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Preface

Everyone is familiar with the amazing performance of a modern smart-

phone, powered by a billion-plus nanotransistors, each having an active

region that is barely a few hundred atoms long. I believe we also owe a ma-

jor intellectual debt to the many who have made this technology possible.

This is because the same amazing technology has also led to a deeper un-

derstanding of the nature of current flow and heat dissipation on an atomic

scale which I believe should be of broad relevance to the general problems

of non-equilibrium statistical mechanics that pervade many different fields.

To make these lectures accessible to anyone in any branch of science or

engineering, we assume very little background beyond linear algebra and

differential equations. However, we will be discussing advanced concepts

that should be of interest even to specialists, who are encouraged to look

at my earlier books for additional technical details.

This book is based on a set of two online courses originally offered in

2012 on nanoHUB-U and more recently in 2015 on edX. In preparing the

second edition we decided to split it into parts A and B entitled Basic

Concepts and Quantum Transport respectively, along the lines of the two

courses. Even this Second Edition represents lecture notes in unfinished

form.

For ease of reference, Part B includes a list of all equations from Part

A that are referred to (Appendix F). We have also included the overview

chapter (Chapter 1) from Part A with essentially no modification. A list of

available video lectures corresponding to different sections of this volume is

provided upfront. I believe readers will find these useful.

vii
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Chapter 1

Overview

This chapter is essentially the same as Chapter 1 from Part A. Related

video lecture available at course website, Scientific Overview.

“Everyone” has a smartphone these days, and each smartphone has

more than a billion transistors, making transistors more numerous than

anything else we could think of. Even the proverbial ants, I am told, have

been vastly outnumbered.

There are many types of transistors, but the most common one in use

today is the Field Effect Transistor (FET), which is essentially a resistor

consisting of a “channel” with two large contacts called the “source” and

the “drain” (Fig. 1.1a).

ChannelSource Drain

V +- I
(a)

ChannelSource Drain

VG

V +- I
(b)

Fig. 1.1 (a) The Field Effect Transistor (FET) is essentially a resistor consisting of a
channel with two large contacts called the source and the drain across which we attach
the two terminals of a battery. (b) The resistance R = V/I can be changed by several
orders of magnitude through the gate voltage VG.

The resistance (R) = Voltage (V )/Current (I) can be switched by sev-

eral orders of magnitude through the voltage VG applied to a third terminal

1

https://www.youtube.com/watch?v=zaTlwqW0QDA
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called the “gate” (Fig. 1.1b) typically from an “OFF” state of ∼ 100 MΩ

to an “ON” state of ∼ 10 kΩ. Actually, the microelectronics industry uses

a complementary pair of transistors such that when one changes from 100

MΩ to 10 kΩ, the other changes from 10 kΩ to 100 MΩ. Together they

form an inverter whose output is the “inverse” of the input: a low input

voltage creates a high output voltage while a high input voltage creates a

low output voltage as shown in Fig. 1.2.

A billion such switches switching at GHz speeds (that is, once every

nanosecond) enable a computer to perform all the amazing feats that we

have come to take for granted. Twenty years ago computers were far less

powerful, because there were “only” a million of them, switching at a slower

rate as well.

1

10 kΩ

100 MΩ
Input
= 1

0

Output
~ 0

1

10 kΩ

100 MΩ

Output
~ 1

0

Input
= 0

Fig. 1.2 A complementary pair of FET’s form an inverter switch.

Both the increasing number and the speed of transistors are conse-

quences of their ever-shrinking size and it is this continuing miniaturization

that has driven the industry from the first four-function calculators of the

1970s to the modern laptops. For example, if each transistor takes up a

space of say 10 µm × 10 µm, then we could fit 9 million of them into a chip

of size 3 cm × 3 cm, since

3 cm

10 µm
= 3000 → 3000× 3000 = 9 million.

That is where things stood back in the ancient 1990s. But now that a

transistor takes up an area of ∼ 1 µm × 1 µm, we can fit 900 million (nearly

a billion) of them into the same 3 cm × 3 cm chip. Where things will go

from here remains unclear, since there are major roadblocks to continued

miniaturization, the most obvious of which is the difficulty of dissipating
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the heat that is generated. Any laptop user knows how hot it gets when it

is working hard, and it seems difficult to increase the number of switches

or their speed too much further.

This book, however, is not about the amazing feats of microelectron-

ics or where the field might be headed. It is about a less-appreciated

by-product of the microelectronics revolution, namely the deeper under-

standing of current flow, energy exchange and device operation that it has

enabled, which has inspired the perspective described in this book. Let me

explain what we mean.

1.1 Conductance

Current

L

Current

A

A basic property of a conductor is its resistance R which is related to

the cross-sectional area A and the length L by the relation

R =
V

I
=
ρL

A
(1.1a)

G =
I

V
=
σA

L
. (1.1b)

The resistivity ρ is a geometry-independent property of the material that

the channel is made of. The reciprocal of the resistance is the conductance

G which is written in terms of the reciprocal of the resistivity called the

conductivity σ. So what determines the conductivity?

Our usual understanding is based on the view of electronic motion

through a solid as “diffusive” which means that the electron takes a random

walk from the source to the drain, traveling in one direction for some length

of time before getting scattered into some random direction as sketched in

Fig. 1.3. The mean free path, that an electron travels before getting scat-

tered is typically less than a micrometer (also called a micron = 10−3 mm,

denoted µm) in common semiconductors, but it varies widely with temper-

ature and from one material to another.
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Length units:
1 mm = 1000 µm
and 1 µm = 1000 nm

ChannelSource Drain

0.1 mm

10 µm

 1 µm

0.1 µm

10 nm

1 nm

0.1 nm

Atomic
dimensions

Fig. 1.3 The length of the channel of an FET has progressively shrunk with every new
generation of devices (“Moore’s law”) and stands today at 14 nm, which amounts to

∼ 100 atoms.

It seems reasonable to ask what would happen if a resistor is shorter than

a mean free path so that an electron travels ballistically (“like a bullet”)

through the channel. Would the resistance still be proportional to length

as described by Eq. (1.1a)? Would it even make sense to talk about its

resistance?

These questions have intrigued scientists for a long time, but even twenty

five years ago one could only speculate about the answers. Today the an-

swers are quite clear and experimentally well established. Even the tran-

sistors in commercial laptops now have channel lengths L ∼ 14 nm, corre-

sponding to a few hundred atoms in length! And in research laboratories

people have even measured the resistance of a hydrogen molecule.

1.2 Ballistic Conductance

It is now clearly established that the resistance RB and the conductance

GB of a ballistic conductor can be written in the form

RB =
h

q2

1

M
' 25 kΩ× 1

M
(1.2a)

GB =
q2

h
M ' 40 µS×M (1.2b)
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where q, h are fundamental constants and M represents the number of

effective channels available for conduction. Note that we are now using the

word “channel” not to denote the physical channel in Fig. 1.3, but in the

sense of parallel paths whose meaning will be clarified in the first two parts

of this book. In future we will refer to M as the number of “modes”, a

concept that is arguably one of the most important lessons of nanoelectronics

and mesoscopic physics.

1.3 What Determines the Resistance?

The ballistic conductance GB (Eq. (1.2b)) is now fairly well-known, but the

common belief is that it is relevant only for short conductors and belongs

in a course on special topics like mesoscopic physics or nanoelectronics. We

argue that the resistance for both long and short conductors can be written

in terms of GB (λ: mean free path)

G =
GB(

1 +
L

λ

) . (1.3)

Ballistic and diffusive conductors are not two different worlds, but rather

a continuum as the length L is increased. For L� λ, Eq. (1.3) reduces to

G ' GB , while for L� λ,

G ' GBλ

L
,

which morphs into Ohm’s law (Eq. (1.1b)) if we write the conductivity as

σ =
GL

A
=
GB
A

λ =
q2

h

M

A
λ (New Expression). (1.4)

The conductivity of long diffusive conductors is determined by the number

of modes per unit area (M/A) which represents a basic material property

that is reflected in the conductance of ballistic conductors.

By contrast, the standard expressions for conductivity are all based

on bulk material properties. For example freshman physics texts typically

describe the Drude formula (momentum relaxation time: τm):

σ = q2 n

m
τm (Drude formula) (1.5)

involving the effective mass (m) and the density of free electrons (n). This is

the equation that many researchers carry in their head and use to interpret

experimental data. However, it is tricky to apply if the electron dynamics
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is not described by a simple positive effective mass m. A more general

but less well-known expression for the conductivity involves the density of

states (D) and the diffusion coefficient (D)

σ = q2 D

AL
D (Degenerate Einstein relation). (1.6)

In Part A of this book we used fairly elementary arguments to establish

the new formula for conductivity given by Eq. (1.4) and show its equivalence

to Eq. (1.6). In Part A we also introduced an energy band model and related

Eqs. (1.4) and (1.6) to the Drude formula (Eq. (1.5)) under the appropriate

conditions when an effective mass can be defined.

We could combine Eqs. (1.3) and (1.4) to say that the standard Ohm’s

law (Eqs. (1.1)) should be replaced by the result

G =
σA

L+ λ
→ R =

ρ

A
(L+ λ), (1.7)

suggesting that the ballistic resistance (corresponding to L � λ) is equal

to ρλ/A which is the resistance of a channel with resistivity ρ and length

equal to the mean free path λ.

But this can be confusing since neither resistivity nor mean free path

are meaningful for a ballistic channel. It is just that the resistivity of a

diffusive channel is inversely proportional to the mean free path, and the

product ρλ is a material property that determines the ballistic resistance

RB . A better way to write the resistance is from the inverse of Eq. (1.3):

R = RB

(
1 +

L

λ

)
. (1.8)

This brings us to a key conceptual question that caused much debate

and discussion in the 1980s and still seems less than clear! Let me explain.

1.4 Where is the Resistance?

Equation (1.8) tells us that the total resistance has two parts

RB︸︷︷︸
length-independent

and
RBL

λ︸ ︷︷ ︸
length-dependent

.

It seems reasonable to assume that the length-dependent part is associated

with the channel. What is less clear is that the length-independent part

(RB) is associated with the interfaces between the channel and the two

contacts as shown in Fig. 1.4.
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How can we split up the overall resistance into different components

and pinpoint them spatially? If we were talking about a large everyday

resistor, the approach is straightforward: we simply look at the voltage

drop across the structure. Since the same current flows everywhere, the

voltage drop at any point should be proportional to the resistance at that

point ∆V = I∆R. A resistance localized at the interface should also give

a voltage drop localized at the interface as shown in Fig. 1.4.

Fig. 1.4 The length-dependent part of the resistance in Eq. (1.8) is associated with the
channel while the length-independent part is associated with the interfaces between the

channel and the two contacts. Shown below is the spatial profile of the “potential” which

supports the spatial distribution of resistances shown.

What makes this discussion not so straightforward in the context of

nanoscale conductors is that it is not obvious how to draw a spatial poten-

tial profile on a nanometer scale. The key question is well-known in the

context of electronic devices, namely the distinction between the electro-

static potential and the electrochemical potential.
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The former is related to the electric field F

F = −dφ
dz
,

since the force on an electron is qF , it seems natural to think that the

current should be determined by dφ/dz. However, it is well-recognized that

this is only of limited validity at best. More generally current is driven by

the gradient in the electrochemical potential :

I

A
≡ J = −σ

q

dµ

dz
. (1.9)

Just as heat flows from higher to lower temperatures, electrons flow

from higher to lower electrochemical potentials giving an electron current

that is proportional to −dµ/dz. It is only under special conditions that

µ and φ track each other and one can be used in place of the other. Al-

though the importance of electrochemical potentials and quasi-Fermi levels

is well established in the context of device physics, many experts feel un-

comfortable about using these concepts on a nanoscale and prefer to use

the electrostatic potential instead. However, I feel that this obscures the

underlying physics and considerable conceptual clarity can be achieved by

defining electrochemical potentials and quasi-Fermi levels carefully on a

nanoscale.

The basic concepts are now well established with careful experimen-

tal measurements of the potential drop across nanoscale defects (see for

example, Willke et al., 2015). Theoretically it was shown using a full quan-

tum transport formalism (which we discuss in part B) that a suitably de-

fined electrochemical potential shows abrupt drops at the interfaces, while

the corresponding electrostatic potential is smoothed out over a screening

length making the resulting drop less obvious (Fig. 1.5). These ideas are

described in simple semiclassical terms (following Datta, 1995) in Part 3 of

this volume.

1.5 But Where is the Heat?

One often associates the electrochemical potential with the energy of the

electrons, but at the nanoscale this viewpoint is completely incompatible

with what we are discussing. The problem is easy to see if we consider an

ideal ballistic channel with a defect or a barrier in the middle, which is the

problem Rolf Landauer posed in 1957.

Common sense says that the resistance is caused largely by the barrier

and we will show in Chapter 10 that a suitably defined electrochemical
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Electrochemical
Potential

Electrostatic
Potential

qV

µ1 µ2

Fig. 1.5 Spatial profile of electrostatic and electrochemical potentials in a nanoscale
conductor using a quantum transport formalism. Reproduced from McLennan et al.,

1991.

potential indeed shows a spatial profile that shows a sharp drop across the

barrier in addition to abrupt drops at the interfaces as shown in Fig. 1.6.

Fig. 1.6 Potential profile across a ballistic channel with a hole in the middle.

If we associate this electrochemical potential with the energy of the

electrons then an abrupt potential drop across the barrier would be ac-

companied by an abrupt drop in the energy, implying that heat is being

dissipated locally at the scatterer. This requires the energy to be trans-

ferred from the electrons to the lattice so as to set the atoms jiggling which

manifests itself as heat. But a scatterer does not necessarily have the de-
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grees of freedom needed to dissipate energy: it could for example be just a

hole in the middle of the channel with no atoms to “jiggle”.

In short, the resistance R arises from the loss of momentum caused in

this case by the “hole” in the middle of the channel. But the dissipation

I2R could occur very far from the hole and the potential in Fig. 1.6 cannot

represent the energy. So what does it represent?

The answer is that the electrochemical potential represents the degree

of filling of the available states, so that it indicates the number of electrons

and not their energy. It is then easy to understand the abrupt drop across

a barrier which represents a bottleneck on the electronic highway. As we

all know there are traffic jams right before a bottleneck, but as soon as we

cross it, the road is all empty: that is exactly what the potential profile in

Fig. 1.6 indicates!

In short, everyone would agree that a “hole” in an otherwise ballistic

channel is the cause and location of the resulting resistance and an elec-

trochemical potential defined to indicate the number of electrons correlates

well with this intuition. But this does not indicate the location of the

dissipation I2R.

The hole in the channel gives rise to “hot” electrons with a non-

equilibrium energy distribution which relaxes back to normal through a

complex process of energy exchange with the surroundings over an energy

relaxation length LE ∼ tens of nanometers or longer. The process of dissi-

pation may be of interest in its own right, but it does not help locate the

hole that caused the loss of momentum which gave rise to resistance in the

first place.

1.6 Elastic Resistors

Once we recognize the spatially distributed nature of dissipative processes

it seems natural to model nanoscale resistors shorter than LE as an ideal

elastic resistor which we define as one in which all the energy exchange

and dissipation occurs in the contacts and none within the channel itself

(Fig. 1.7).

For a ballistic resistor RB , as my colleague Ashraf often points out, it

is almost obvious that the corresponding Joule heat I2R must occur in the

contacts. After all a bullet dissipates most of its energy to the object it

hits rather than to the medium it flies through.

There is experimental evidence that real nanoscale conductors do ac-

tually come close to this idealized model which has become widely used
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ChannelSource Drain

V +- I

Heat

Heat
No exchange

of energy

Fig. 1.7 The ideal elastic resistor with the Joule heat V I = I2R generated entirely in
the contacts as sketched. Many nanoscale conductors are believed to be close to this

ideal.

ever since the advent of mesoscopic physics in the late 1980s and is often

referred to as the Landauer approach. However, it is generally believed

that this viewpoint applies only to near-ballistic transport and to avoid

this association we are calling it an elastic resistor rather than a Landauer

resistor.

What we wish to stress is that even a diffusive conductor full of “pot-

holes” that destroy momentum could in principle dissipate all the Joule

heat in the contacts. And even if it does not, its resistance can be calcu-

lated accurately from an idealized model that assumes it does. Indeed we

will use this elastic resistor model to obtain the conductivity expression in

Eq. (1.4) and show that it agrees well with the standard results.

But surely we cannot ignore all the dissipation inside a long resistor

and calculate its resistance accurately treating it as an elastic resistor? We

believe we can do so in many cases of interest, especially at low bias. The

underlying issues can be understood qualitatively using the simple circuit

model shown in Fig. 1.8. For an elastic resistor each energy channel E1,

E2 and E3 is independent with no flow of electrons between them as shown

on the left. Inelastic processes induce “vertical” flow between the energy

channels represented by the vertical resistors as shown on the right. When

can we ignore the vertical resistors?

If the series of resistors representing individual channels are identical,

then the nodes connected by the vertical resistors will be at the same po-

tential, so that there will be no current flow through them. Under these

conditions, an elastic resistor model that ignores the vertical resistors is

quite accurate.
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μ1 μ2 μ2μ1
Fig. 1.8 A simple circuit model: (a) For elastic resistors, individual energy channels
E1, E2 and E3 are decoupled with no flow between them. (b) Inelastic processes cause

vertical flow between energy channels through the additional resistors shown.

But vertical flow cannot always be ignored. For example, Fig. 1.9a

shows a conductor where the lower energy levels E2 and E3 conduct poorly

compared to E1. We would then expect the electrons to flow upwards in

energy on the left and downwards in energy on the right as shown, thus

cooling the lattice on the left and heating the lattice on the right, leading

to the well-known Peltier effect discussed in Chapter 13.

The role of vertical flow can be even more striking if the left contact

connects only to the channel E1 while the right contact connects only to

E3 as shown in Fig. 1.9b. No current can flow in such a structure without

vertical flow, and the entire current is purely a vertical current. This is

roughly what happens in p-n junctions which is discussed a little further in

Section 12.1.

The bottom line is that elastic resistors generally provide a good de-

scription of short conductors and the Landauer approach has become quite

common in mesoscopic physics and nanoelectronics. What is not well recog-

nized is that this approach can provide useful results even for long conduc-

tors. In many cases, but not always, we can ignore inelastic processes and

calculate the resistance quite accurately as long as the momentum relax-

ation has been correctly accounted for, as discussed further in Section 3.3.

But why would we want to ignore inelastic processes? Why is the theory

of elastic resistors any more straightforward than the standard approach?

To understand this we first need to talk briefly about the transport theories

on which the standard approach is based.
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μ2

μ1

μ2μ1
Fig. 1.9 Two examples of structures where vertical flow between energy channels can

be important: (a) If the lower energy levels E2 and E3 conduct poorly, electrons will
flow up in energy on the left and down in energy on the right as shown. (b) If the left

contact couples to an upper energy E1 while the right contact couples to a lower energy

E3, then the current flow is purely vertical, occurring only through inelastic processes.

1.7 Transport Theories

Flow or transport always involves two fundamentally different types of pro-

cesses, namely elastic transfer and heat generation, belonging to two dis-

tinct branches of physics. The first involves frictionless mechanics of the

type described by Newton’s laws or the Schrödinger equation. The second

involves the generation of heat described by the laws of thermodynamics.

The first is driven by forces or potentials and is reversible. The second

is driven by entropy and is irreversible. Viewed in reverse, entropy-driven

processes look absurd, like heat flowing spontaneously from a cold to a hot

surface or an electron accelerating spontaneously by absorbing heat from

its surroundings.

Normally the two processes are intertwined and a proper description of

current flow in electronic devices requires the advanced methods of non-

equilibrium statistical mechanics that integrate mechanics with thermody-

namics. Over a century ago Boltzmann taught us how to combine Newto-

nian mechanics with heat generating or entropy-driven processes and the

resulting Boltzmann transport equation (BTE) is widely accepted as the

cornerstone of semiclassical transport theory. The word semiclassical is used

because some quantum effects have also been incorporated approximately

into the same framework.

Classical
Dynamics BTE+ =
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A full treatment of quantum transport requires a formal integration

of quantum dynamics described by the Schrödinger equation with heat

generating processes.

Quantum
Dynamics NEGF+ =

This is exactly what is achieved in the non-equilibrium Green’s function

(NEGF) method originating in the 1960s from the seminal works of Martin

and Schwinger (1959), Kadanoff and Baym (1962), Keldysh (1965) and

others.

