
l

=
σ̃ k T

q
e−U0/kT (eµ1/kT − eµ2/kT )
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I =
1

q

A

l
e−U0/kT (eµ1/kT − eµ2/kT ) kT

∫ +∞

−∞

dE

kT
σ(E) e−E/kT

=
1

q

∫ +∞

−∞
dE

σ(E) A

l
(f1(E + U0) − f2(E + U0))

=
1

q

∫ +∞

−∞
dE

σ(E − U0) A

l
(f1(E) − f2(E))

thus proving Eq.(C.1).

Eq.(C.1) tells us that we can write the conductance of a section of length

L as being a length shorter than the physical length L. To use this result

we need which requires us to know the potential profile U(z) and this in

turn would generally require a numerical solution.

But it is interesting that for non-degenerate conductors it is possible to

write the current in a form that looks just like that for elastic resistors. For

elastic conductors, however, the Boltzmann approximation is not needed,

the current expression is valid for both degenerate and non-degenerate con-

ductors.
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Appendix D

Semiclassical dynamics

E(x,p) =
(p− qA) · (p− qA)

2m
+ U(x) (D.1)

where qF = −∇U , Electric Field, F

and B = ∇×A, Magnetic Field, B

D.1 Semiclassical laws of motion

v ≡ dx

dt
= ∇pE (D.2a)

dp

dt
= −∇E (D.2b)

where the gradient operators are defined as

∇E ≡ x̂
∂E

∂x
+ ŷ

∂E

∂y
+ ẑ

∂E

∂z

∇pE ≡ x̂
∂E

∂px
+ ŷ

∂E

∂py
+ ẑ

∂E

∂pz

From Eqs.(D.1 and D.2), we can show that

v = (p− qA)/m (D.3)

d(p− qA)

dt
= q
(
F + v ×B

)
(D.4)
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D.1.1 Proof

E(x,p) =
∑
j

(pj − qAj(x))2

2m
+ U(x)

−→ vi =
∂E

∂pi
=

(pi − qAi(x))

m
−→ v =

(p− qA(x))

m

dpi
dt

= − ∂E
∂xi

= − ∂U
∂xi

+ q
∑
j

vj
∂Aj
∂xi

d(pi − qAi(x))

dt
= − ∂U

∂xi
+ q

∑
j

vj

(
∂Aj
∂xi
− ∂Ai
∂xj

)

= − ∂U
∂xi

+ q
∑
j,n

vjεijn

(
∇×A

)
n

−→ d(p− qA)

dt
= q
(
F + v ×B

)
In Chapter 9 we used the 1D version of Eqs.(D.2) to obtain the BTE

(Eq.(9.6)). If we use the full 3D version we obtain

∂f

∂t
+ v · ∇f + F · ∇f = Sopf (D.5)
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Appendix E

Transmission line parameters from
BTE

In this Appendix, I will try to outline the steps involved in getting from

Eq.(9.19) to Eq.(9.20), that is

from
∂µ

∂t
+ vz

∂µ

∂z
− ∂E

∂t
= −µ(z, t)− µ

τ
(E.1)

to
∂(µ/q)

∂z
= −(LK + LM )

∂I

∂t
− I

σA
(E.2a)

∂(µ/q)

∂t
= −

(
1

CQ
+

1

CE

)
∂I

∂z
(E.2b)

First we separate Eq.(E.1) into two equations for µ+ and µ−,

∂µ+

∂t
+ vz

∂µ+

∂z
− ∂E+

∂t
= −µ

+ − µ
τ

(E.3a)

∂µ−

∂t
− vz

∂µ−
∂z
− ∂E−

∂t
= −µ

− − µ
τ

(E.3b)

Next we add and subtract Eqs.(E.3 a,b) and use the relations

I =
qM

h
(µ+ − µ−) and µ =

µ+ + µ−

2
= µ

to obtain 2
∂µ

∂t
+

vz
qM/h

∂I

∂z
− ∂

∂t

(
E+ + E−

)
= 0

and
1

qM/h

∂I

∂t
+ 2vz

∂µ

∂z
− ∂

∂t

(
E+ + E−

)
= − I

(qM/h)τ
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Rearranging

∂(µ/q)

∂t
= − 1

CQ

∂I

∂z
+

1

2q

∂

∂t

(
E+ + E−

)
(E.4a)

∂(µ/q)

∂z
= −LK

∂I

∂t
+

1

2qvz

∂

∂t

(
E+ + E−

)
−RI (E.4b)

where LK , CQ are the quantities defined in Eq.(9.21).

Let us now consider the terms involving E±. Assuming that the fields

associated with a transverse electromagnetic (TEM) wave, they can be

expressed in terms of U(z, t) along with a vector potential Az(z, t) pointing

along z, for which the energy is given by (Appendix C)

E =
(pz − qAz(t))2

2m
+ U(z, t) (E.5)

Noting that

vz =
∂E

∂pz
=
pz − qAz

m
we can write

∂E

∂t
= vz

(
− q ∂Az

∂t

)
+
∂U

∂t
so that

∂

∂t

(
E+ + E−

)
= 2

∂U

∂t
and

∂

∂t

(
E+ − E−

)
= 2vz

(
− q ∂Az

∂t

)
Eqs.(E.4) can then be written as

∂(µ/q)

∂t
= − 1

CQ

∂I

∂z
+
∂(U/q)

∂t
(E.6)

∂(µ/q)

∂z
= −LK

∂I

∂t
− ∂Az

∂t
−RI (E.7)

which reduces to Eqs.(E.2) noting that

Az = LMI, U/q = Q/CE
and making use of the continuity equation

∂Q

∂t
+
∂I

∂z
= 0
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