1.7.1 Why elastic resistors are conceptually simpler

The BTE takes many semesters to master and the full NEGF formalism,

even longer. Much of this complexity comes from the subtleties of combin-

ing mechanics with distributed heat-generating processes.

Channel

The operation of the elastic resistor can be understood in far more

elementary terms because of the clean spatial separation between the force-

driven and the entropy-driven processes. The former is confined to the

channel and the latter to the contacts. As we will see in the next few

chapters, the latter is easily taken care of, indeed so easily that it is easy

to miss the profound nature of what is being accomplished.

Even quantum transport can be discussed in relatively elementary terms

using this viewpoint. For example, Fig. 1.10 shows a plot of the spatial

profile of the electrochemical potential across our structure from Fig. 1.6

with a hole in the middle, calculated both from the semiclassical BTE

(Chapter 9) and from the NEGF method (part B).

For the NEGF method we show three options. First a coherent model

(left) that ignores all interaction within the channel showing oscillations

indicative of standing waves. Once we include phase relaxation, the con-

structive and destructive interferences are lost and we obtain the result in

the middle which approaches the semiclassical result. If the interactions
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- V +
“barrier”

qVa)

b)

c)

f

f

Fig. 1.10 Spatial profile of the electrochemical potential across a channel with a barrier.
Solid red line indicates semiclassical result from BTE (part A). Also shown are the

results from NEGF (part B) assuming (a) coherent transport, (b) transport with phase

relaxation, (c) transport with phase and momentum relaxation. Note that no energy
relaxation is included in any of these calculations.
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include momentum relaxation as well we obtain a profile indicative of an

additional distributed resistance.

None of these models includes energy relaxation and they all qualify

as elastic resistors making the theory much simpler than a full quantum

transport model that includes dissipative processes. Nevertheless, they all

exhibit a spatial variation in the electrochemical potential consistent with

our intuitive understanding of resistance.

A good part of my own research in the past was focused in this area

developing the NEGF method, but we will get to it only in part B after we

have “set the stage” in this volume using a semiclassical picture.

1.8 Is Transport Essentially a Many-body Process?

The idea that resistance can be understood from a model that ignores in-

teractions within the channel comes as a surprise to many, possibly because

of an interesting fact that we all know: when we turn on a switch and a

bulb lights up, it is not because individual electrons flow from the switch

to the bulb. That would take far too long.

R L

C

Switch Light Bulb

Fig. 1.11 To describe the propagation of signals we need a distributed RLC, model
that includes an inductance L and a capacitance C which are ordinarily determined by

magnetostatics and electrostatics respectively.

The actual process is nearly instantaneous because one electron pushes

the next, which pushes the next and the disturbance travels essentially

at the speed of light. Surely, our model that localizes all interactions at

arbitrarily placed contacts (Fig. 3.5 of Part A, see Appendix F) cannot

describe this process?

The answer is that to describe the propagation of transient signals we

need a model that includes not just a resistance R, but also an inductance L

and a capacitance C as shown in Fig. 1.11. These could include transport
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related corrections in small conductors but are ordinarily determined by

magnetostatics and electrostatics respectively (Salahuddin et al., 2005).

In this distributedRLC transmission line, the signal velocity determined

by L and C can be well in excess of individual electron velocities reflecting a

collective process. However, L and C play no role at low frequencies, since

the inductor is then like a “short circuit” and the capacitor is like an “open

circuit”. The low frequency conduction properties are represented solely by

the resistance R and can usually be understood fairly well in terms of the

transport of individual electrons along M parallel modes (see Eqs. (1.2))

or “channels”, a concept that has emerged from decades of research. To

quote Phil Anderson from a volume commemorating 50 years of Anderson

localization (see Anderson (2010)):

“ . . . What might be of modern interest is the “channel” concept which

is so important in localization theory. The transport properties at low fre-

quencies can be reduced to a sum over one-dimensional “channels” . . . ”

Even though high frequency signals propagate at the “speed of light”,

there can be no steady-state flow of charge unless an electron transmits from

one end to the other, or as Landauer put it, conductance is transmission.

However, this observation about steady-state currents applies only to charge

and not to other quantities like spin.

1.9 A Different Physical Picture

Let me conclude this overview with an obvious question: why should we

bother with idealized models and approximate physical pictures? Can’t we

simply use the BTE and the NEGF equations which provide rigorous frame-

works for describing semiclassical and quantum transport respectively? The

answer is yes, and all the results we discuss are benchmarked against the

BTE and the NEGF.

However, as Feynman (1963) noted in his classic lectures, even when

we have an exact mathematical formulation, we need an intuitive physical

picture:

“.. people .. say .. there is nothing which is not contained in the equa-

tions .. if I understand them mathematically inside out, I will understand

the physics inside out. Only it doesn’t work that way. .. A physical under-

standing is a completely unmathematical, imprecise and inexact thing, but

absolutely necessary for a physicist.”
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Indeed, most researchers carry a physical picture in their head and it is

usually based on the Drude formula (Eq. (1.5)). In this book we will show

that an alternative picture based on elastic resistors leads to a formula

(Eq. (1.4)) that is more generally valid.

Unlike the Drude formula which treats the electric field as the driving

term, this new approach more correctly treats the electrochemical poten-

tial as the driving term. This is well-known at the macroscopic level, but

somehow seems to have been lost in nanoscale transport, where people cite

the difficulty of defining electrochemical potentials. However, that does not

justify using electric field as a driving term, an approach that does not work

for inhomogeneous conductors on any scale.

Since all conductors are fundamentally inhomogeneous on an atomic

scale it seems questionable to use electric field as a driving term. We argue

that at least for low bias transport, it is possible to define electrochemi-

cal potentials or quasi-Fermi levels on an atomic scale and this can lend

useful insight into the physics of current flow and the origin of resistance.

We believe this is particularly timely because future electronic devices will

require a clear understanding of the different potentials.

For example, recent work on spintronics has clearly established experi-

mental situations where upspin and downspin electrons have different elec-

trochemical potentials (sometimes called quasi-Fermi levels) and could even

flow in opposite directions because their dµ/dz have opposite signs. This

cannot be understood if we believe that currents are driven by electric fields,

−dφ/dz, since up and down spins both see the same electric field and have

the same charge. We can expect to see more and more such examples that

use novel contacts to manipulate the quasi-Fermi levels of different group

of electrons (see Chapter 12 of Part A for further discussion).

In short we believe that the lessons of nanoelectronics lead naturally

to a new viewpoint, one that changes even some basic concepts we all

learn in freshman physics. This viewpoint represents a departure from the

established mindset and I hope it will provide a complementary perspective

to facilitate the insights needed to take us to the next level of discovery and

innovation.
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Contact-ing Schrödinger
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Chapter 17

The Model

Related video lectures available at course website, Unit 1: L1.1 and Unit 1:

L1.10.

Over a century ago Boltzmann taught us how to combine Newtonian me-

chanics with entropy-driven processes and the resulting Boltzmann trans-

Classical
Dynamics BTE+ =

port equation (BTE) is widely accepted as the cornerstone of semiclassical

transport theory. Most of the results we have discussed so far can be (and

generally are) obtained from the Boltzmann equation, but the concept of

an elastic resistor makes them more transparent by spatially separating

force-driven processes in the channel from the entropy-driven processes in

the contacts.

In this part of this book I would like to discuss the quantum version of

this problem, using the non-equilibrium Green’s function (NEGF) method

to combine quantum mechanics described by the Schrödinger equation with

“contacts” much as Boltzmann taught us how to combine classical dynamics

with “contacts”.

Quantum
Dynamics NEGF+ =

The NEGF method originated from the classic works in the 1960s that

used the methods of many-body perturbation theory to describe the dis-

tributed entropy-driven processes along the channel. Like most of the work

21

https://www.youtube.com/watch?v=eg4krA0xH6I
https://www.youtube.com/watch?v=5nonH5UjoLU
https://www.youtube.com/watch?v=5nonH5UjoLU
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ChannelSource Drain

V

- I(a) Physical
structure

T0
µ1 , T1 µ2 , T2

Σ1 Σ2
Σ0
H

µ1
µ2

Source                                 Drain(b) Quantum
Transport

Model

Fig. 17.1 (a) Generic device structure that we have been discussing. (b) General quan-

tum transport model with elastic channel described by a Hamiltonian H and its connec-

tion to each “contact” described by a corresponding self-energy Σ.

Channel

on transport theory (semiclassical or quantum) prior to the 1990s, it was a

“contact-less” approach focused on the interactions occurring throughout

the channel, in keeping with the general view that the physics of resistance

lay essentially in these distributed entropy generating processes.

As with semiclassical transport, our discussion starts at the other end

with the elastic resistor with entropy-driven processes confined to the con-

tacts. This makes the theory less about interactions and more about

“connecting contacts to the Schrödinger equation”, or more simply, about

contact-ing Schrödinger .

But let me put off talking about the NEGF model till the next chapter,

and use subsequent chapters to illustrate its application to interesting prob-

lems in quantum transport. As indicated in Fig. 17.1b the NEGF method

requires two types of inputs: the Hamiltonian, H describing the dynamics

of an elastic channel, and the self-energy Σ describing the connection to the

contacts, using the word “contacts” in a broad figurative sense to denote
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all kinds of entropy-driven processes. Some of these contacts are physical

like the ones labeled “1” and “2” in Fig. 17.1b, while some are conceptual

like the one labeled “0” representing entropy changing processes distributed

throughout the channel.

In this chapter let me just try to provide a super-brief but self-contained

introduction to how one writes down the Hamiltonian H. The Σ can be

obtained by imposing the appropriate boundary conditions and will be

described in later chapters when we look at specific examples applying

the NEGF method.

We will try to describe the procedure for writing down H so that it is

accessible even to those who have not had the benefit of a traditional multi-

semester introduction to quantum mechanics. Moreover, our emphasis here

is on something that may be helpful even for those who have this formal

background. Let me explain.

Most people think of the Schrödinger equation as a differential equation

which is the form we see in most textbooks. However, practical calculations

are usually based on a discretized version that represents the differential

equation as a matrix equation involving the Hamiltonian matrix H of size

N × N , N being the number of “basis functions” used to represent the

structure.

This matrix H can be obtained from first principles, but a widely used

approach is to represent it in terms of a few parameters which are chosen

to match key experiments. Such semi-empirical approaches are often used

because of their convenience and because they can often explain a wide

range of experiments beyond the key ones that are used as input, suggesting

that they capture a lot of essential physics.

In order to follow the rest of the chapter it is important for the readers

to get a feeling for how one writes down this matrix H given an accepted

energy-momentum E(p) relation (Chapter 6) for the material that is be-

lieved to describe the dynamics of conduction electrons with energies around

the electrochemical potential .

But I should stress that the NEGF framework we will talk about in sub-

sequent chapters goes far beyond any specific model that we may choose

to use for H. The same equations could be (and have been) used to de-

scribe say conduction through molecular conductors using first principles

Hamiltonians.
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17.1 Schrödinger Equation

Related video lecture available at course website, Unit 1: L1.2.

µ1

µ2

E

D(E)

We started this book by noting that the key input needed to understand

current flow is the density of states, D(E) telling us the number of states

available for an electron to access on its way from the source to the drain.

Theoretical models for D(E) all start from the Schrödinger equation

which tells us the available energy levels. However, we managed to obtain

expressions for D(E) in Chapter 6 without any serious brush with quantum

mechanics by (1) starting from a given energy-momentum relation E(p),

(2) relating the momentum to the wavelength through the de Broglie rela-

tion (p = h/wavelength) and then (3) requiring an integer number of half

wavelengths to fit into the conductor, the same way acoustic waves fit on a

guitar string.

This heuristic principle is mathematically implemented by writing a

wave equation which is obtained from a desired energy-momentum relation

by making the replacements

E → i~
∂

∂t
, p → −i~∇ (17.1)

where the latter stands for

px → −i~ ∂

∂x
, py → −i~ ∂

∂y
, pz → −i~ ∂

∂z
.

Using this principle, the classical energy-momentum relation

Eclassical(p) =
p2
x + p2

y + p2
z

2m
(17.2a)

leads to the wave equation

i~
∂

∂t
ψ̃(x, y, z, t) = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ̃(x, y, z, t) (17.2b)

https://www.youtube.com/watch?v=hgD1M77kLYc
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whose solutions can be written in the form of exponentials of the form

ψ̃(x, y, z, t) = ψ0 e
+ikxx e+ikyy e+ikzz e−iEt/~ (17.3)

where the energy E is related to the wavevector k by the dispersion relation

E (k) =
~2(k2

x + k2
y + k2

z)

2m
(17.4)

Eq. (17.4) looks just like the classical energy-momentum relation

(Eq. (17.2a)) of the corresponding particle with

p = ~k (17.5)

which relates the particulate property p with the wavelike property k. This

can be seen to be equivalent to the de Broglie relation (p = h/wavelength)

noting that the wavenumber k is related to the wavelength through

k =
2π

wavelength
.

The principle embodied in Eq. (17.1) ensures that the resulting wave equa-

tion has a group velocity that is the same as the velocity of the correspond-

ing particle

1

~
∇k E︸ ︷︷ ︸

Wave group velocity

= ∇pE︸ ︷︷ ︸
Particle velocity

17.1.1 Spatially varying potential

The wave equation Eq. (17.2b) obtained from the energy-momentum re-

lation describes free electrons. If there is a force described by a potential

energy U(r) so that the classical energy is given by

Eclassical (r,p) =
p2
x + p2

y + p2
z

2m
+ U(x, y, z) (17.6a)

then the corresponding wave equation has an extra term due to U(r)

i~
∂

∂t
ψ̃ = − ~2

2m
∇2 ψ̃ + U(r) ψ̃ (17.6b)

where r ≡ (x, y, z) and the Laplacian operator is defined as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Solutions to Eq. (17.6b) can be written in the form

ψ̃(r, t) = ψ(r) e−iEt/~
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where ψ (r) obeys the time-independent Schrödinger equation

Eψ (r) = Hopψ (r) (17.7a)

where Hop is a differential operator obtained from the classical energy fu-

nction in Eq. (17.6a), using the replacement mentioned earlier (Eq. (17.1)):

Hop = − ~2

2m
∇2 + U(r). (17.7b)

Quantum mechanics started in the early twentieth century with an effort

to “understand” the energy levels of the hydrogen atom deduced from the

experimentally observed spectrum of the light emitted from an incandescent

source. For a hydrogen atom Schrödinger used the potential energy

U(r) = −Z q2

4π ε0r

where the atomic number Z = 1, due to a point nucleus with charge +q,

and solved Eqs. (17.7) analytically for the allowed energy values En (called

the eigenvalues of the operator Hop) given by

En = −Z
2

n2

q2

8π ε0a0
(17.8)

with

a0 =
4π ε0~2

mq2

and the corresponding solutions

ψn`m(r) = Rn`(r)Y m` (θ, φ)

obeying the equation

En ψn`m(r) =

(
− ~2

2m
∇2 − Zq2

4πε0r

)
ψn`m(r).

The energy eigenvalues in Eq. (17.8) were in extremely good agreement

with the known experimental results, leading to general acceptance of the

Schrödinger equation as the wave equation describing electrons, just as

acoustic waves, for example, on a guitar string are described by

ω2u(z) = − ∂2

∂z2
u.

A key point of similarity to note is that when a guitar string is clamped

between two points, it is able to vibrate only at discrete frequencies de-

termined by the length L. Similarly electron waves when “clamped” have
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Fig. 17.2 Energy levels in atoms are catalogued with three indices n, l, and m.

L

discrete energies and most quantum mechanics texts start by discussing the

corresponding “particle in a box” problem.

Shorter the length L, higher the pitch of a guitar and hence the spacing

between the harmonics. Similarly smaller the box, greater the spacing

between the allowed energies of an electron. Indeed one could view the

hydrogen atom as an extremely small 3D box for the electrons giving rise

to the discrete energy levels shown in Fig. 17.2. This is of course just a

qualitative picture. Quantitatively, we have to solve the time-independent

Schrödinger equation (Eq. (17.7)).

There is also a key dissimilarity between classical waves and electron

waves. For acoustic waves we all know what the quantity u(z) stands for:

it is the displacement of the string at the point z, something that can be

readily measured. By contrast, the equivalent quantity for electrons, ψ(r)

(called its wavefunction), is a complex quantity that cannot be measured

directly and it took years for scientists to agree on its proper interpreta-

tion. The present understanding is that the real quantity ψψ∗ describes

the probability of finding an electron in a unit volume around r. This quan-

tity, when summed over many electrons, can be interpreted as the average

electron density.
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17.2 Electron-electron Interactions and the SCF Method

After the initial success of the Schrödinger equation in “explaining” the

experimentally observed energy levels of the Hydrogen atom, scientists ap-

plied it to increasingly more complicated atoms and by 1960 had achieved

good agreement with experimentally measured results for all atoms in the

periodic table (Herman and Skillman (1963)). It should be noted, how-

ever, that these calculations are far more complicated primarily because

of the need to include the electron-electron (e-e) interactions in evaluat-

ing the potential energy (Hydrogen has only one electron and hence no e-e

interactions).

For example, Eq. (17.8) gives the lowest energy for a Hydrogen atom as

E1 = −13.6 eV in excellent agreement with experiment. It takes a photon

with at least that energy to knock the electron out of the atom (E > 0), that

is to cause photoemission. Looking at Eq. (17.8) one might think that in

Helium with Z = 2, it would take a photon with energy∼ 4×13.6 eV = 54.5

eV to knock an electron out. However, it takes photons with far less energy

∼ 30 eV and the reason is that the electron is repelled by the other electron

in Helium. However, if we were to try to knock the second electron out of

Helium, it would indeed take photons with energy ∼ 54 eV, which is known

as the second ionization potential. But usually what we want is the first

ionization potential or a related quantity called the electron affinity. Let

me explain.

Current flow involves adding an electron from the source to the channel

and removing it into the drain. However, these two events could occur in

either order.

The electron could first be added and then removed so that the channel

evolves as follows

A. N → N + 1→ N electrons (Affinity levels).

But if the electron is first removed and then added, the channel would

evolve as

B. N → N − 1→ N electrons (Ionization levels).
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In the first case, the added electron would feel the repulsive potential

due to N electrons. Later when removing it, it would still feel the potential

due to N electrons since no electron feels a potential due to itself. So the

electron energy levels relevant to this process should be calculated from the

Schrödinger equation using a repulsive potential due to N electrons. These

are known as the affinity levels.

In the second case, the removed electron would feel the repulsive po-

tential due to the other N − 1 electrons. Later when adding an electron, it

would also feel the potential due to N − 1 electrons. So the electron energy

levels relevant to this process should be calculated from the Schrödinger

equation using a repulsive potential due to N − 1 electrons. These are

known as the ionization levels.

The difference between the two sets of levels is basically the difference

in potential energy due to one electron, called the single electron charging

energy U0. For something as small as a Helium atom it is ∼ 25 eV, so large

that it is hard to miss. For large conductors it is often so small that it can

be ignored, and it does not matter too much whether we use the potential

due to N electrons or due to N − 1 electrons. For small conductors, under

certain conditions the difference can be important giving rise to single-

electron charging effects, which we will ignore for the moment and take up

again later in Chapter 22.

Virtually all the progress that has been made in understanding “con-

densed matter,” has been based on the self-consistent field (SCF) method

where we think of each electron as behaving quasi-independently feeling

an average self-consistent potential U(r) due to all the other electrons in

addition to the nuclear potential. This potential depends on the electron

density n(r) which in turn is determined by the wavefunctions of the filled

states. Given the electron density how one determines U(r) is the subject

of much discussion and research. The “zero order” approach is to calculate

U(r) from n(r) based on the laws of electrostatics, but it is well-established

that this so-called Hartree approximation will overestimate the repulsive

potential and there are various approaches for estimating this reduction.

The density functional theory (DFT) has been spectacularly successful in

describing this correction for equilibrium problems and in its simplest form

amounts to a reduction by an amount proportional to the cube root of the

electron density

U(r) = UHartree −
q2

4πε
(n (r))

1/3
. (17.9)
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Many are now using similar corrections for non-equilibrium problems

like current flow as well, though we believe there are important issues that

remain to be resolved.

We should also note that there is a vast literature (both experiment and

theory) on a regime of transport that cannot be easily described within an

SCF model. It is not just a matter of correctly evaluating the self-consistent

potential. The very picture of quasi-independent electrons moving in a self-

consistent field needs revisiting, as we will see in Chapter 22.

17.3 Differential to Matrix Equation

Related video lecture available at course website, Unit 1: L1.3.

All numerical calculations typically proceed by turning the differential equa-

tion in Eq. (17.7) into a matrix equation of the form

E Sψψψ = Hψψψ (17.10a)

or equivalently

E
∑
m

Snm ψm =
∑
m

Hnm ψm (17.10b)

by expanding the wavefunction in terms of a set of known functions um (r)

called the basis functions:

ψ (r) =
∑
m

ψm um (r) . (17.11a)

The elements of the two matrices S and H are given respectively by

Snm =

∫
dr u∗n (r) um (r) (17.11b)

Hnm =

∫
dr u∗n (r) Hop um (r). (17.11c)

These expressions are of course by no means obvious, but we will not

go into it further since we will not really be making any use of them. Let

me explain why.

https://www.youtube.com/watch?v=26t1w_SW-A8
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17.3.1 Semi-empirical tight-binding (TB) models

There are a wide variety of techniques in use which differ in the specific

basis functions they use to convert the differential equation into a matrix

equation. But once the matrices S and H have been evaluated, the eigenval-

ues E of Eq. (17.10) (which are the allowed energy levels) are determined

using powerful matrix techniques that are widely available. In modeling

nanoscale structures, it is common to use basis functions that are spatially

localized rather than extended functions like sines or cosines. For example,

if we were to model a Hydrogen molecule, with two positive nuclei as shown

(see Fig. 17.3), we could use two basis functions, one localized around the

left nucleus and one around the right nucleus. One could then work through

the algebra to obtain H and S matrices of the form

H =

[
ε t

t ε

]
and S =

[
1 s

s 1

]
(17.12)

where ε, t and s are three numbers.

The two eigenvalues from Eq. (17.10) can be written down analytically

as

E1 =
ε− t
1− s and E2 =

ε+ t

1 + s

+ +
u2(
r )u1(

r )

Fig. 17.3 To model a Hydrogen molecule with two positive nuclei, one could use two

basis functions, one localized around the left nucleus and one around the right nucleus.

What we just described above would be called a first-principles ap-

proach. Alternatively one could adopt a semi-empirical approach treating

ε, t and s as three numbers to be adjusted to give the best fit to our “fa-

vorite” experiments. For example, if the energy levels E1,2 are known from

experiments, then we could try to choose numbers that match these. In-

deed, it is common to assume that the S matrix is just an identity matrix

(s = 0), so that there are only two parameters ε and t which are then

adjusted to match E1,2. Basis functions with s = 0 are said to be “orthog-

onal”.
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17.3.2 Size of matrix, N = n× b

1s

2s,2px,y,z

2 electrons

4 electrons

Carbon, Z=6

1s

2s,2px,y,z

2 electrons

8 electrons

3s,3px,y,z
4 electrons

Silicon, Z=14

What is the size of the H matrix? Answer: (N ×N), N being the total

number of basis functions. How many basis functions? Answer: Depends

on the approach one chooses. In the tight-binding (TB) approach, which

we will use, the basis functions are the atomic wavefunctions for individual

atoms, so that N = n× b, n being the number of atoms and b, the number

of basis functions per atom. What is b? Let us look at specific examples.

Suppose we want to model current flow through graphene consisting of

carbon atoms arranged in a two dimensional hexagonal sheet (see Fig. 17.4).

Carbon (Z = 6) has six electrons which are accommodated in the 1s, 2s and

2p levels as shown. The electrons in the highest levels that is the 2s and

2p levels are the so called valence electrons that move around and carry

current. So in the simplest theories, it is common to use the 2s and 2p

levels on each atom as the basis functions, with b = 4.

The same is true of say silicon (Z = 14), the most common semicon-

ductor for electronic devices. Its fourteen electrons are accommodated as

shown with the valence electrons in the 3s, 3p levels. Once again in the

simplest models b = 4, though some models include five 3d levels and/or

the two 4s levels as part of the basis functions too.

One of the nice things about graphene is that the 2s, 2px, 2py or-

bitals are in the simplest approximation completely decoupled from the

2pz orbitals, and for understanding current flow, one can get a reasonable

description with just one 2pz orbital for every carbon atom, so that b = 1.
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2b

a
x

y

C C

Fig. 17.4 Graphene consists of a two-dimensional sheet of carbon atoms arranged in a

two-dimensional hexagonal lattice.

In these simplest models, the matrix H is of size (n×n), n being the total

number of carbon atoms. Its diagonal elements have some value ε, while the

matrix element Hnm equals some value t if n and m happen to be nearest

neighbors. If they are not nearest neighbors then one expects the value to

be smaller since the functions um and un appearing in Eqs. (17.11b) and

(17.11c) do not overlap as much. In nearest neighbor tight-binding models

it is common to set all such matrix elements to zero, so that we are finally

left with just two parameters ε and t which are then adjusted to match

known results.

17.4 Choosing Matrix Parameters

One common way to select the parameters is to fit the known energy disper-

sion relation E(k), also called the energy-momentum relation E(p) (Note

that p = ~k) as discussed in Chapter 6. These relations have been arrived at

through years of work combining careful experimental measurements with

sophisticated first-principles calculations. If we can get our semi-empirical

model to fit the accepted dispersion relation for a material, we have in effect

matched the whole set of experiments that contributed to it.

17.4.1 One-dimensional conductor

Related video lecture available at course website, Unit 1: L1.4.

Suppose we have a one-dimensional conductor that we would like to

model with a nearest neighbor orthogonal tight-binding model with two

https://www.youtube.com/watch?v=JjWCUtE52OA
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parameters ε and t representing the diagonal elements and the nearest

neighbor coupling (Fig. 17.5).

a

x t t


Fig. 17.5 A one-dimensional array of atoms spaced by “a” modeled with a nearest
neighbor orthogonal tight-binding model with two parameters ε and t representing the

diagonal elements and the nearest neighbor coupling.

How would we choose ε and t so that we approximate a parabolic dis-

persion relation

E(k) = Ec +
~2k2

2m
? (17.13)

The answer is that our model represents a set of algebraic equations

(see Eqs. (17.10)) which for the orthogonal model reduces to

Eψn =
∑
m

Hnmψm ⇒ E =
∑
m

Hnm
ψm
ψn

.

If we assume a solution of the form

ψn = ψ0e
ik na

we obtain the E(k) relation corresponding to Eqs. (17.10):

E(k) =
∑
m

Hnme
ik(m−n)a. (17.14)

Can we always assume a solution of this form? No. In general

Eq. (17.14) will give us different results for E(k) depending on what value

we choose for n when doing the summation and what we get for some

particular choice of n is not very helpful. But if the structure is “trans-

lationally invariant” such that we get the same answer for all n then we

get a unique E(k) relation and ψn = ψ0 exp (ikna) indeed represents an

acceptable solution to our set of equations.

For our particular nearest neighbor model Eq. (17.14) yields straight-

forwardly

E(k) = ε+ t e+ika + t e−ika = ε+ 2t cos (ka). (17.15)

How would we make this match the desired parabolic relation in

Eq. (17.13)? Clearly one could not match them for all values of k, only
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for a limited range. For example, if we want them to match over a range of

k-values around k = 0, we can expand the cosine in a Taylor series around

ka = 0 to write

cos(ka) ≈ 1− (ka)2

2

so that the best match is obtained by choosing

t = − ~2

2ma2
(17.16a)

and

ε = Ec − 2t. (17.16b)

a x 
t t

 
U0

 
U1

 
U1

Fig. 17.6 A spatially varying potential U(x) along the channel is included by adding

the local value of U to the diagonal element ε.

Finally, I should mention that when modeling a device there could be

a spatially varying potential U(x) along the channel which is included by

adding the local value of U to the diagonal element as indicated in Fig. 17.6.

We now no longer have the “translational invariance” needed for a solution

of the form exp (ikx) and the concept of a dispersion relation E(k) is not

valid. But a Hamiltonian of the form just described (Fig. 17.6) can be

used for numerical calculations and appear to be fairly accurate at least for

potentials U(x) that do not vary too rapidly on an atomic scale.

17.4.2 Two-dimensional conductor

Related video lecture available at course website, Unit 1: L1.6.

A two-dimensional array of atoms (Fig. 17.7) can be modeled similarly

with a nearest neighbor orthogonal TB model, with the model parameters

https://www.youtube.com/watch?v=OBuNWr9hxSg


May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 36

36 Lessons from Nanoelectronics: B. Quantum Transport

ε and t chosen to yield a dispersion relation approximating a standard

parabolic effective mass relation:

E (kx, ky) = Ec +
~2
(
k2
x + k2

y

)
2m

. (17.17)

a

x 

t

t

t


y

Fig. 17.7 A two-dimensional nearest neighbor orthogonal TB model.

In this case we can assume a solution of the form

ψn = ψ0 e
ik · rn

where k = kx x̂ + ky ŷ and rn denotes the location of atom n. Substituting

into Eq. (17.10) we obtain the dispersion relation

E(k) =
∑
m

Hnm e
ik · (rm−rn) (17.18a)

which for our nearest neighbor model yields

E(k) = ε+ t e+ikxa + t e−ikxa + t e+ikya + t e−ikya

= ε+ 2t cos (kxa) + 2t cos (kya).
(17.18b)

Following the same arguments as in the 1D case, we can make this match

the parabolic relation in Eq. (17.17) by choosing

t = − ~2

2ma2
(17.19a)

and

ε = Ec − 4t. (17.19b)
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17.4.3 TB parameters in B-field

It is shown in Appendix D that if we replace p with p + qA in Eq. (17.6a)

Eclassical (r,p) =
(p + qA) · (p + qA)

2m
+ U (r)

yields the correct classical laws of motion of a particle of charge −q in a

vector potential A. The corresponding wave equation is obtained using the

replacement in Eq. (17.1): p → −i~∇.

To find the appropriate TB parameters for the Hamiltonian in a B-field

we consider the homogeneous material with constant Ec and a constant

vector potential. Consider first the 1D problem with

E (px) = Ec +
(px + qAx) (px + qAx)

2m
so that the corresponding wave equation has a dispersion relation

E (kx) = Ec +
(~kx + qAx) (~kx + qAx)

2m
which can be approximated by a cosine function

E (kx) = ε + 2t cos

(
kxa+

qAxa

~

)
with ε and t chosen according to Eq. (17.16). This means that we can

model it with the 1D lattice shown here, which differs from our original

model in Fig. 17.5 by the extra phase qAxa/~.

a

x 




t e iqAxa/



t e iqAxa/

Similar arguments lead to a similar phase in the y-direction as well.

This is included in the 2D tight-binding model by modifying the nearest

neighbor coupling elements to include an appropriate phase in the nearest

neighbor coupling elements as shown in Fig. 17.8 with

ϕx =
qAxa

~
, ϕy =

qAya

~
.

To include a B-field we have to let the vector potential vary spatially

from one lattice point to the next such that

B = ∇×A.
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ax 


y

t ei y



at ei y

t ei x

t ei x

Fig. 17.8 The effect of a magnetic field in the z-direction is included in a tight-binding

model by introducing a phase in the nearest neighbor coupling elements as discussed in

the text.

For example, a B-field in the z-direction described in general by a vector

potential Ax(y) and/or Ay(x) such that

Bz =
∂Ay
∂x

− ∂Ax
∂y

.

For a given B-field the potential A is not unique, and it is usually convenient

to choose a potential that does not vary along the direction of current flow.

17.4.4 Lattice with a “Basis”

Related video lecture available at course website, Unit 1: L1.8.

We have seen how for any given TB model we can evaluate the E (k)

relation from Eq. (17.18) and then fit it to a desired function. However,

Eq. (17.18) will not work if we have a “lattice with a basis”. For example if

we apply it to the graphene lattice shown in Fig. 17.9, we will get different

answers depending on whether we choose “n” to be the left carbon atom

or the right carbon atom. The reason is that in a lattice like this these two

carbon atoms are not in identical environments: One sees two bonds to the

left and one bond to the right, while the other sees one bond to the left and

two bonds to the right. We call this a lattice with a basis in the sense that

two carbon atoms comprise a unit cell: if we view a pair of carbon atoms

(marked A and B) as a single entity then the lattice looks translationally

invariant with each entity in an identical environment.

https://www.youtube.com/watch?v=2_haz1EGkDo
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2b

2ax 


y

Unit
Cell

A B




 t
t  



00
t 0


 



00
t 0


 



0 t
0 0


 



0 t
0 0


 



“n”

Fig. 17.9 If we view two carbon atoms as a single entity then the lattice in Fig. 17.4

looks translationally invariant with each entity in an identical environment. Viewing the
two atoms in each unit cell as a single entity we can write the set of equations in the

form shown in Eq. (17.20) with Hnm given by (2 × 2) matrices as shown.

We can then write the set of equations in Eq. (17.10) in the form

Eψψψn =
∑
m

Hnmψψψm (17.20)

where ψψψn is a (2 × 1) column vector whose components represent the two

atoms comprising unit cell number n. Similarly Hnm is a (2 × 2) matrix

representing the coupling between the two components of unit cell n and

unit cell m (see Fig. 17.9).

Now if we write the solution in the form

ψψψn = ψψψ0 e
ik · rn (17.21)

we obtain from Eq. (17.20)

Eψψψ0 = h (k)ψψψ0 (17.22)

where

h (k) =
∑
m

Hnm e
ik · (rm−rn). (17.23)
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Note that h (k) obtained from Eq. (17.23) is a (2 × 2) matrix, which can

be shown after some algebra to be

h (k) =

[
ε h∗0
h0 ε

]
(17.24)

where

h0 (k) ≡ t
(
1 + 2e+ikxa cos (kyb)

)
. (17.25)

Equation (17.22) yields two eigenvalues for the energy E for each value of

k:

E (k) = ε ± |h0 (k)| . (17.26)

Equations (17.26) and (17.25) give a widely used dispersion relation for

graphene. Once again to obtain a simple polynomial relation we need a

Taylor series expansion around the k-value of interest. In this case the

k-values of interest are those that make

h0 (k) = 0

so that

E (k) = ε.

This is because the equilibrium electrochemical potential is located at

ε for a neutral sample for which exactly half of all the energy levels given

by Eq. (17.26) are occupied.

It is straightforward to see that this requires

h0 (k) = 0 → kxa = 0, kyb = ±2π

3
. (17.27)

Alternatively one could numerically make a grayscale plot of the magnitude

of h0(k) as shown below and look for the dark spots where it is a minimum.

Each of these spots is called a valley and one can do a Taylor expansion

around the minimum to obtain an approximate dispersion relation valid for

that valley. Note that two of the dark spots correspond to the points in

Eq. (17.27), but there are other spots too and it requires some discussion

to be convinced that these additional valleys do not need to be considered

separately (see for example, Chapter 5, Datta (2005)).

A Taylor expansion around the points in Eq. (17.27) yields

h0 (k) ≈ ± i ta (kx ∓ iβy) , (17.28a)

where

βy ≡ ky ∓
2π

3b
. (17.28b)
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kxa 

kyb

0, 2
3







0,  2
3







Using this approximate relation we obtain a simple dispersion relation:

E = ε ± at
√
k2
x + k2

y (17.29)

which corresponds to the energy-momentum relation

E = ν0p

that we stated in Chapter 6, if we set ε = 0. The two valleys correspond to

the two values of kyb in Eq. (17.27).

In summary, although the differential form of the Schrödinger equa-

tion (Eq. (17.2)) is the well-known one that appears in most textbooks as

well as on T-shirts, practical calculations are usually based on a discretized

version that represents the Hamiltonian operator, Hop (Eq. (17.8)) as a ma-

trix of size N ×N , N being the number of basis functions used to represent

the structure.

Given a set of basis functions, the matrix H can be obtained from first

principles, but a widely used approach is to use the principles of bandstruc-

ture to represent the matrix in terms of a few parameters which are chosen

to match key experiments. Such semi-empirical approaches are often used

because of their convenience and can explain a wide range of experiments

beyond the key ones used that are used as input, suggesting that they

capture a lot of essential physics.

Our approach in this book will be to

(1) take accepted energy-momentum E(p) relations that are believed

to describe the dynamics of conduction electrons with energies

around the electrochemical potential µ0,
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(2) extract appropriate parameters to use in tight-binding model by

discretizing it.

Knowing the H, we can obtain the Σ1,2 describing the connection to the

physical contacts and possible approaches will be described when discussing

specific examples in Chapters 19 through 23. A key difference between the

H and Σ matrices is that the former is Hermitian with real eigenvalues,

while the latter is non-Hermitian with complex eigenvalues, whose signifi-

cance we will discuss in the next chapter.

As we mentioned at the outset, there are many approaches to writing

H of which we have only described the simplest versions. But regardless of

how we chose to write these matrices, we can use the NEGF-based approach

to be described in the next chapter.
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NEGF Method

In the last chapter I tried to provide a super-brief but hopefully self-

contained introduction to the Hamiltonian matrix H whose eigenvalues

tell us the allowed energy levels in the channel. However, H describes an

isolated channel and we cannot talk about the steady-state resistance of an

isolated channel without bringing in the contacts and the battery connected

across it. In this chapter, I will describe the NEGF-based transport model

that can be used to model current flow, given H and the Σ’s (Fig. 18.1).

I V

[H]

S1 S2

S0
H

µ1

µ2

Source       Drain

Fig. 18.1 The NEGF-based quantum transport model described here allows us to model
current flow given the Hamiltonian matrix H describing the channel, the self-energy

matrices Σ describing the connection of the channel to the contacts, and Σ0 describing

interactions within the channel.

As I mentioned in Chapters 1 and 17, the NEGF method originated

from the seminal works of Martin and Schwinger (1959), Kadanoff and

Baym (1962), Keldysh (1965) and others who used the methods of many-

43
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body perturbation theory (MBPT) to describe the distributed entropy-

generating processes along the channel which were believed to constitute

the essence of resistance. Since MBPT is an advanced topic requiring many

semesters to master, the NEGF method is generally regarded as an esoteric

tool for specialists.

Channel

We will start with elastic resistors for which energy exchange is confined

to the contacts, and the problem of resistance can be treated within a one-

electron picture by connecting contacts to the Schrödinger equation. Indeed

our approach will be to start from the usual time-independent Schrödinger

equation Eψψψ = Hψψψ and add two terms to it representing the outflow and

inflow from the contact

Eψψψ = Hψψψ + Σψψψ︸︷︷︸
OUTFLOW

+ s︸︷︷︸
INFLOW

.

These two terms arise from imposing open boundary conditions on the

Schrödinger equation with an incident wave from the contact as shown in

Chapters 8 and 9 of Datta (2005). Some readers may notice the similarity

of the additional terms here with those appearing in the Langevin equation

used to describe Brownian motion, but we will not go into it.

Using this modified Schrödinger equation, the wavefunction can be writ-

ten as

ψψψ = [EI−H−Σ]
−1

s.

We will then argue that since the inflow from multiple sources ‘s’ are in-

coherent, one cannot superpose the resulting ψψψ’s and it is more convenient

to work in terms of quantities like (superscript ‘†’ denotes conjugate trans-

pose)

Gn ∼ ψψψψψψ†

Σin ∼ s s†

which can be superposed. Defining

GR = [EI−H−Σ]
−1

(18.1)
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and GA =
[
GR
]†

we can write

ψψψ = GR s

so that

ψψψψψψ†︸︷︷︸
Gn

= GR s s†︸︷︷︸
Σin

GA

giving us the second NEGF equation

Gn = GR Σin GA. (18.2)

In this book, we have changed the notation for several key NEGF quan-

tities, writing Σ for the “retarded self-energy function” ΣR, and more im-

portantly the following symbols (Table 18.1, the reader could also look at

Chapter 8, Datta 1995).

Table 18.1 NEGF symbols used in this book and their conventional coun-

terpart used in literature.

Conventional Meaning of Symbol used

NEGF symbol the symbol in this book

−iG< Matrix electron density Gn

+iG> Matrix hole density Gp

−iΣ< In-scattering function Σin

+iΣ> Out-scattering function Σout

Note that the symbols in the rightmost column are all Hermitian.

Equations (18.1) and (18.2) are essentially the same as Eqs. (75)–(77) in

Keldysh (1965), which is one of the seminal founding papers on the NEGF

method that obtained these equations using MBPT. Although for simplicity

we have only discussed the time-independent version here, a similar deriva-

tion could be used for the time-dependent version too (See Appendix, Datta

(2005)).

How could we obtain these results using elementary arguments, without

invoking MBPT? Because we are dealing with an elastic resistor where

all entropy-generating processes are confined to the contacts and can be

handled in a relatively elementary manner. But should we call this NEGF?

It seems to us that NEGF has two aspects, namely

A. Eqs. (18.1) and (18.2) and

B. calculating Σ and Σin that appear in Eqs. (18.1) and (18.2).
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For historical reasons, these two aspects, A and B, are often intertwined

in the literature, but they need not be. Indeed these two aspects are com-

pletely distinct in the Boltzmann formalism (Chapter 9). The Boltzmann

transport equation (BTE)

∂f

∂t
+ ννν · ∇f + F · ∇pf = Sopf

is used to describe semiclassical transport in many different contexts, but

the evaluation of the scattering operator Sop has evolved considerably since

the days of Boltzmann and varies widely depending on the problem at hand.

Similarly it seems to me that the essence of NEGF is contained in

Eqs. (18.1) and (18.2) while the actual evaluation of the Σ’s may well

evolve as we look at more and more different types of problems. The orig-

inal MBPT–based approach may or may not be the best, and may need to

be modified even for problems involving electron-electron interactions.

Above all we believe that by decoupling Eqs. (18.1) and (18.2) from

the MBPT method originally used to derive them, we can make the NEGF

method more transparent and accessible so that it can become a part of the

standard training of physics and engineering students who need to apply

it effectively to a wide variety of basic and applied problems that require

connecting contacts to the Schrödinger equation.

I should also note briefly the relation between the NEGF method applied

to elastic resistors with the scattering theory of transport or the transmis-

sion formalism widely used in mesoscopic physics. Firstly, the scattering

theory works directly with the Schrödinger equation with open boundary

conditions that effectively add the inflow and outflow terms we mentioned:

Eψψψ = Hψψψ + Σψψψ︸︷︷︸
OUTFLOW

+ s︸︷︷︸
INFLOW

.

However, as we noted earlier it is then important to add individual sources

incoherently, something that the NEGF equation (Eq. (18.2)) takes care of

automatically.

The second key difference is the handling of dephasing processes in the

channel, something that has no classical equivalent. In quantum transport

randomization of the phase of the wavefunction even without any momen-

tum relaxation can have a major impact on the measured conductance. The

scattering theory of transport usually neglects such dephasing processes and

is restricted to phase-coherent elastic resistors.

Incoherence is commonly introduced in this approach using an insightful

observation due to Büttiker that dephasing processes essentially remove
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electrons from the channel and re-inject them just like the voltage probes

discussed in Section 10.3 and so one can include them phenomenologically

by introducing conceptual contacts in the channel.

This method is widely used in mesoscopic physics, but it seems to in-

troduce both phase and momentum relaxation and I am not aware of a

convenient way to introduce pure phase relaxation if we wanted to. In the

NEGF method it is straightforward to choose [Σ0] so as to include phase

relaxation with or without momentum relaxation as we will see in the next

chapter. In addition, the NEGF method provides a rigorous framework for

handling all kinds of interactions in the channel, both elastic and inelastic,

using MBPT. Indeed that is what the original work from the 1960s was

about.

Let me finish up this long introduction by briefly mentioning the two

other key equations in NEGF besides Eqs. (18.1) and (18.2). As we will

see, the quantity Gn appearing in Eq. (18.2) represents a matrix version

of the electron density (times 2π) from which other quantities of interest

can be calculated. Another quantity of interest is the matrix version of the

density of states (again times 2π) called the spectral function A given by

A = GRΓ GA = GAΓ GR

= i
[
GR −GA

]
= A†

(18.3a)

where GR and GA are defined in Eq. (18.1) and the Γ’s represent the

anti-Hermitian parts of the corresponding Σ’s

Γ = i
[
Σ−Σ†

]
(18.3b)

which describe how easily the electrons in the channel communicate with

the contacts.

There is a component of Σ, Γ and Σin for each contact (physical or

otherwise) and the quantities appearing in Eqs. (18.1)–(18.3) are the total

obtained summing all components. The current at a specific contact m,

however, involves only those components associated with contact m:

Ĩm =
q

h
Trace

[
Σin
mA− Γm Gn

]
. (18.4)

Note that Ĩm(E) represents the current per unit energy and has to be

integrated over all energy to obtain the total current. In the following

four chapters we will look at a few examples designed to illustrate how

Eqs. (18.1)–(18.4) are applied to obtain concrete results.

But for the rest of this chapter let me try to justify these equations.

We start with a one-level version for which all matrices are just numbers
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(Section 18.1), then look at the full multi-level version (Section 18.2), obtain

an expression for the conductance function G(E) for coherent transport

(Section 18.3) and finally look at the different choices for the dephasing

self-energy Σ0 (Section 18.4).

18.1 One-level Resistor

To get a feeling for the NEGF method, it is instructive to look at a partic-

ularly simple conductor having just one level and described by a (1× 1) H

matrix that is essentially a number: H = ε.

Starting directly from the Schrödinger equation we will see how we

can introduce contacts into this problem. This will help set the stage for

Section 18.3 when we consider arbitrary channels described by (N × N)

matrices instead of the simple one-level channel described by (1× 1) “ma-

trices.”

18.1.1 Semiclassical treatment

Related video lecture available at course website, Unit 2: L2.2.

It is useful to first go through a semiclassical treatment as an intuitive

guide to the quantum treatment. Physically we have a level connected to

two contacts, with two different occupancy factors

f1(ε) and f2(ε).

Let us assume the occupation factor to be one for the source and zero for

the drain, so that it is only the source that is continually trying to fill up the

level while the drain is trying to empty it. We will calculate the resulting

current and then multiply it by

f1(ε) − f2(ε)

to account for the fact that there is injection from both sides and the net

current is the difference.

With f1 = 1 in the source and f2 = 0 in the drain, the average number

N of electrons (N < 1) should obey an equation of the form

d

dt
N = −(ν1 + ν2)N + S1 + S2 (18.5)

where ν1 and ν2 represent the rates (per second) at which an electron

escapes into the source and drain respectively, while S1 and S2 are the

https://www.youtube.com/watch?v=cFTwbsDgenI
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S1

n1N

N

n2N
f1 f2

S2

Fig. 18.2 Filling and emptying a level: Semiclassical picture.

rates at which electrons try to enter from the source and drain respectively.

The steady state occupation is obtained by setting

d

dt
N = 0 → N =

S1 + S2

ν1 + ν2
. (18.6)

We can fix S1, by noting that if the drain were to be disconnected, N should

equal the Fermi function f1(ε) in contact 1, which we will assume one for

this discussion. This means

S1

ν1
= f1(ε) and

S2

ν2
= f2(ε). (18.7)

The current can be evaluated by writing Eq. (18.5) in the form

dN

dt
= (S1 − ν1N) + (S2 − ν2N) (18.8)

and noting that the first term on the right is the current from the source

while the second is the current into the drain. Under steady state condi-

tions, they are equal and either could be used to evaluate the current that

flows in the circuit:

I = q (S1 − ν1N) = q (ν2N − S2). (18.9)

From Eqs. (18.6), (18.7) and (18.9), we have

N =
ν1f1(ε) + ν2f2(ε)

ν1 + ν2
(18.10a)

and

I = q
ν1ν2

ν1 + ν2
(f1(ε) − f2(ε)) . (18.10b)
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18.1.2 Quantum treatment

Related video lecture available at course website, Unit 2: L2.3.

Let us now work out the same problem using a quantum formalism

based on the Schrödinger equation. In the last chapter we introduced the

matrix version of the time-independent Schrödinger equation

Eψψψ = Hψψψ

which can be obtained from the more general time-dependent equation

i~
∂

∂t
ψ̃ψψ(t) = H ψ̃ψψ(t) (18.11a)

by assuming

ψ̃ψψ(t) = ψψψ e−iEt/~. (18.11b)

For problems involving steady-state current flow, the time-independent

version is usually adequate, but sometimes it is useful to go back to the

time-dependent version because it helps us interpret certain quantities like

the self-energy functions as we will see shortly.

In the quantum formalism the squared magnitude of the electronic wave-

function ψ̃(t) tells us the probability of finding an electron occupying the

level and hence can be identified with the average number of electrons

N(< 1). For a single isolated level with H = ε, the time evolution of the

wavefunction is described by

i~
d

dt
ψ̃ = εψ̃

which with a little algebra leads to

d

dt

(
ψ̃ψ̃∗

)
= 0

showing that for an isolated level, the number of electrons ψ̃ψ̃∗ does not

change with time.

Our interest, however, is not in isolated systems, but in channels con-

nected to two contacts. Unfortunately the standard quantum mechanics

literature does not provide much guidance in the matter, but we can do

something relatively simple using the rate equation in Eq. (18.5) as a guide.

We introduce contacts into the Schrödinger equation by modifying

it to read

i~
d

dt
ψ̃ =

(
ε− iγ1 + γ2

2

)
ψ̃ (18.12a)

https://www.youtube.com/watch?v=9APuJaG4Q10


May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 51

NEGF Method 51

so that the resulting equation for

d

dt
ψ̃ψ̃∗ = −

(
γ1 + γ2

~

)
ψ̃ψ̃∗ (18.12b)

looks just like Eq. (18.5) except for the source term S1 which we will discuss

shortly.

We can make Eq. (18.12b) match Eq. (18.5) if we choose

γ1 = ~ν1 (18.13a)

γ2 = ~ν2. (18.13b)

We can now go back to the time-independent version of Eq. (18.12a):

Eψ =

(
ε− iγ1 + γ2

2

)
ψ (18.14)

obtained by assuming a single energy solution:

ψ̃(t) = ψ(E) e−iEt/~.

Equation (18.14) has an obvious solution ψ = 0, telling us that at

steady-state there are no electrons occupying the level which makes sense

since we have not included the source term S1. All electrons can do is to

escape into the contacts, and so in the long run the level just empties to

zero.

s1



1


 *


 2


 *

f1=1 f2=0


Fig. 18.3 Filling and emptying a level: Quantum picture.

Introducing a source term into Eq. (18.14) and defining γ ≡ γ1 +γ2,

we have

E ψ =
(
ε− iγ

2

)
ψ + s1. (18.15)

Unlike the semiclassical case (Eq. (18.5)) we are introducing only one

source rather than two. The reason is subtle and we will address it later at
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the end of this section. From Eq. (18.15), we can relate the wavefunction

to the source

ψ =
s1

E − ε+ i(γ/2)
. (18.16)

Note that the wavefunction is a maximum when the electron energy E

equals the energy ε of the level, as we might expect. But the important

point about the quantum treatment is that the wavefunction is not signifi-

cantly diminished as long as E differs from ε by an amount less than γ. This

is an example of “broadening” or energy uncertainty that a semiclassical

picture misses.

To obtain the strength of the source we require that the total number

of electrons on integrating over all energies should equal our rate equation

result from Eq. (18.5). That is,∫ +∞

−∞
dE ψψ∗ =

ν1

ν1 + ν2
=

γ1

γ1 + γ2
(18.17)

where we have made use of Eq. (18.13). We now use Eqs. (18.16) and

(18.17) to evaluate the right hand side in terms of the source∫ +∞

− ∞
dE ψψ∗ =

∫ +∞

−∞
dE

s1s
∗
1

(E − ε)2 +
(γ

2

)2 =
2πs1s

∗
1

γ
(18.18)

where we have made use of a standard integral∫ +∞

−∞
dE

γ

(E − ε)2 +
(γ

2

)2 = 2π. (18.19)

From Eqs. (18.17) and (18.18) we obtain, noting that

2πs1s
∗
1 = γ1. (18.20)

The strength of the source is thus proportional to the escape rate which

seems reasonable: if the contact is well coupled to the channel and electrons

can escape easily, they should also be able to come in easily.

Just as in the semiclassical case (Eq. (18.9)) we obtain the current by

looking at the rate of change of N from Eq. (18.12b)

d

dt
ψ̃ψ̃∗ = (Inflow from 1) − γ1

~
ψ̃ψ̃∗ − γ2

~
ψ̃ψ̃∗

where we have added a term “Inflow from 1” as a reminder that Eq. (18.12a)

does not include a source term. Both left and right hand sides of this

equation are zero for the steady-state solutions we are considering. But
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just like the semiclassical case, we can identify the current as either the

first two terms or the last term on the right:

I

q
= (Inflow from 1) − γ1

~
ψ̃ψ̃∗ =

γ2

~
ψ̃ψ̃∗.

Using the second form and integrating over energy we can write

I = q

∫ +∞

−∞
dE

γ2

~
ψψ∗ (18.21)

so that making use of Eqs. (18.16) and (18.20), we have

I =
q

~
γ1γ2

2π

∫ +∞

−∞
dE

1

(E − ε)2 + (γ/2)
2 (18.22)

which can be compared to the semiclassical result from Eq. (18.10b) with

f1 = 1 and f2 = 0 (note: γ = γ1 + γ2)

I =
q

h

γ1γ2

γ1 + γ2
.

18.1.3 Quantum broadening

Note that Eq. (18.22) involves an integration over energy, as if the quantum

treatment has turned the single sharp level into a continuous distribution

of energies described by a density of states D(E):

D =
γ/2π

(E − ε)2 + (γ/2)
2 . (18.23)

Quantum mechanically the process of coupling inevitably spreads a sin-

gle discrete level into a state that is distributed in energy, but integrated

over all energy still equals one (see Eq. (18.15)). One could call it a conse-

quence of the uncertainty relation

γ t ≥ h

relating the length of time t the electron spends in a level to the uncertainty

“γ” in its energy. The stronger the coupling, shorter the time and larger

the broadening.

Is there any experimental evidence for this energy broadening

(Eq. (18.23)) predicted by quantum theory? A Hydrogen molecule has

an energy level diagram like the one-level resistor we are discussing and

experimentalists have measured the conductance of a Hydrogen molecule

with good contacts and it supports the quantum result (Smit et al., 2002).

Let me elaborate a little.
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µ1

µ2

Semiclassical

Picture

µ1

µ2

Quantum

Picture

Comparing Eq. (18.22) with Eq. (3.3) for elastic resistors we can write

the conductance function for a one-level device including quantum broad-

ening as

G(E) =
q2

h

γ1γ2

(E − ε)2.+
(γ

2

)2 .

If we assume (1) equal coupling to both contacts:

γ1 = γ2 =
γ

2
and (2) a temperature low enough that the measured conductance equals

G(E = µ0), µ0 being the equilibrium electrochemical potential, we have

G ≈ G(E = µ0) =
q2

h

(γ/2)
2

(µ0 − ε)2 + (γ/2)
2 .

So the quantum theory of the one-level resistor says that the measured

conductance should show a maximum value equal to the quantum of con-

ductance q2/h when µ0 is located sufficiently close to ε. The experimentally

measured conductance is equal to 2q2/h, the extra factor of 2 being due

to spin degeneracy, since levels come in pairs and what we have is really a

two-level rather than a one-level resistor.

18.1.4 Do multiple sources interfere?

In our quantum treatment we considered a problem with electrons injected

only from the source (f1 = 1) with the drain empty (f2 = 0) (Eq. (18.15)),

unlike the semiclassical case where we started with both sources S1 and S2

(Eq. (18.5)).

This is not just a matter of convenience. If instead of Eq. (18.15) we

start from

E ψ =
(
ε− iγ

2

)
ψ + s1 + s2
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we obtain

ψ =
s1 + s2

E − ε+ i (γ/2)

so that

ψψ∗ =
1

(E − ε)2
+ (γ/2)

2 (s1s
∗
1 + s2s

∗
2 + s1s

∗
2 + s2s

∗
1︸ ︷︷ ︸

Interference

Terms

)

which has two extra interference terms that are never observed experimen-

tally because the electrons injected from separate contacts have uncorre-

lated phases that change randomly in time and average to zero.

The first two terms on the other hand add up since they are positive

numbers. It is like adding up the light from two light bulbs: we add their

powers not their electric fields. Laser sources on the other hand can be

coherent so that we actually add electric fields and the interference terms

can be seen experimentally. Electron sources from superconducting con-

tacts too can be coherent leading to Josephson current that depend on

interference. But that is a different matter.

Our point here is simply that normal contacts like the ones we are

discussing are incoherent and it is necessary to take that into account in

our models. The moral of the story is that we cannot just insert multiple

sources into the Schrödinger equation. We should insert one source at a

time, calculate bilinear quantities (things that depend on the product of

wavefunctions) like electron density and current and add up the contri-

butions from different sources. Next we will describe the non-equilibrium

Green’s function (NEGF) method that allows us to implement this proce-

dure in a systematic way and also to include incoherent processes.

18.2 Quantum Transport Through Multiple Levels

We have seen how we can treat quantum transport through a one-level

resistor with a time-independent Schrödinger equation modified to include

the connection to contacts and a source term:

E ψ =
(
ε− iγ

2

)
ψ + s.

How do we extend this method to a more general channel described by an

N ×N Hamiltonian matrix H whose eigenvalues give the N energy levels?
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For an N -level channel, the wavefunction ψψψ and source term s1 are N×1

column vectors and the modified Schrödinger equation looks like

Eψψψ = [H + Σ1 + Σ2] ψψψ + s1 (18.24)

where Σ1 and Σ2 are N×N non-Hermitian matrices whose anti-Hermitian

components

Γ1 = i
[
Σ1 −Σ†1

]

Γ2 = i
[
Σ2 −Σ†2

]
play the roles of γ1,2 in our one-level problem.

[H]

f1 f2
[S1] [S2]

Fig. 18.4 Transport model for multi-level conductor.

In Chapter 17 we discussed how for different structures we can write

down the channel Hamiltonian H and in the next few chapters I will present

examples to show how the Σ are obtained.

For the moment, let us focus on how the basic NEGF equations sum-

marized earlier (Eqs. (18.1)–(18.4)) follow from our contact-ed Schrödinger

equation, Eq. (18.24).

18.2.1 Obtaining Eqs. (18.1)

Related video lecture available at course website, Unit 2: L2.4.

From Eq. (18.24) it is straightforward to write

ψψψ = GR s1

where GR is given by Eq. (18.1) with

Σ = Σ1 + Σ2. (18.25)

https://www.youtube.com/watch?v=u_zQinrCwbA
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18.2.2 Obtaining Eqs. (18.2)

The matrix electron density, Gn, defined as

Gn → 2πψψψψψψ† = 2πGR s1s
†
1 GA

where the superscript “ † ” stands for conjugate transpose, and GA stands

for the conjugate transpose of GR.

For the one-level problem 2πs1s
∗
1 = γ1 (see Eq. (18.20)): the corre-

sponding matrix relation is

2π s1s
†
1 = Γ1

so that

Gn = GR Γ1 GA.

This is for a single source term. For multiple sources, the electron

density matrices, unlike the wavefunctions, can all be added up with the

appropriate Fermi function weighting to give Eq. (18.2),

Gn = GR Σin GA (same as Eq. (18.2))

with Σin representing an incoherent sum of all the independent sources:

Σin = Γ1 f1(E) + Γ2 f2(E). (18.26)

18.2.3 Obtaining Eq. (18.3)

Equation (18.2) gives us the electron density matrix Gn, in terms of the

Fermi functions f1 and f2 in the two contacts. But if both f1 and f2 are

equal to one then all states are occupied, so that the matrix electron density

becomes equal to the matrix density of states, called the spectral function

matrix A. Setting f1 = 1 and f2 = 1 in Eq. (18.26) yields Σin = Γ1 + Γ2

and plugging it in Eq. (18.2) we have

A = GR Γ GA (18.27)

since Γ = Γ1 + Γ2. This gives us part of Eq. (18.3). The rest of Eq. (18.3)

can be obtained from Eq. (18.1) using straightforward algebra as follows:[
GR
]−1

= E I−H−Σ. (18.28a)

Taking conjugate transpose of both sides[
[GR]−1

] †
=
[
[GR] †

]−1
= E I−H−Σ†. (18.28b)
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Subtracting Eq. (18.28b) from (18.28a) (note that GA stands for [GR]†)

and making use of Eq. (18.3b)[
GR
]−1 −

[
GA
]−1

= iΓ. (18.28c)

Multiplying Eq. (18.28c) with GR from the left and GA from the right we

have

i
[
GR − GA

]
= GR Γ GA

thus giving us another piece of Eq. (18.3). The final piece is obtained by

multiplying Eq. (18.28c) with GA from the left and GR from the right.

18.2.4 Obtaining Eq. (18.4): the current equation

Related video lecture available at course website, Unit 2: L2.5.

Like the semiclassical treatment and the one-level quantum treatment,

the current expression is obtained by considering the time variation of the

number of electrons N . Starting from

i~
d

dt
ψψψ = [H + Σ]ψψψ + s

and its conjugate transpose (noting that H is a Hermitian matrix)

− i~ d

dt
ψψψ† = ψψψ† [H + Σ†] + s†

we can write

i~
d

dt
ψψψψψψ† =

(
i~

d

dt
ψψψ

)
ψψψ† + ψψψ

(
i~

d

dt
ψψψ†
)

= ([H + Σ]ψψψ + s)ψψψ† −ψψψ
(
ψψψ† [H + Σ†] + s†

)
=
[
(H + Σ)ψψψψψψ† −ψψψψψψ†(H + Σ†)

]
+
[
ss†GA −GRss†

]
where we have made use of the relations

ψψψ = GR s and ψψψ† = s†GA.

Since the trace of ψψψψψψ† represents the number of electrons, we could define

its time derivative as a matrix current operator whose trace gives us the

current. Noting further that

2πψψψψψψ† = Gn and 2π ss† = Γ

we can write

Iop =
[HGn −GnH] + [ΣGn −GnΣ†] + [ΣinGA −GRΣin]

i 2π~
.

(18.29)

https://www.youtube.com/watch?v=sCsb3p3hsbQ
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We will talk more about the current operator in Chapter 23 when we talk

about spins, but for the moment we just need its trace which tells us the

time rate of change of the number of electrons N in the channel

dN

dt
= − i

h
Trace

(
[ΣGn −GnΣ†] + [ΣinGA −GRΣin]

)
noting that Trace [AB] = Trace [BA]. Making use of Eq. (18.3b)

dN

dt
=

1

h
Trace

[
ΣinA− ΓGn

]
.

Now comes a tricky argument. Both the left and the right hand sides

of Eq. (18.29) are zero, since we are discussing steady state transport with

no time variation. The reason we are spending all this time discussing

something that is zero is that the terms on the left can be separated into

two parts, one associated with contact 1 and one with contact 2. They tell

us the currents at contacts 1 and 2 respectively and the fact that they add

up to zero is simply a reassuring statement of Kirchhoff’s law for steady-

state currents in circuits.

With this in mind we can write for the current at contact m (m = 1, 2)

Ĩm =
q

h
Trace

[
Σin
mA − Γm Gn

]
as stated earlier in Eq. (18.4). This leads us to the picture shown in Fig. 18.5

where we have also shown the semiclassical result for comparison.

18.3 Conductance Functions for Coherent Transport

Finally we note that using Eqs. (18.2)–(18.3) we can write the current from

Eq. (18.4) a little differently

Ĩ(E) =
q

h
Trace [Γ1G

RΓ2G
A] (f1(E)− f2(E))

which is very useful for it suggests a quantum expression for the conduc-

tance function G(E) that we introduced in Chapter 3 for all elastic resistors:

G(E) =
q2

h
Trace

[
Γ1G

RΓ2G
A
]
. (18.30)

More generally with multiterminal conductors we could introduce a self-

energy function for each contact and show that

Ĩm =
q

h

∑
n

T̄mn (fm(E)− fn(E)) (18.31)

with

T̄mn ≡ Trace
[
ΓmGRΓnGA

]
. (18.32)



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 60

60 Lessons from Nanoelectronics: B. Quantum Transport

n1N n2N

f1 f2

n1D f1 n2D f2

G1G
n G2G

n

G1A f1 G2A f2

Classical

Quantum

f1
f2

Fig. 18.5 Filling and emptying a channel: Classical and quantum treatment.

For low bias we can use our usual Taylor series expansion from Eq. (2.11)

to translate the Fermi functions into electrochemical potentials so that

Eq. (18.31) looks just like the Büttiker equation (Eq. (10.3)) with the con-

ductance function given

Gm,n(E) ≡ q2

h
Trace

[
ΓmGR ΓnGA

]
(18.33)

which is energy-averaged in the usual way for elastic resistors (see Eq. (3.1)).

Gm,n =

∫ +∞

−∞
dE

(
− ∂f0

∂E

)
Gm,n(E).

18.4 Elastic Dephasing

Related video lecture available at course website, Unit 2: L2.9.

So far we have focused on the physical contacts described by Σ1,2 and

the model as it stands describes coherent quantum transport where elec-

trons travel coherently from source to drain in some static structure de-

scribed by the Hamiltonian H without any interactions along the channel

described by Σ0 (Fig. 18.1). In order to include Σ0, however, no change is

needed as far as Eqs. (18.1) through (18.4) is concerned. It is just that an

https://www.youtube.com/watch?v=WqHUoYbNdCg
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additional term appears in the definition of Σ and Σin:

Σ = Σ1 + Σ2 + Σ0

Γ = Γ1 + Γ2 + Γ0

Σin = Γ1 f1(E) + Γ2 f2(E) + Σin
0 . (18.34)

What does Σ0 represent physically? From the point of view of the elec-

tron a solid does not look like a static medium described by H, but like a

rather turbulent medium with a random potential UR that fluctuates on a

picosecond time scale. Even at fairly low temperatures when phonons have

been frozen out, an individual electron continues to see a fluctuating po-

tential due to all the other electrons, whose average is modeled by the SCF

potential we discussed in Section 17.2. These fluctuations do not cause any

overall loss of momentum from the system of electrons, since any loss from

one electron is picked up by another. However, they do cause fluctuations

in the phase leading to fluctuations in the current. What typical current

measurements tell us is an average flow over nanoseconds if not microsec-

onds or milliseconds. This averaging effect needs to be modeled if we wish

to relate to experiments.

[H]

f1
f2

[S0]

[S1] [S2]

UR

Fig. 18.6 Quantum transport model with simple elastic dephasing.

As we mentioned earlier, the NEGF method was originally developed

in the 1960s to deal with the problem of including inelastic processes into a

quantum description of large conductors. For the moment, however, we will

look at simple elastic dephasing processes leaving more general interactions

for Chapter 22.

For such processes the self-energy functions are given by

Σ0 = D×GR (18.35a)
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Σin
0 = D×Gn (18.35b)

where × denotes element by element multiplication. Making use of the

relations in Eqs. (18.3), it is straightforward to show from Eq. (18.35a) that

Γ0 = D× A. (18.35c)

The elements of the matrix D represent the correlation between the random

potential at location “ i ” and at location “ j ”:

Dij = 〈URi URj〉. (18.36)

Two cases are of particular interest. The first is where the random

potential is well-correlated throughout the channel having essentially the

same value at all points “ i ” so that the every element of the matrix D has

essentially the same value D0:

Model A: Dij = D0. (18.37)

The other case is where the random potential has zero correlation from

one spatial point i to another j, so that

Model B: Dij =

{
D0 if i = j

0 if i 6= j
. (18.38)

Real processes are usually somewhere between the two extremes repre-

sented by models A and B.

To see where Eqs. (18.35) come from we go back to our contact-ed

Schrödinger equation

E ψψψ = [H + Σ1 + Σ2] ψψψ + s1

and noting that a random potential UR should lead to an additional term

that could be viewed as an additional source term

E ψψψ = [H + Σ1 + Σ2] ψψψ + URψψψ + s1

with a corresponding inscattering term given by

Σin
0 = 2π UR U

∗
R ψψψψψψ

† = D0 Gn

corresponding to Model A (Eq. (18.37)) and a little more careful argument

leads to the more general result in Eq. (18.36). That gives us Eq. (18.35b).

How about Eq. (18.35a) and (18.35c)?

The simplest way to justify Eq. (18.35c) is to note that together with

Eq. (18.35b) (which we just obtained) it ensures that the current at terminal

0 from Eq. (18.4) equals zero:

I0 =
q

h
Trace [Σin

0 A − Γ0G
n]

=
q

h
Trace [GnΓ0 − Γ0G

n] = 0.



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 63

NEGF Method 63

This is a required condition since terminal 0 is not a physical contact where

electrons can actually exit or enter from.

Indeed a very popular method due to Büttiker introduces incoherent

processes by including a fictitious probe (often called a Büttiker probe)

whose electrochemical potential is adjusted to ensure that it draws zero

current. In NEGF language this amounts to assuming

Σin
0 = Γ0 fP

with the number fP is adjusted for zero current. This would be equiva-

lent to the approach described here if the probe coupling Γ0 were chosen

proportional to the spectral function A as required by Eq. (18.35c).

Note that our prescription in Eq. (18.35) requires a “self-consistent eval-

uation” since Σ and Σin depend on GR and Gn which in turn depend on

Σ and Σin respectively (see Eqs. (18.1) and (18.2)).

Also, Model A (Eq. (18.37)) requires us to calculate the full Green’s

function which can be numerically challenging for large devices described

by large matrices. Model B makes the computation numerically much more

tractable because one only needs to calculate the diagonal elements of the

Green’s functions which can be done much faster using powerful algorithms.

In this book, however, we focus on conceptual issues using “toy” prob-

lems for which numerical issues are not the “show stoppers.” The important

conceptual distinction between Models A and B is that the former destroys

phase but not momentum, while the latter destroys momentum as well

[Golizadeh-Mojarad et al., 2007].

The dephasing process can be viewed as extraction of the electron from

a state described by Gn and reinjecting it in a state described by D×Gn.

Model A is equivalent to multiplying Gn by a constant so that the electron is

reinjected in exactly the same state that it was extracted in, causing no loss

of momentum, while Model B throws away the off-diagonal elements and

upon reinjection the electron is as likely to go on way or another. Hopefully

this will get clearer in the next chapter when we look at a concrete example.

Another question that the reader might raise is whether instead of in-

cluding elastic dephasing through a self-energy function Σ0 we could include

a potential UR in the Hamiltonian itself and then average over a number

of random realizations of UR. The answer is that the two methods are not

exactly equivalent though in some problems they could yield similar results.

This too should be a little clearer in the next chapter when we look at a

concrete example.
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For completeness, let me note that in the most general case Dijkl is

a fourth order tensor and the version we are using (Eqs. (18.35)) repre-

sents a special case for which Dijkl is non-zero only if i = k, j = l (see

Appendix G).
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Chapter 19

Can Two Offer Less Resistance than
One?

In the next three chapters we will go through a few examples of increasing

complexity which are interesting in their own right but have been chosen

primarily as “do it yourself” problems that the reader can use to get famil-

iar with the quantum transport model outlined in the last chapter. The

MATLAB codes are all included in Appendix H.

In this chapter, we will use 1D quantum transport models to study

an interesting question regarding multiple scatterers or obstacles along a

conductor. Are we justified in neglecting all interference effects among them

and assuming that electrons diffuse like classical particles as we do in the

semiclassical picture?

This was the question Anderson raised in his 1958 paper entitled “Ab-

sence of Diffusion in Certain Random Lattices” pointing out that diffusion

could be slowed significantly and even suppressed completely due to quan-

tum interference between scatterers. “Anderson localization” is a vast topic

and we are only using some related issues here to show how the NEGF

model provides a convenient conceptual framework for studying interesting

physics.

For any problem we need to discuss how we write down the Hamilto-

nian H and the contact self-energy matrices Σ. Once we have these, the

computational process is standard. The rest is about understanding and

enjoying the physics.

19.1 Modeling 1D Conductors

Related video lecture available at course website, Unit 2: L2.6.

65

https://www.youtube.com/watch?v=3rPzU0I_xwc
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For the one-dimensional examples discussed in this chapter, we use the

1D Hamiltonian from Fig. 17.5, shown here in Fig. 19.1. As we discussed

earlier for a uniform wire the dispersion relation is given by

E(k) = ε+ 2t cos (ka) (19.1a)

which can approximate a parabolic dispersion

E = Ec +
~2k2

2m
(19.1b)

by choosing

Ec = ε+ 2t (19.2a)

and − t ≡ t0 ≡
~2

2ma2
. (19.2b)

It is straightforward to write down the H matrix with ε on the diagonal

and “ t ” on the upper and lower diagonals. What needs discussion are the

self-energy matrices. The basic idea is to replace an infinite conduc-

tor described by the Hamiltonian H with a finite conductor described by

[H + Σ1 + Σ2] assuming open boundary conditions at the ends, which

means that electron waves escaping from the surface do not give rise to any

reflected waves, as a good contact should ensure.

a

t t

e

[H]
[S1] [S2 ]

x®

Fig. 19.1 For the one-dimensional examples discussed in this chapter, we use the 1D

Hamiltonian from Fig. 17.5.

For a one-dimensional lattice the idea is easy to see. We start from the

original equation for the extended system

E ψn = tψn−1 + εψn + t ψn+1

and then assume that the contact has no incoming wave, just an outgoing

wave, so that we can write

ψn+1 = ψn e
ika
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a

x®
tt

e
n-2 n-1 n n+1

[H] [S2 ]

a

x®
t t

e
3210

[H][S1]

which gives

E ψn = t ψn−1 +
(
ε+ t eika

)
ψn.

In other words the effect of the contact is simply to add t exp (+ika) to

Hnn which amounts to adding the self-energy

Σ1 =


teika 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


to the Hamiltonian. Note the only non-zero element is the (1,1) element.

Similarly at the other contact we obtain

Σ2 =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

0 · · · 0 0 0

0 · · · 0 0 teika


Note that the only non-zero element is the (n, n) element.

In short, the self-energy function for each contact has a single non-zero

element corresponding to the point that is connected to that contact.

19.1.1 1D ballistic conductor

Related video lecture available at course website, Unit 2: L2.7.

A good test case for any theory of coherent quantum transport is the

conductance function for a length of uniform ballistic conductor: If we

https://www.youtube.com/watch?v=d-MwvT8Dh24
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are doing things right, the conductance function G(E) should equal the

quantum of conductance q2/h times an integer equal to the number of

modes M(E) which is one for 1D conductors (neglecting spin). This means

that the transmission (see Eq. (18.32))

T̄ (E) = Trace
[
Γ1G

RΓ2G
A
]

(19.3)

should equal one over the energy range

0 < E − Ec < 4t0

covered by the dispersion relation

E = ε+ 2 t cos (ka) = Ec + 2t0(1− cos (ka)) (19.4)

but zero outside this range (see Fig. 19.2 below with U = 0). This is a

relatively simple but good example to try to implement numerically when

getting started. Obtaining a constant conductance across the entire band

is usually a good indicator that the correct self-energy functions are being

used and things have been properly set up.

U = 2 t0
U = 0

→

E - Ec

t0

Transmission,T (E) ®

Fig. 19.2 Transmission through a single point scatterer in a 1D wire. For MATLAB
script, see Appendix H.1.1.

19.1.2 1D conductor with one scatterer

Another good example is that of a conductor with just one scatterer whose

effect is included in the Hamiltonian H by changing the diagonal element
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corresponding to that point to ε+ U :

H =



. . .
...

...
...

. . .

· · · ε t 0 · · ·
· · · t ε+ U t · · ·
· · · 0 t ε · · ·
. . .

...
...

...
. . .


Fig. 19.2 shows the numerical results for U = 0 (ballistic conductor) and

for U = 2 t0. Actually there is a simple analytical expression for the trans-

mission through a single point scatterer

T̄ (E) =
(2t sin (ka))2

U2 + (2t sin (ka))2
=

(~ν/a)2

U2 + (~ν/a)2
(19.5)

that we can use to check our numerical results. This expression is obtained

by treating the single point where the scatterer is located as the channel,

so that all matrices in the NEGF method are (1× 1) matrices, that is, just

numbers:

G1 =

[-2t sin ka]

G2 =

[-2t sin ka]

H =

[e +U ]

S1 =

teikaé
ë

ù
û

S2 =

teikaé
ë

ù
û

U
a

It is easy to see that the Green’s function is given by

GR(E) =
1

E − (ε+ U)− 2t eika
=

1

−U − i2t sin (ka)

making use of Eq. (19.2). Hence

Γ1G
RΓ2G

A =
(2t sin (ka))2

U2 + (2t sin (ka))2
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giving us the stated result in Eq. (19.5). The second form is obtained by

noting from Eq. (19.1a) that

~ν =
dE

dk
= −2at sin (ka). (19.6)

Once you are comfortable with the results in Fig. 19.2 and are able to

reproduce it, you should be ready to include various potentials into the

Hamiltonian and reproduce the rest of the examples in this chapter.

19.2 Quantum Resistors in Series

Related video lecture available at course website, Unit 2: L2.8.

In Chapter 10 we argued that the resistance of a conductor with one

scatterer with a transmission probability T can be divided into a scatterer

resistance and an interface resistance (see Eqs. (10.1) and (10.2))

R1 =
h

q2M

 1− T
T︸ ︷︷ ︸

scatterer

+ 1︸ ︷︷ ︸
interface

 .

What is the resistance if we have two scatterers each with transmission T?

U T

1-T

f1
f2

UU

f1
f2

Fig. 19.3 Channel with (a) one scatterer, and (b) two scatterers.

https://www.youtube.com/watch?v=PmmsjWkz5uo
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We would expect the scatterer contribution to double:

R2 =
h

q2M

2
1− T
T︸ ︷︷ ︸

scatterer

+ 1︸ ︷︷ ︸
interface


=

h

q2M

2− T
T

.

We can relate the two resistances by the relation:

R2 = R1 (2− T ).

If T is close to one we have the ballistic limit with R2 = R1: two sections

in series have the same resistance as one of them, since all the resistance

comes from the interfaces.

If T � 1, we have the Ohmic limit with R2 = 2R1: two sections have

twice the resistance as one of them, since all the resistance comes from the

channel.

But can R2 ever be less than R1? Not as long as electrons behave

like classical particles. There is no way an extra roadblock on a classical

highway can increase the traffic flow. But on a quantum highway this is

quite possible due to wave interference.

We could use our 1D model to study problems of this type. Figure 19.4

shows the transmission functions T̄ (E) calculated numerically for a con-

ductor with one scatterer and a conductor with two scatterers.

If the electrochemical potential happens to lie at an energy like the one

marked “B”, R2 will be even larger than the Ohmic result R1. But if the

electrochemical potential lies at an energy like the one marked “A”, R2 is

less than R1.

At such energies, the presence of the second scatterer creates a reflection

that cancels the reflection from the first one, because they are spaced a

quarter wavelength apart. Such quarter wave sections are widely used to

create anti-reflection coatings on optical lenses and are well-known in the

world of waves, though they are unnatural in the world of particles.

Actually there is a class of devices called resonant tunneling diodes that

deliberately engineer two strategically spaced barriers and make use of the

resulting sharp peaks in conductance to achieve interesting current-voltage

characteristics like the one sketched here where over a range of voltages,

the slope dI/dV is negative (“negative differential resistance, NDR”). We

could use our elastic resistor model for the current from Eq. (3.3) and along
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B

A

Transmission,T (E) ®

U = 2t0

S1 S2
S1 S2L

→

E - Ec
4t0

Fig. 19.4 Normalized conductance for a wire with M = 1 with one scatterer, and with

two scatterers. For MATLAB script, see Appendix H.1.2.

Voltage 

C
u
rr

e
n
t 


with the conductance function from NEGF

G(E) ≡ q2

h
T̄ (E) =

q2

h
Trace

[
Γ1G

RΓ2G
A
]

to model devices like this, but it is important to include the effect of the

applied electric field on the H as mentioned earlier (see Fig. 17.6). In this

book we will focus more on low bias response for which this aspect can be

ignored.

Consider for example a resistor with scatterers distributed randomly

throughout the channel. If we were to use the quantum formalism to calcu-

late the conductance function for a single-moded wire with random scatter-

ers we would find that once the classical transmission Mλ/L drops below

one, the quantum conductance is extremely low except for occasional peaks
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at specific energies (Fig. 19.5). The result marked semiclassical is obtained

by calculating T for a single scatterer and then increasing the scatterer

contribution by a factor of six:

R6 =
h

q2M

6
1− T
T︸ ︷︷ ︸

scatterer

+ 1︸ ︷︷ ︸
interface

 =
h

q2M

6− 5T

T
.

NEGF

Semiclassical

→

E - Ec

4t0

Transmission,T (E) ®

Fig. 19.5 Normalized conductance for a wire with M = 1 with six scatterers. For

MATLAB script, see Appendix H.1.3.

Comparing the classical and quantum results suggests that such con-

ductors would generally show very high resistances well in excess of Ohm’s

law, with occasional wild fluctuations. In a multi-moded wire too quan-

tum calculations show the same behavior once the classical transmission

Mλ/L drops below one. Such conductors are often referred to as being in

the regime of strong localization. Interestingly, even when Mλ/L is well in

excess of one, the quantum conductance is a little (∼ approximately one)

less than the classical value and this is often referred to as the regime of

weak localization.

However, localization effects like these are usually seen experimentally

only at low temperatures. At room temperature there is seldom any evi-

dence of deviation from Ohm’s law. Consider for instance a copper wire

with a cross-section of 10 nm× 10 nm which should contain approximately

1000 atoms and hence should have M ∼ 1000 (see discussion at end of

Chapter 4). Assuming a mean free path of 40 nm this suggests that a cop-
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per wire any longer than Mλ ∼ 40 µm should exhibit strange non-ohmic

behavior, for which there is no experimental evidence. Why?

The answer is that localization effects arise from quantum interference

and will be observed only if the entire conductor is phase-coherent. A

copper wire 40 µm long is not phase coherent, certainly not at room tem-

perature. Conceptually we can think of the real conductor as a series of

individual coherent conductors, each of length equal to the phase coher-

ence length LP and whether we see localization effects will depend not on

Mλ/L, but on Mλ/LP .

The bottom line is that to describe real world experiments especially

at room temperature it is often important to include a certain degree of

dephasing processes as described at the end of the last chapter. Unless

we include an appropriate degree of dephasing our quantum models will

show interference effects leading to resonant tunneling or strong localization

which under certain conditions may represent real world experiments, but

not always. Just because we are using quantum mechanics, the answer is

not automatically more “correct”.

This can be appreciated by looking at the potential variation along

the channel using NEGF and comparing the results to our semiclassical

discussion from Chapter 10.

19.3 Potential Drop Across Scatterer(s)

Related video lecture available at course website, Unit 2: L2.9.

In Chapter 10 we discussed the spatial variation of the occupation fac-

tor which translates to a variation of the electrochemical potential for low

bias. A conductor with one scatterer in it (Fig. 19.6), can be viewed (see

Fig. 10.6) as a normalized interface resistance of one in series with a nor-

malized scatterer resistance of (1− T )/T , which can be written as

(Normalized) Rscatterer =

(
Ua

~v

)2

(19.7)

using Eq. (19.5). The semiclassical potential profile in Fig. 19.6 is then

obtained by noting that since the current is the same everywhere, each

section shows a potential drop proportional to its resistance.

The quantum profile is obtained using an NEGF model to calculate the

effective occupation factor throughout the channel by looking at the ratio

of the diagonal elements of Gn and A which are the quantum versions of

https://www.youtube.com/watch?v=WqHUoYbNdCg
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the electron density and density of states respectively:

f(j) =
Gn(j, j)

A(j, j)
. (19.8)

For low bias, this quantity translates linearly into a local electrochemical

potential as noted in Chapter 2 (see Eq. (2.11)). If we choose f = 0

at one contact, f = 1 at another contact corresponding to qV , then the

f(j) obtained from Eq. (19.8) is simply translated into an electrochemical

potential µ at that point:

µ(j) = qV f(j). (19.9)

The occupation f(j) shows oscillations due to quantum interference making

it hard to see the potential drop across the scatterer (see solid black line

marked NEGF).

U = t0

f=1

NEGF, D0=0
Coherent

Semiclassical

→

f

f=0

Fig. 19.6 Potential drop across a scatterer calculated from the quantum formalism:
Coherent NEGF calculation at E = t0, compared to semiclassical result based on Chapter

10, Part A. For MATLAB script, see Appendix H.1.4.

Experimentalists have measured profiles such as these using scanning

probe microscopy (SPM) and typically at room temperature the quantum

oscillations are not seen, because of the dephasing processes that are in-

evitably present at room temperature. This is another example of the need

to include dephasing in order to model real world experiments especially at

room temperature.
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Indeed if we include pure phase relaxation processes (Eq. (18.37)) in

the NEGF model we obtain a clean profile looking a lot like what we would

expect from a semiclassical picture (see Fig. 19.7a).

U = t0

f=1 f=0

(a) NEGF, Phase
Relaxation Only

Semiclassical

→

f

D0 = 0.09 t0
2

(a)

U = t0

f=1 f=0

(b) NEGF, Momentum
+Phase Relaxation

Semiclassical

→
f

D0 = 0.09 t0
2

(b)

Fig. 19.7 Potential drop for the structure in Fig. 19.6 calculated from the NEGF method

at E = t0 with dephasing, (a) Phase-relaxation only, Eq. (18.37), (b) Phase and momen-

tum relaxation, Eq. (18.38). For MATLAB script, see Appendix H.1.4.

Interestingly, if we use a momentum relaxing model for Σ0 (Eq. (18.38)),

the potential drops linearly across the structure (see Fig. 19.7b), exactly

what we would expect for a distributed classical resistor. The resistance

per lattice site for this distributed resistor due to D0 can be obtained by

replacing U2 with D0 in Eq. (19.7):

(Normalized) R =
( a
~v

)2

D0︸ ︷︷ ︸
Resistance

per lattice site

× L

a︸︷︷︸
# of lattice

sites

.

Another interesting example is that of the two quantum resistors in se-

ries that we started with. We noted then that at energies corresponding

to points A and B in Fig. 19.4 we have constructive and destructive in-

terference respectively. This shows up clearly in the potential profile for

coherent transport with D0 = 0 (see Fig. 19.8). At E = 0.6t0 correspond-

ing to destructive interference, the profile looks like what we might expect

for a very large resistor showing a large drop in potential around it along

with some sharp spikes superposed on it. At E = 0.81t0 corresponding to
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f=1 f=0

U = t0

NEGF, D0=0
E = 0.6 t0

NEGF, D0=0
E = 0.81 t0

→
f

Fig. 19.8 Potential drop across two scatterers in series calculated from the NEGF

method without dephasing at two energies, E = 0.81t0 and E = 0.6t0 corresponding
to points marked “A” and “B” respectively in Fig. 19.4. For MATLAB script, see Ap-

pendix H.1.5.

constructive interference, the profile looks like what we expect for a ballistic

conductor with all the drop occurring at the two contacts and none across

the scatterers.

Clearly at E = 0.81t0 the answer to the title question of this chapter

is yes, two scatterers can offer less resistance than one. And this strange

result is made possible by quantum interference. And once we introduce

sufficient phase relaxation into the model using a non-zero D0, the profile at

both energies look much the same like any semiclassical resistor (Fig. 19.9).

Before we move on, let me note that although it is straightforward

to include dephasing into toy calculations like this, for large devices de-

scribed by large matrices, it can be numerically challenging. This is be-

cause with coherent NEGF (D0 = 0) or with the momentum relaxing model

(Eq. (18.38)), it is often adequate to calculate just the diagonal elements

of the Green’s functions using efficient algorithms. But for pure phase re-

laxation (Eq. (18.37)), it is necessary to calculate the full Green’s function

increasing both computational and memory burdens significantly.

So a natural question to ask is whether instead of including dephasing

through Σ0 we could include the potential UR in the Hamiltonian itself and

then average our quantity of interest over a number of random realizations

of UR. Would these results be equivalent?
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→

f

NEGF, D0≠0
E = 0.81 t0

NEGF, D0≠0
E = 0.6 t0

Semi

classical

Semi

classical

Phase Relaxation only: D0 = 0.09 t0
2

Fig. 19.9 Potential drop across two scatterers in series calculated from the NEGF

method with pure phase relxation at two energies, E = 0.81t0 and E = 0.6t0 corre-

sponding to points marked “A” and “B” respectively in Fig. 19.4. For MATLAB script,
see Appendix H.1.5.

For short conductors like the one shown in Fig. 19.4, this seems to be

true, but for long conductors like the one in Fig. 19.5 this may not be true.

With a conductor in the regime of strong localization (Fig. 19.5) it is hard

to see how averaging the coherent quantum result over many configurations

can lead to the semiclassical result.

NEGF with dephasing does not just average over many configurations,

it also averages over different sections of the same configuration and that is

why it is able to capture the semiclassical result which often describes real

world experiments at room temperature quite well.

But could NEGF capture the localization effects observed at low tem-

peratures through a proper choice of Σ0? We believe so, but it would

involve going beyond the simple dephasing models (technically known as

the self-consistent Born approximation) for evaluating Σ0 described in Sec-

tion 18.4.
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Chapter 20

Quantum of Conductance

Related video lecture available at course website, Unit 3: L3.1.

As I mentioned, our primary objective in Chapters 19–23 is to help

the reader get familiar with the NEGF model through “do it yourself”

examples of increasing complexity. The last chapter used 1D examples. In

this chapter we look at 2D examples which illustrate one of the key results

of mesoscopic physics, namely the observation of conductances that are an

integer multiple of the conductance quantum q2/h.

20.1 2D Conductor as 1D Conductors in Parallel

Related video lecture available at course website, Unit 3: L 3.2.

Among the seminal experiments from the 1980s that gave birth to meso-

scopic physics was the observation that the conductance of a ballistic 2D

conductor went down in integer multiples of 2q2/h as the width of the

narrow region was decreased.

To understand this class of experiments we need a 2D model (Fig. 20.1).

As with 1D, two inputs are required: the Hamiltonian H and the contact

self-energy matrices Σ. Once we have these, the rest is standard.

For H, we use the 2D Hamiltonian from Fig. 17.7 for conductors de-

scribed by parabolic E(k) relations. As we discussed earlier for a uniform

wire the dispersion relation is given by

E(kx, ky) = ε + 2t cos (kxa) + 2t cos (kya) (20.1a)

which can approximate a parabolic dispersion

E = Ec +
~2k2

2m
(20.1b)

81

https://www.youtube.com/watch?v=Aub0l_CTiYg
https://www.youtube.com/watch?v=C94nL1OtcpI
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by choosing

Ec = ε + 4t (20.2a)

and

− t ≡ t0 ≡
~2

2ma2
. (20.2b)

1 2

[S1] [H] [S2]

- +(a) Schematic

of physical

structure

at

[H][S1] [S2 ](b) 2D model

used for

NEGF-based

calculation 

x

y

(c) Numerical

Result

E - Ec
t0

Transmission,T (E) ®

→

Fig. 20.1 (a) Schematic of structure for measuring the conductance of a short con-
striction created in a two dimensional conductor. (b) 2D model used for NEGF-based
calculation and discussion. (c) Numerically computed transmission shows steps as a

function of energy. For MATLAB script, see Appendix H.2.1.

Once again what needs discussion are the self-energy matrices, Σ,

but before we get into it let us look at the transmission function

T̄ (E) = Trace
[
Γ1G

RΓ2G
A
]

(same as Eq. (19.3))
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obtained directly from the numerical model (Fig. 20.1), which shows steps

at specific energies. How can we understand this?

The elementary explanation from Section 6.4 is that for a ballistic con-

ductor the transmission function is just the number of modes M(E) which

equals the number of half de Broglie wavelengths that fits into the width

W of the conductor (floor(x) denotes the highest integer less than x)

M = floor

(
2W

h/p

)
= floor

(
2W

h

√
2m(E − Ec)

)
where we have used the parabolic relation E − Ec = p2/2m. To compare

with our numerical results we should use the cosine dispersion relation.

→

T (E = t0 )

Number of points →
along width

Experimentally what is measured at low temperatures is M(E = µ0)

and the steps are observed as the width is changed as first reported in

van Wees et al. (1988) and Wharam et al. (1988). To compare with

experimental plots, one could take a fixed energy E = t0 and plot the

transmission as a function of the number of points along the width to get

something like this.

Why does our numerical model show these steps? One way to see this

is to note that our 2D model can be visualized as a linear 1D chain as

shown in the following figure where the individual elements ααα of the chain

represent a column. For example if there are three sites to each column,
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[H]

β
α

β+

[Σ1] [Σ2 ]

ε t

we would have

ααα =

 ε t 0

t ε t

0 t ε

 (20.3a)

while the coupling βββ from one column to the next is diagonal:

βββ =

 t 0 0

0 t 0

0 0 t

 . (20.3b)

Note that the matrix ααα describing each column has off-diagonal elements

t, but we can eliminate these by performing a basis transformation to

diagonalize it:

α̃̃α̃α = V†αααV (20.3c)

where V is a matrix whose columns represent the eigenvectors of ααα.

β
ᾶ

β+

ε

t

1

ε3

ε2

Since the matrix βββ is essentially an identity matrix it is unaffected by

the basis transformation, so that in this transformed basis we can visualize
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the 2D conductors as a set of independent 1D conductors, each of which

has a different diagonal element

ε1, ε2, ε3

equal to the eigenvalues of ααα. Each of these 1D conductors has a transmis-

sion of one in the energy range (t0 ≡ |t |)
εn − 2 t0 < E < εn + 2 t0

as sketched below. Adding all the individual transmissions we obtain the

transmission showing up-steps in the lower part and down-steps in the

upper part.

Usually when modeling n-type conductors we use the lower part of the

band as shown in Fig. 20.1, and so we see only the up-steps occurring at

εn − 2 t0

e1 - 2t0

4t0

4t0

4t0

+ +

e1

e2

e3

=

e2 - 2t0

e3 - 2t0

e1 + 2t0

e2 + 2t0

e3 + 2t0

Now the εn’s are the eigenvalues of α (see Eq. (20.3a)) which are given

by

εn = ε− 2t0 cos (kna), with kna =
nπ

N + 1
(20.4)

where N is the number of points along the width which determines the size

of ααα. This result is not obvious, but can be shown analytically or checked

easily using MATLAB.

Using Eqs. (20.2) and (20.4) we can write the location of the steps as

εn − 2t0 = Ec + 2t0

(
1− cos

(
nπ

N + 1

))
which matches the numerical result obtained with N = 25 very well as

shown.
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T (E)
→

E - Ec

t0

æ
2ç1- cos

np

26è

ö
÷ø

T (E) , n  →

20.1.1 Modes or subbands

The approach we just described of viewing a 2D (or 3D) conductor as a

set of 1D conductors in parallel is a very powerful one. Each of these 1D

conductors is called a mode (or subband) and has a dispersion relation

En(kx) = εn − 2t0 cos (kxa)

as shown below. These are often called the subband dispersion relations

obtained from the general dispersion relation in Eq. (20.1a) by requiring ky
to take on quantized values given by

kya =
nπ

N + 1

where each integer n gives rise to one subband as shown. If we draw a

kxa /p ®

En (kx )- Ec

t0

M(E) = 7

n = 8

n = 1

n = 5

→

horizontal line at any energy E, then the number of dispersion relations it
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crosses is equal to twice the number of modes M(E) at that energy, since

each mode gives rise to two crossings, one for a state with positive velocity,

and one for a state with negative velocity.

20.2 Contact Self-Energy for 2D Conductors

Related video lecture available at course website, Unit 3: L3.3.

Let us now address the question we put off, namely how do we write

the self-energy matrices for the contacts. Ideally the contact regions allow

electrons to exit without any reflection and with this in mind, a simple way

to evaluate Σ is to assume the contacts to be just uniform extensions of

the channel region and that is what we will do here.

20.2.1 Method of basis transformation

The viewpoint we just discussed in Section 20.1 allows us to picture a 2D

conductor as a set of decoupled 1D conductors, by converting from the usual

lattice basis to an abstract mode basis through a basis transformation:

X̃︸︷︷︸
Mode Basis

= V † X︸︷︷︸
Lattice Basis

V (20.5a)

X being any matrix in the regular lattice basis. A unitary transformation

like this can be reversed by transforming back:

X︸︷︷︸
Lattice Basis

= V X̃︸︷︷︸
Mode Basis

V † (20.5b)

In our present problem we can easily write down the self-energy in the

mode basis for each independent 1D wire and then connect them together.

For example if each wire consisted of just one site along x, then each

wire would have a self-energy of t exp (ika), with the appropriate ka for

that wire at a given energy E. For mode n we have

E = εn − 2t0 cos (kna)

so that overall we could write

Σ̃1 =


teik1a 0 0 · · ·

0 teik2a 0 · · ·
0 0 teik3a · · ·
...

...
...

. . .



https://www.youtube.com/watch?v=YPMgw9nL74g
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t

e1

e2

e3

bb +

 a

at

[S1] [S2 ]

bb +
a

 [S2 ] [S1]

Lattice Basis Mode Basis

Fig. 20.2 A 2D conductor can be pictured as a set of decoupled 1D conductors through
a basis transformation.

and then transform it back to the lattice basis as indicated in Eq. (20.5b):

Σ1 = V Σ̃1 V †.

20.2.2 General method

Related video lecture available at course website, Unit 3: L3.4.

The method of basis transformation is based on a physical picture that is

very powerful and appealing. However, I believe it cannot always be used

at least not as straightforwardly, since in general it may not be possible to

diagonalize both ααα and βββ simultaneously.

For the square lattice βββ = tI (Eq. (20.3b)) making it “immune” to basis

transformations, since the identity matrix remains an identity matrix in

all bases. But in general this may not be so. The graphene lattice from

Fig. 17.9 pictured below is a good example. How do we write Σ in such

cases?

Any conductor with a uniform cross-section can be visualized as a linear

1-D chain of “atoms” each having an on-site matrix Hamiltonian ααα coupled

to the next “atom” by a matrix βββ. Each of these matrices is of size (n×n),

n being the number of basis functions describing each unit.

https://www.youtube.com/watch?v=bMidZrPaiDY
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bb +

t

[H] S2S1

ee

a

The self-energy matrix is zero except for the last (n × n) block at

the surface

b + b
S2

Σ2 (E) =

n− 2 . . .

· · ·
· · ·

n− 1
...

0

0

n
...

0

βββg2βββ
†

 .
The non-zero block is given by

βββ g2 βββ
† (20.6a)

where g2 is called the surface Green’s function for contact 2, and is obtai-

ned by iteratively solving the equation:

g−1
2 = (E + i0+)I− α− βI− α− βI− α− β†g2βββ (20.6b)

for g2, where 0+ represents a positive infinitesimal. Equation (20.6) is of

course not meant to be obvious, but we have relegated the derivation to

Appendix G. We will not go into the significance of the infinitesimal i0+

(see for example Datta (1995), Chapter 3 or Datta (2005), Chapter 8).

For the moment let me just note that for a 1D conductor with ααα = ε

and βββ = t Eq. (20.2) reduces to an ordinary quadratic equation:

g2 (E + i0+ − ε− t2g2) = 1

whose solution gives two possible solutions t exp (± ika) for the self-energy,

and the one we want is that with the negative imaginary part, for which the
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corresponding broadening Γ is positive. More generally, we have a matrix

quadratic equation (Eq. (20.6b)) and the infinitesimal i0+ ensures that a

numerical iterative solution converges on the solution for which Γ has all

positive eigenvalues.

20.2.3 Graphene: ballistic conductance

Related video lecture available at course website, Unit 3: L3.5.

As an example we have shown in Fig. 20.3 the transmission T̄ (E) cal-

culated numerically for two common orientations of graphene, the so-called

zigzag and armchair configurations with dimensions chosen so as to have

roughly equal widths. Since these are ballistic conductors, the transmis-

sion is equal to the number of modes M(E) and can be approximately

described by the number of wavelengths that fit into the widths. The ac-

tual energy dependence is different from that obtained for the square lattice

(see Eq. (20.3)) because of the linear E(k) relation: E = ~ν0k = ν0p:

M = floor

(
2W

h/p

)
= floor

(
2W

h

E

ν0

)
. (20.7)

This applies equally to any orientation of graphene. Both the orientations

shown have the same overall slope, but the details are quite different. For

example, at E = 0, the armchair is non-conducting with M = 0 while the

zigzag is conducting with non-zero M .

For large dimensions the steps are close together in energy (compared

to kT ) and both appear to be semi-metallic. But for small dimensions the

steps are much larger than kT . The zigzag now shows zero transmission

T̄ (E) = 0 at E = 0 (“semiconducting”) while the armchair shows non-zero

conductance (“metallic”). These are clear observable differences that show

up in experiments on samples of small width at low temperatures.

Another interesting observable difference is that between a flat graphene

sheet and a cylindrical carbon nanotube (CNT). Mathematically, they are

both described by the same Hamiltonian H but with different bound-

ary conditions. Graphene like most normal conductors requires “hardwall

boundary conditions” (HBC) where the lattice ends abruptly at the edges.

CNT’s on the other hand are among the few real conductors that require

“periodic boundary conditions” (PBC) with no edges.

The results for CNT are relatively easy to understand analytically, while

those for graphene require a more extensive discussion (see for example Brey

and Fertig, 2006). As we mentioned in Chapter 6, PBC is mathematically

https://www.youtube.com/watch?v=1lG1Clz1KNk
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Current

2b

Armchair edge

Current

3a

Zigzag edge

(a) Graphene

E - e

t0

Transmission,T (E) ®

→

(b) Carbon Nanotube (CNT)

E - e

t0

Transmission,T (E) ®

→

Fig. 20.3 T̄ (E) calculated from NEGF-based model for a ballistic (a) graphene sheet
with armchair and zigzag edges as shown with roughly equal widths (24× 2b ≈ 14× 3a),

(b) carbon nanotube (CNT) obtained by rolling up the graphene sheet along the width.

simpler and that is why it is used so extensively for large conductors where

it is known experimentally that the exact boundary conditions are not very

relevant. But this of course is not true of small conductors and the difference

is evident in Fig. 20.3 for small conductors only a few nanometers in width.

We will not go into this further. Our objective here is simply to show how
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easily our quantum transport formalism captures all the known physics.

The power of the numerical method lies in being able to calculate M(E)

automatically even before one has “understood” the results. However, one

should use numerical calculations not as a substitute for understanding,

but as an aid to understanding.

20.3 Quantum Hall Effect

Related video lecture available at course website, Unit 3: L3.6.

The Hall effect (Chapter 11) provides another good example for a two-

dimensional application of the quantum transport model. The basic struc-

ture involves a long conductor with side probes designed to measure the

transverse Hall voltage developed in the presence of a magnetic field.

We use the same 2D Hamiltonian from Fig. 20.1 but now including a

magnetic field as explained in Section 17.4.3. As discussed in Chapter 13,

the Hall resistance is given by the ratio of the Hall voltage to the current.

In a theoretical model we could calculate the Hall voltage in one of two

ways. We could attach a voltage probe to each side and use Büttiker’s

multiterminal method to find the potentials they float to.

Alternatively we could do what we explained in Section 19.3, namely

calculate the fractional occupation of the states at any point j by looking

at the ratio of the diagonal element of the electron density Gn and the

density of states A and use the low bias Taylor expansion (Eq. (2.11)) to

translate the occupation factor profile into a potential profile.

f=1 f=0

1 2[H][S1] [S2]
D f =VH /V

Figure 20.4 shows the calculated Hall resistance (normalized to the

quantum of resistance h/q2) as a function of the magnetic field. The strik-

ing result is of course the occurrence of plateaus at high fields known as

the quantum Hall effect (von Klitzing et al., 1980). But first let us note

https://www.youtube.com/watch?v=UkIzE8dXE9k
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Semiclassical

Theory,

Eq.(13.3)

Fig. 20.4 Normalized Hall resistance versus B-field for ballistic channel of width W =
26a = 65 nm calculated at an energy E = t0 using a 2D model from Fig. 20.1. For

MATLAB script, see Appendix H.2.3.

the low field regime where the calculated result matches the Hall resistance

expected from semiclassical theory

RH =
B

qn
(same as Eq. (11.6)).

The dashed line in Fig. 20.3 is obtained from Eq. (11.6) assuming

N

LW
=

k2

4π
(from Eq. (6.17) using p = ~k)

and noting that the numerical calculation is carried out at E = t, corre-

sponding to ka = π/3, with a = 2.5 nm.

The semiclassical theory naturally misses the high field results which

arise from the formation of Landau levels due to quantum effects. These

are evident in the numerical plots of the local density of states at high

B-field (20 T) shown in Fig. 20.5.

Usually the density of states varies relatively gently with position, but

in the quantum Hall regime, there is a non-trivial modification of the local

density of states which can be plotted from the NEGF method by looking

at the diagonal elements of the spectral function A(j, j;E). Figure 20.5 is

a grayscale plot of A(j, j;E) with energy E on the horizontal axis and the

position j along the width on the vertical axis. The white streaks indicate

a high density of states corresponding to the energy of Landau levels, which

increase in energy along the edge forming what are called edge states.

As we mentioned in Chapter 11, the edge states can be pictured semi-

classically in terms of “skipping orbits” that effectively isolate oppositely
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0 nm Width  65 nm

Landau Levels

Edge States} }
E − Ec

t0

→

Width 

OccupiedUnoccupied } }

Fig. 20.5 Grayscale plot of local density of states, obtained from the diagonal elements
of A(E) calculated at B = 20 T from the NEGF method. Also shown on the right are

the diagonal elements of Gn(E) calculated assuming f1 = 1, f2 = 0. For MATLAB

script, see Appendix H.2.4.

moving electrons from each other giving rise to a “divided highway” that

provides an incredible level of ballisticity. This is evident if we plot the

electron density from the diagonal elements of Gn under non-equilibrium

conditions assuming f1 = 1, f2 = 0. Only the edge states on one side of

the sample are occupied. If we reverse the current flow assuming f1 = 0,

f2 = 1, we would find the edge states on the other side of the conductor

occupied.

The energies of the Landau levels are given by

En =

(
n+

1

2

)
~ωc (20.8)

where n is an integer, ωc being the cyclotron frequency (see Eq. (11.10)).

We expect the streaks to be spaced by

~ωc =
~qB
m

=
2qBa2

~
t0

where we have made use of Eqs. (11.10) and (20.2b). Noting that B = 20

T, a = 2.5 nm, we expect a spacing of ∼ 0.37 t0 between the streaks in

approximate agreement with Fig. 20.5.

Equation (20.8) is a quantum result that comes out of the Schrödinger

equation including the vector potential which is part of our numerical

model. One can understand it heuristically by noting that semiclassically



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 95

Quantum of Conductance 95

rc

electrons describe circular orbits in a magnetic field, completing one orbit

in a time (see Eq. (11.10))

tc =
2π

ωc
=

2πp

qνB

so that the circumference of one orbit of radius rc is given by

2πrc = νtc =
2πp

qB
.

If we now impose the quantum requirement that the circumference equals

an integer number of de Broglie wavelengths h/p, we have

2πp

qB
= integer × h

p
.

Semiclassically an electron can have any energy E = p2/2m. But the need

to fit an integer number of wavelengths leads to the condition that

p2 = integer× hqB
suggesting that the allowed energies should be given by

E = integer× hqB

2m
= integer× ~ωc

2

which is not exactly the correct answer (Eq. (20.8)), but close enough for

a heuristic argument.

The resulting current equals

q2

h
V ×Number of Edge States

while the Hall voltage simply equals the applied voltage since one edge of

the sample is in equilibrium with the source and other with the drain.

This leads to a quantized Hall resistance given by

h

q2
× 1

Number of Edge States

giving rise to the plateaus of 1/4, 1/3, 1/2, 1 seen in Fig. 20.4, as the mag-

netic field raises the Landau levels, changing the number of edge states at

an energy E = t0 from 4 to 3 to 2 to 1.
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I should mention that the theoretical model does not include the two

spins and so gives a resistance that is twice as large as the experimentally

observed values which look more like

h

2q2
× 1

Number of Edge States

because edge states usually come in pairs, except at high B-fields.

Also, we have not talked at all about the fractional quantum Hall effect

observed in pure samples at larger B-fields with Hall resistances that look

like

h

q2
× 1

a fraction
.

This is a vast and rich area of research on its own beyond the scope of

the simple NEGF model discussed here. As it stands it captures only the

integer Hall effect though innovative extensions could take it beyond this

regime.
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Inelastic Scattering

Related video lecture available at course website, Unit 3: L3.8.

Back in Chapter 17 we used this picture (Fig. 21.1) to summarize our

NEGF model in which the channel is described by a Hamiltonian H while

the self-energies Σ1 and Σ2 describe the exchange of electrons with the

physical contacts. Σ0 describes the interactions with the surroundings

which can be viewed as additional conceptual “contacts”.

Given these inputs, the basic NEGF equations (see Eqs. (18.1)–(18.4))

tell us how to analyze any given structure. Since then we have been looking

at various examples illustrating how one writes down H and Σ and uses

the NEGF equations to extract concrete results and investigate the physics.

One major simplification we have adopted is in our treatment of the inter-

actions in the channel represented by Σ0 which we have either ignored

(coherent transport) or treated as an elastic dephasing process described

by Eqs. (18.35).

This choice of self-energy functions leads to no exchange of energy with

the surroundings, but it has an effect on transport due to the exchange

of momentum and “phase”. Basically we have been talking about elastic

resistors like the ones we started this book with, except that we are now

including quantum mechanical effects. One could say that in the last few

chapters we have applied the general Non-Equilibrium Green’s Function

(NEGF) method to an elastic resistor, just as in Part A we applied the

general Boltzmann Transport Equation (BTE) to an elastic resistor.

So how do we go beyond elastic resistors? For semiclassical transport,

it is clear in principle how to include different types of interaction into

the BTE for realistic devices and much progress has been made in this

direction. Similarly for quantum transport, the NEGF tells us how to

97

https://www.youtube.com/watch?v=7sEVlTSUMFw
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Fig. 21.1 NEGF model: Channel is described by H while the effect of contacts is

described by Σ1 and Σ2. Scattering processes are like an abstract contact whose effect

is described by Σ0.

evaluate the self-energy Σ0 for any given microscopic interaction. In this

book we have talked only about elastic dephasing which is a small subset of

the interactions considered in the classic work on NEGF (see for example,

Danielewicz, 1984 or Mahan, 1987).

In practice, however, it remains numerically challenging to go beyond

elastic resistors and approximate methods continue to be used widely.

Readers interested in the details of device analysis at high bias may find

an old article (Datta (2000)) useful. This article has a number of concrete

results obtained using MATLAB codes that I had offered to share with

anyone who asked me for it. Over the years many have requested these

codes from me which makes me think they may be somewhat useful and

we plan to have these available on our website for these notes.

I should mention that many devices are rather forgiving when it comes to

modeling the physics of inelastic scattering correctly. Devices with energy

levels that are equally connected to both contacts (Fig. 12.6b) do not really

test the deep physics of inelastic transport and cannot distinguish between

a good theory and a bad one. A good test for inelastic scattering models is
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the device shown in Fig. 12.6a for which the entire terminal current is driven

by inelastic processes. Only a fundamentally sound theory like NEGF will

predict results that comply with the requirements of the second law.

Earlier in Section 18.4 we discussed how to write these functions for

elastic dephasing [
Σin0 (E)

]
ij

= Dij ×
[
Gn(E)

]
ij

(21.1a)

[
Γ0(E)

]
ij

= Dij ×
[
Gn(E) +Gp(E)

]
ij

(21.1b)

where we have introduced a new symbol Gp = A −Gn. As we discussed

earlier A/2π and Gn/2π represent matrix versions of density of states and

electron density respectively. It then follows that their difference Gp/2π

represents the matrix version of the “hole” density.

In this chapter my objective is to present the corresponding results

for inelastic scattering. But first let me step back and try to explain a

key distinction between elastic and inelastic processes. Elastic processes

are bidirectional, they proceed equally well in either direction. Inelastic

processes proceed more easily when the system loses energy than when it

gains energy, that is emission is easier than absorption as we had discussed

in Chapter 15, Part A.

This distinction arises because inelastic scatterers like phonons change

their state in the process, while elastic scatterers are usually rigid with

no internal degrees of freedom. Elastic scatterers with internal degrees

of freedom can lead to scattering that is not bidirectional as we argued

in Chapter 16, Part A for a collection of non-interacting spins that could

function like a Maxwell’s demon when it is out-of-equilibrium (Section 16.2).

In this chapter we will not consider such unusual scatterers, or indeed any

specific scatterer.

21.1 Fermi’s Golden Rule

Related video lecture available at course website, Unit 3: L3.7.

All quantum mechanics texts describe the celebrated Fermi’s golden

rule which is widely used to model scattering processes. Let us see how we

can obtain this result from our NEGF expressions.

In Section 20.2.2 (and Appendix G) we partitioned the total Hamilto-

nian Htotal for the structure into a channel Hamiltonian H and a contact

https://www.youtube.com/watch?v=btJGvLVDHQA
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(or reservoir) Hamiltonian HR coupled by a matrix τττ :

Htotal =

[
H τττ †

τττ HR

]
. (21.2)

We used this partitioning to obtain a general expression for the self-energy

[H] [HR]

Fig. 21.2 Partitioning into channel H and contact (or reservoir) HR with coupling τττ .

function

Σ = τττ † g τττ (21.3)

in terms of the coupling matrix τττ and the Green’s function ‘g’ for the

isolated contact

g(E) =
[
(E + i0+)I−HR

]−1
. (21.4)

We can relate the broadening Γ = i[Σ−Σ′] to the spectral function a =

i[g − g′] using Eq. (21.3)

Γ = τττ † aτττ . (21.5)

We will now discuss the golden rule and show that it follows from Eq. (21.5),

first for elastic scattering and then for inelastic scattering.

21.1.1 Elastic scattering

Consider a channel with a static potential Us(r) that scatters elections

from an incident eigenstate exp (+ik · r) to a final eigenstate exp (+ik′ · r)

as shown in Fig. 21.3. The standard golden rule result for the scattering

rate is given by

S(k′ ← k) =
2π

~
|τk′,k|2 δ(Ek − Ek′) (21.6)
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Fig. 21.3 Elastic scattering of electrons by a static potential Us(r).

where τk′,k is the “matrix element” obtained from the scattering potential

Us(r) by performing the integral

τk′,k =

∫
dr

(
1√
Ω
e(+ik′·r)︸ ︷︷ ︸

final state

)∗
Us(r)

(
1√
Ω
e(+ik·r)

)
︸ ︷︷ ︸

initial state

. (21.7)

How can we obtain this standard result (Eqs. (21.6) and (21.7)) from

the expression we obtained earlier (Eq. (21.5))? The key idea is to visualize

the scattering problem depicted in Fig. 21.3 as an abstract channel-contact

partitioning problem: the initial state k is the channel while all the other

states k′ form the contact, as shown in Fig. 21.4.

Once we accept this translation from the scattering problem to the

partitioning problem, we can write the broadening for the “channel” from

Eq. (21.5):

Γk,k (E) =
∑
k′

τ †k,k′ ak′,k′(E) τk′,k (21.8)

where we have written out the matrix product explicitly and made use of

the fact that the spectral function a is diagonal. This is because the k-

states are eigenstates making H diagonal, leading to a diagonal Green’s

function

gk′,k′(E) =
[
E + i0+ −Hk′,k′

]−1
=

1

E + i0+ − Ek′
and hence a diagonal spectral function:

ak′,k′(E) = i

(
1

E + i0+ − Ek
− 1

E − i0+ − Ek

)
→ 2πδ(E − Ek′) (21.9)

making use of one definition of the delta function:

2πδ(x) = i

(
1

x+ i0+
− 1

x− i0+

)
.
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Using Eq. (21.9) in Eq. (21.8), we obtain

Γk,k (E) =
∑
k′

(
τk′,k

)∗
2πδ(E − Ek) τk′,k. (21.10)

As we discussed in Section 18.1.3, the broadening of a state is related

to the inverse of the time it spends in that state before getting scattered,

or the inverse “lifetime” of the state

~
Lifetime(k)

= Γk,k (Ek) = 2π
∑
k′

|τk′,k|2 δ(Ek − Ek′)

leading to the following expression for the inverse lifetime

1

Lifetime(k)
=

2π

~
∑
k′

|τk′,k|2 δ(Ek − Ek′)

which can be written as the sum of all the scattering rates into different

states k given by the golden rule that we stated earlier in Eq. (21.6):

1

Lifetime(k)
=
∑
k′

S(k′ ← k). (21.11)

Before moving onto inelastic scattering, let me note that the above

discussion applies to the scattering from any initial eigenstate m to any final

eigenstate m′, which can be viewed as the channel and contact respectively

as shown in Fig. 21.4:

1

Lifetime(m)
=

2π

~
∑
m′

|τm′,m|2 δ(Em − Em′) (21.12)

which can be written as

1

Lifetime(m)
=
∑
m′

S(m′ ← m) (21.13)

where the golden rule scattering rates are given by (cf. Eq. (21.6))

S(m′ ← m) =
2π

~
|τm′,m|2 δ(Em − Em′) (21.14)

with the matrix elements τ(m′,m) calculated using the appropriate eigen-

functions φm(r) for the eigenstates:

τm′,m =

∫
dr φ∗m′(r)︸ ︷︷ ︸

final state

Us(r) φm(r)︸ ︷︷ ︸
initial state

. (21.15)
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m m’

Fig. 21.4 More generally we can visualize the initial state m as the channel and all the

other states m′ as the contact.

21.1.2 Inelastic scattering

A time-dependent scattering potential causes inelastic scattering, that is,

scattering with a change in energy.

This can be understood by noting that a sinusoidal scattering potential

multiplying an initial wavefunction with energy Ei gives rise to a wave

function with two new energies Ei ± ~ω:

2Us(r) cos ωt× ψ(r) exp

(
−Eit

~

)
︸ ︷︷ ︸

Initial state

→ (Usψ)

[
exp

(−(Ei + ~ω)t

~

)
︸ ︷︷ ︸

absorption

+ exp

(−(Ei − ~ω)t

~

)
︸ ︷︷ ︸

emission

]

This heuristic argument would suggest that the scattering rates for ab-

sorption and emission should be equal. However, the correct answer is that

they are not equal:

S(m′ ← m) =
2π

~
|τm′,m|2 Nω δ(Em−Em′ +~ω) ABSORPTION (21.16a)

S(m′ ← m) =
2π

~
|τm′,m|2 (Nω+1) δ(Em−Em′−~ω) EMISSION (21.16b)

where Nω is the number of “phonons”, while the scattering potential Us due

to one phonon is used to calculate the matrix element τm,m. Absorption

rate is ∼ Nω while emission rate is ∼ (Nω + 1).
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Now let us see how this result for inelastic scattering can be understood

from our earlier result for elastic scattering, namely Eq. (21.14)

S(m′ ← m) =
2π

~
|τm′,m|2 δ(Em − Em′).

The key idea is to view the electronic system and the “phonon” system

as one composite system whose energy levels are sketched in Fig. 21.5 for

states with Nω− 1, Nω and Nω + 1 phonons. What we normally view as an

inelastic absorption process

m′ ← m with Em′ = Em + ~ω

becomes an elastic process in the composite picture

(m′, Nω − 1)← (m,Nω) with Em′ + (Nω − 1)× ~ω = Em +Nω × ~ω

so that the argument of the delta function becomes the same as that in

Eq. (21.16a).(
Em +Nω × ~ω

)
−
(
Em + (Nω − 1)× ~ω

)
= Em − Em′ + ~ω.

In the composite picture, the scattering rates for both emission and

absorption are proportional to the larger of the number of phonons in the

initial and final states. Absorption takes the system from Nω to Nω − 1

and so the scattering rate ∼ Nω, while emission takes the system from Nω
to Nω + 1 and so the scattering rate ∼ Nω + 1.

21.2 Self-energy Functions

Now that we have seen how our basic result for broadening (Eq. (21.5))

leads to the standard expressions for the golden rule treatment of inelastic

scattering, let us get back to the main objective of this chapter, namely

to show how the expressions for in-scattering Σin
0 and broadening Γ0 func-

tions from Section 18.4 for elastic dephasing (Eqs. (21.1a) and (21.1b)) are

generalized to include inelastic processes.

The corresponding results for inelastic scattering for an exchange of

energy ~ω (> 0 for emission, < 0 for absorption) are given by[
Σin0 (E)

]
ij

= Dij(~ω)×
[
Gn(E + ~ω)

]
ij
, (21.17a)[

Γ0(E)
]
ij

= Dij(~ω)×
[
Gn(E + ~ω) +Gp(E − ~ω)

]
ij
. (21.17b)

The inscattering function in Eq. (21.17a) looks reasonable since we expect

the in-scattering at energy E to arise from the electron density (Gn) at

energy E + ~ω. Emission processes correspond to ~ω > 0 while absorption
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m'

m

m'

m

m'

m

Nω −1 Nω

Nω +1Nω

Nω

Abs

Nω +1

Em

Fig. 21.5 Energy levels of composite electron-phonon system. Note that emission (Em)
and absorption (Abs) involve different final states for the phonon system as shown on the

left and their strength depends on the number of phonons in the initial or the final state,

whichever is larger. This makes emission processes stronger (∼ Nω + 1) than absorption
processes (∼ Nω).

m'

m

Nω +1Nω

Nω

Nω

EmAbs

Fig. 21.6 When phonon states are not indicated explicitly, the picture in Fig. 21.5

appears as shown above, as if absorption and emission processes connect the same initial
and final states, with upward transitions (∼ Nω) weaker than downward transitions

(∼ Nω + 1).

processes correspond to ~ω < 0. The broadening function in Eq. (21.17b)

can be understood as the sum of the inscattering function in Eq. (21.17a)

and an out scattering function Σout
0 which is proportional to the number

empty states or “holes” at E − ~ω.
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As we discussed in Section 21.1, emission processes (~ω > 0) depends

on Nω + 1 while absorption processes (~ω < 0) depend on Nω:

Dij(~ω) = Dij(~ω) × (Nω + 1) , ~ω > 0 (21.18a)

Dij(~ω) = Dij(~ω) × Nω , ~ω < 0 (21.18b)

where the quantity Dij is calculated from the scattering potential Us due

to a single phonon:

Dij = 〈 Us(i)Us(j) 〉 (21.19)

where the 〈· · · 〉 brackets denote the ensemble-averaged value of the random

potential Us.

The indices i and j above refer to locations in real space. More generally

if we use arbitrary basis functions, the results in Eqs. (21.17a) and (21.17b)

have to be generalized to[
Σin0 (E)

]
ij

=
∑
m,n

Dim;jn(~ω)×
[
Gn(E + ~ω)

]
mn

(21.20a)

[
Γ0(E)

]
ij

=
∑
m,n

Dim;jn(~ω)×
[
Gn(E + ~ω) +Gp(E − ~ω)

]
mn

(21.20b)

where D is a fourth order tensor obtained from the product of the matrix

elements

Di,m;j,n = τi,mτ
∗
j,n. (21.21)

The matrix elements of τττ are obtained as discussed in the last section

(Eq. (21.15)), but using the scattering potential Us due to a single phonon:

τi,m =

∫
dr φ∗i (r) Us(r) φm(r) (21.22)

Eqs. (21.20a) and (21.20b) reduce to the simpler versions in Eqs. (21.17a)

and (21.17b) if τi,m = τi,iδim so that Dim;jn can be replaced by just Dij

where

Di,j → Di,i;j,j = τi,iτ
∗
j,j .
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Does NEGF Include “Everything?”

Related video lecture available at course website, Unit 3: L3.9.

In the last chapter we have seen how to include inelastic interactions

through the self-energy function Σ0 in the simplest approximation, techni-

cally known as the self-consistent Born approximation. This is just a small

subset of the interactions considered in the classic work on NEGF which

provide clear prescriptions for including any microscopic interaction to any

degree of approximation (see for example, Danielewicz, 1984 or Mahan,

1987). In practice, however, it remains numerically challenging to include

interactions even in the lowest approximations. But practical issues apart,

can the NEGF method model “everything”, at least in principle?

The formal NEGF method developed in the 1960s was based on many-

body perturbation theory (MBPT) which provided clear prescriptions for

evaluating the self-energy functions Σ and Σin for a given microscopic

interaction up to any order in perturbation theory. It may seem that using

MBPT we can in principle include everything. However, I believe this is not

quite true since it is basically a perturbation theory which in a broad sense

amounts to evaluating a quantity like (1 − x)−1 by summing a series like

1+x+x2 +x3 + · · · , which works very well if x is much less than one. But if

x happens to exceed one, it does not work and one needs non-perturbative

methods, or perhaps a different perturbation parameter.

This is one of the reasons I prefer to decouple the NEGF equations

(Eqs. (18.1) through (18.4)) from the MBPT-based methods used to eval-

uate the self-energy functions. The latter may well evolve and get supple-

mented as people find better approximations that capture the physics in

specific situations.

107

https://www.youtube.com/watch?v=QTr3RAAvR7s
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With equilibrium problems, for example, density functional theory

(DFT)-based techniques have proven to be very successful and are often

used in quantum chemistry in place of MBPT. I believe one should be

cautious about expecting the same success with non-equilibrium problems

where a far greater spectrum of many body states are made accessible and

can be manipulated through a judicious choice of contacts, but it is quite

likely that people will find insightful approaches that capture the essential

physics in specific problems.

Like the BTE for semiclassical transport, NEGF-based methods in

their simplest form, seem to provide a good description of problems where

electron-electron interactions can be treated within a mean field theory

based on the widely used picture of quasi-independent electrons moving

in a self-consistent potential U due to the other electrons (Section 17.2).

As we saw in Chapter 8, for low bias calculations one needs to con-

sider only the equilibrium potential which is already included in the semi-

empirical tight-binding (TB) parameters used to construct our Hamiltonian

H. For real devices operating at high bias, the change in the potential due

to any changes in the electron occupation in the channel are routinely in-

cluded using the Poisson equation which is the simplest approximation to

the very difficult problem of electron-electron interactions and there have

been extensive discussions of how the self-consistent field (SCF) can be

corrected to obtain better agreement with experimental results.

However, there are examples where the self-consistent field approach

itself seems to fail and some of the most intriguing properties arise from a

failure of this simple picture. The purpose of this chapter is to alert the

reader that a straightforward application of NEGF may well miss these

important experimentally observable effects. Future challenges and oppor-

tunities may well involve effects of this type, requiring insightful choices for

Σ and Σin if we wish to use the NEGF method.

22.1 Coulomb Blockade

Let us consider the simplest resistor that will show this effect, one that

is only slightly more complicated than the one-level resistor we started

with (Fig. 3.1). We assume two levels, a spin up and a spin down, having

the same energy ε, with the equilibrium chemical potential µ located right

at ε, so that each level is half-filled since the Fermi function f0(E = µ)

equals 0.5. Based on what we have discussed so far we would expect a high

conductance since the electrochemical potential lies right in the middle of

each broadened level as shown in the upper sketch in Fig. 22.1.
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µ1

e

Source Drain

e

e +U0

µ1 µ2

µ2

Fig. 22.1 The “bottom-up” view of Coulomb blockade: A two-level channel can show
significantly lower density of states around E = µ, and hence a higher resistance, if U0

is large.

However, if the single electron charging energy U0 is large then the

picture could change to the lower one where one level floats up by U0 due

to the electron occupying the other level. Why doesn’t the other level

float up as well? Because no level feels any potential due to itself. This

self-interaction correction is missed in the self-consistent field (SCF) model

discussed in Chapter 8 where we wrote U = U0N . Instead we need an

unrestricted SCF where each level i is not restricted to feeling the same

potential. Instead it feels a potential Ui that depends on the change in the

number of electrons occupying all levels except for i:

Ui = U0 (N −Ni). (22.1)

If we were to use Eq. (22.1) instead of U = U0N we would obtain a picture

like the lower one in Fig. 22.1, assuming that µ is adjusted to have approx-

imately one electron inside the channel. We would find a self-consistent

solution with

Ndn = 1 , Uup = U0 , Nup = 0 , and Udn = 0.

The down level will be occupied (Ndn = 1) and the resulting potential

(Uup = U0) will cause the up level to float up and be unoccupied (Nup =

0). Because it is unoccupied, the potential felt by the down level is zero

(Udn = 0), so that it does not float up, consistent with what we assumed

to start with.
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Of course, the solution with up and down interchanged

Nup = 1 , Udn = U0 , Ndn = 0 , and Uup = 0

is also an equally valid solution. Numerically we will converge to one or the

other depending on whether we start with an initial guess that has more

Nup or Ndn. Experimentally the system will fluctuate between the two

solutions randomly over time.

Why have we not worried about this before? Because it is not observ-

able unless the charging energy U0 is well in excess of both kT and the

broadening. U0/q is the potential the channel would float to if one elec-

tron were added to it. For a large conductor this potential is microvolts

or smaller and is unobservable even at the lowest of temperatures. After

all, any feature in energy is spread out by kT which is ∼ 25 meV at room

temperature and ∼ 200 µeV at ∼ 1 K. The single electron charging effect

that we are talking about, becomes observable at least at low tempera-

tures, once the conductor is small enough to make U0 of the order of a

meV. For molecular sized conductors, U0 can be hundreds of meV making

these effects observable even at room temperature.

Source Drain
electron

Fig. 22.2 The single electron charging energy U0 is the electrostatic energy associated

with one extra electron in the channel.

However, there is a second factor that also limits the observability of

this effect. We saw in Chapter 18 that in addition to the temperature

broadening ∼ kT , there is a second and more fundamental broadening,

γ ∼ h/t related to the transfer time. Single electron charging effects will be

observed only if the Coulomb gap U0 exceeds this broadening: U0 � h/t.

For this reason we would not expect to see this effect even in the smallest

conductors, as long as it has good contacts.

22.1.1 Current versus voltage

Let us now move on from the low bias conductance to the full current-

voltage characteristics of the two-level resistor. For simplicity we will as-

sume that the levels remain fixed with respect to the source and are unaf-
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fected by the drain voltage, so that we do not have to worry about the kind

of issues related to simple electrostatics that we discussed in Chapter 8.

A simple treatment ignoring electron-electron interactions then gives

the curve marked “non-interacting” in Fig. 22.3. Once the electrochemical

potential µ2 crosses the levels at ε, the current steps up to its maximum

value.

If we now include charging effects through a self-consistent potential

U = U0N , the current step stretches out over a voltage range of ∼ U0/q,

since the charging of the levels makes them float up and it takes more

voltage to cross them completely.

eeµ1

U = U0 N

Voltage

Cu
rr
en

t

Non-interacting, U = 0

µ2

Fig. 22.3 Current-voltage characteristic of a two-level resistor with U = 0 and with
U = U0N .

But if we include an SCF with self-interaction correction (Eq. (22.1))

we calculate a current-voltage characteristic with an intermediate plateau

as shown in Fig. 22.4 which can be understood in terms of the energy level

diagrams shown. At first only the lower level conducts giving only half the

maximum current and only when the voltage is large enough for µ2 to cross

ε+ U0 that we get the full current.

Such intermediate plateaus in the I-V characteristics have indeed been

observed but the details are not quite right. The correct plateau current is

believed to be 2/3 and not 1/2 of the total current of 2q/t. This represents

an effect that is difficult to capture within a one-electron picture, though

it can be understood clearly if we adopt a different approach altogether,

which we will now describe.
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ε

ε + U0

ε

ε + U0

ε

Ui = U0 N

Exact:
From “Fock space” analysis

Ui = U0 (N − Ni )

 Voltage

N
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m
al
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ed
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2
3

1
2

0

Fig. 22.4 Current-voltage characteristic of a two-level resistor: Exact and with two
different SCF potentials.

22.2 Fock Space Description

This approach is based on the Fock space picture introduced in Chapter 15.

As we discussed earlier, in this new picture we do not think in terms of one-

electron levels that get filled or emptied from the contacts. Instead we think

in terms of the system being driven from one state to another.

One-electron picture

E = e1

“Fock space”

0

1 E = e1

E = 0

Fig. 22.5 One-electron picture versus Fock space picture for a one-level channel.

For example Fig. 22.5 shows how we would view the one-level resistor

in this Fock space picture where the system can be one of two states: 0

representing an empty state, and 1 representing a full state. Figure 22.6

shows the two pictures for a two-level resistor. In general an N -level resistor

will have 2N Fock space states.
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2 one-electron
levels

4 many-electron levels

00

11

01 10

E = 0

E = ε

E = 2ε +U0

E = ε

Fig. 22.6 One-electron picture versus Fock space picture for a two-level channel.

22.2.1 Equilibrium in Fock space

As we discussed in Chapter 15, there is a well-defined procedure for finding

the probabilities of finding the system in a given eigenstate i at equilibrium.

pi =
1

Z
e−(Ei−µNi)/kT (Same as Eq. (15.18)).

We could use this to calculate any equilibrium property. For example

suppose we want to find the number of electrons, n occupying the two-level

channel shown in Fig. 22.6 if it is in equilibrium with an electrochemical

potential µ.

Figure 22.7 shows the result obtained by plotting n versus µ from the

equation

n =
∑
i

Nipi = p01 + p10 + 2p11

using the equilibrium probabilities from Eq. (15.18) cited above. Note how

the electron number changes by one as µ crosses ε and then again when µ

crosses ε+ U0 in keeping with the lower picture in Fig. 22.1.

Note, however, that we did not assume the picture from Fig. 22.1 with

two one-electron states at different energies. We assumed two one-electron

states with the same energy (Fig. 22.6) but having an interaction energy

that is included in the Fock space picture.

If we are interested in the low bias conductance, G as a function of

µ, we could deduce it from the n(µ) plot in Fig. 22.7. As we discussed

in Chapter 2, current flow is essentially because the two contacts with

different µ’s have different agendas, since one likes to see more electrons

in the channel than the other. From this point of view one could argue
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that the conductance should be proportional to dn/dµ and show peaks at

µ = ε and at µ = ε+ U0 as shown. This is indeed what has been observed

experimentally for the low bias conductance of small conductors in the

single-electron charging regime where U0 exceeds both the thermal energy

kT and the energy broadening due to contacts.

e e +U0

Fig. 22.7 Equilibrium number of electrons, n in the two-level channel shown in Fig. 22.6

as a function of µ, assuming ε = 10 kT , U0 = 20 kT . The conductance can be argued to

be proportional to the derivative dn/dµ showing peaks when µ equals ε and ε+U0. For
MATLAB script, see Appendix H.3.1.

As we saw in Chapter 5, low bias conductance is an equilibrium property

that can be deduced using the principles of equilibrium statistical mechan-

ics. Current flow at higher voltages on the other hand requires the methods

of non-equilibrium statistical mechanics. Let me explain briefly how one

could understand the 2/3 plateau shown in Fig. 22.4 by calculating the

current at high bias in the Fock space picture.
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22.2.2 Current in the Fock space picture

To calculate the current we write an equation for the probability that the

system will be found in one of its available states, which must all add up

to one. For example for the one level resistor we could write

nu1p0 = ν2p1 → p1

p0
=
ν1

ν2
→ p1 =

ν1

ν1 + ν2

assuming that the left contact sends the system from the 0 state to the

1 state at a rate ν1, while the right contact takes it in the reverse direction

at a rate ν2 and at steady-state the two must balance. The current is given

by

I = qν2p1 = q
ν1ν2

ν1 + ν2
(22.2)

in agreement with our earlier result in Chapter 18 (see Eq. (18.10b)) ob-

tained from a one-electron picture.

But the real power of this approach is evident when we consider levels

with multiple interacting levels. Consider for example the two-level resistor

biased such that electrons can come in from the left contact and transfer the

system from 00 to 01 or to 10, but not to the 11 state because of the high

charging energy U0. This is the biasing condition that leads to a plateau

at 2/3 the maximum value (Fig. 22.4) that we mentioned earlier.

00

01 10

11

In this biasing condition, the system can only come out of the 11 state,

but never transfer into it, and so the steady-state condition can be calcu-

lated simply by considering the kinetics of the three remaining states in
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Fock space, namely 00, 01 and 10:

2ν1p00 = ν2(p01 + p10)

→ p01 + p10

p00
=

2ν1

ν2

→ p01 + p10 =
2ν1

2ν1 + ν2

where we have made use of the requirement that all three probabilities must

add up to one. Hence

I = qν2(p01 + p10) = q
2ν1ν2

2ν1 + ν2

with

ν1 = ν2 → I =
2

3
qν1

which is 2/3 the maximum current as stated earlier.

It is important to note the very special nature of the solution we just

obtained which makes it hard to picture within a one-electron picture. We

showed that the system is equally likely to be in the states 00, 01 and the

10 states, but zero probability of being in the 11 state.

e e +U0

STRONGLY

CORRELATED

2
3

Fig. 22.8 The intermediate plateau in the current corresponds to the channel being in

a strongly correlated state. For MATLAB script, see Appendix H.3.2.

In other words, if we looked at the up-spin or the down-spin state (in the

one-electron picture) we would find them occupied with 1/3 probability. If

electrons were independent then we would expect the probability for both

to be occupied to be the product = 1/9.
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Instead it is zero, showing that the electrons are correlated and cannot

be described with a one-electron occupation factor f of the type we have

been using throughout this book. Even with quantum transport we replaced

the f ’s with a matrix Gn obtained by summing the ψψψψψψ† for individual

electrons. This adds sophistication to our understanding of the one-electron

state, but it still does not tell us anything about two-electron correlations.

22.3 Entangled States

What we just saw with one quantum dot is actually just the proverbial

tip of the iceberg. Things get more interesting if we consider two or more

quantum dots.

For example, with two coupled quantum dots we could write the one-

electron Hamiltonian matrix as a (4 × 4) matrix using the up and down

states in dots 1 and 2 as the basis functions as follows:

H =
u1

u2

d1

d2

u1
ε1

t

0

0

u2

t

ε2

0

0

d1

0

0

ε1

t

d2

0

0

t

ε2

 (22.3)

µ1

µ2

Source DrainChannel

u1
u2

d2

d1

But what are the Fock space states? With four one-electron states we

expect a total of 24 = 16 Fock space states, containing 0, 1, 2, 3 or 4

electrons. The number of n-electron states in Fock space is given by 4Cn:

one with n = 0, four with n = 1, six with n = 2, four with n = 3 and one

with n = 4.

If there were no inter-dot coupling then these sixteen states would be the

eigenstates and we could analyze their dynamics in Fock space just as we did

for one dot. But in the presence of inter-dot coupling the true eigenstates
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1111

1110, 1101, 1011, 0111

1100, 1010, 1001, 0110, 0101,0011

1000, 0100, 0010, 0001

0000

4-electron

3-electron

1-electron

0-electron

2-electron

are linear combinations of these states and these entangled states can lead

to novel physics and make it much more interesting.

The 0-electron and 4-electron states are trivially composed of just one

Fock space state, while the 1-electron state is essentially the same as the

states in a one-electron picture. Indeed the 3-electron state also has a

structure similar to the one-electron state and could be viewed as a 1-hole

state.

The 2-electron states, however, have an interesting non-trivial structure.

Consider the six 2-electron states which we label in terms of the two states

that are occupied: u1d1, u2d2, u1d2, u2d1, u1u2, d1d2. Using these we can

write the Fock space Hamiltonian HH as explained below.

The diagonal elements of HH are written straightforwardly by adding

the one-electron energies plus an interaction energy U0 if the two basis

functions happen to be on the same dot making their Coulomb repulsion

much stronger than what it is for two states on neighboring dots.

HH =

u1d1

u2d2

u1d2

u2d1

u1u2

d1d2

u1d1

2ε1 + U0

0

t

t

0

0

u2d2

0

2ε2 + U0

t

t

0

0

u1d2

t

t

ε1 + ε2

0

0

0

u2d1

t

t

0

ε1 + ε2

0

0

u1u2

0

0

0

0

ε1 + ε2

0

d1d2

0

0

0

0

0

ε1 + ε2


(22.4)

The off-diagonal entries t are obtained by noting that this quantity

couples the one electron states u1 to u2 and d1 to d2. With two electron

states we have inserted t for non-diagonal elements that couples those states

for which one state remains unchanged while the other changes from u1 to

u2 or from d1 to d2.
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The lowest eigenstate obtained from the two-electron Hamiltonian in

Eq. (22.4) is with a wavefunction of the form (s1, s2 < 1 )

S : ({u1d2}+ {u2d1}) + s1 {u1d1}+ s2 {u2d2} (22.5)

is called the singlet state. Next comes a set of three states (called the

triplets) that are higher in energy. These have the form

T1 :
1√
2

({u1d2} − {u2d1})

T3 : {u1u2}
T3 : {d1d2} . (22.6)

A system with two electrons is normally viewed as occupying two one-

electron states. The states T2 and T3 permit such a simple visualization.

But the states S and T1 do not.

For example, each term in the state

T1 :
1√
2

({u1d2} − {u2d1})

permits a simple visualization: {u1d2} stands for an upspin electron in 1

and a downspin electron in 2 while {u2d1} represents an upspin in 2 and a

downspin in 1. But the real state is a superposition of these two “simple” or

unentangled states and there is no way to define two one-electron states a

and b such that the two-electron state could be viewed as {ab}. Such states

are called entangled states which comprise the key entity in the emerging

new field of quantum information and computing.

How would we compute the properties of such systems? The equilibrium

properties are still described by the general law of equilibrium stated earlier

pi =
1

Z
e−(Ei−µNi)/kT (Same as Eq. (15.18))

and using the equilibrium properties to evaluate the average number of

electrons

n =
∑
i

Nipi.

The energies Ei are obtained by diagonalizing the Fock space Hamiltonian

HH that we just discussed. Figure 22.9 shows the plot of n versus µ which

looks like Fig. 22.7, but the middle plateau now involves the entangled

singlet state just discussed. There is also some additional structure that

we will not get into. The main point we wanted to make is that the law of

equilibrium statistical mechanics is quite general and can be used in this

case.
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e e +U0

Singlet

State

Fig. 22.9 Equilibrium number of electrons, n in the two-level channel shown in Fig. 22.6
as a function of µ, assuming ε = 10 kT , U0 = 20 kT . For MATLAB script, see Ap-

pendix H.3.3.

But the calculation of current at high bias is a non-equilibrium problem

that is not as straightforward. Using the entangled states one could set up

a rate equation as we did in the last section and understand some of the in-

teresting effects that have been observed experimentally including negative

differential resistance (NDR), that is a decrease in current with increasing

voltage (see for example Muralidharan et al., 2007). More generally one

needs quantum rate equations to go beyond the simple rate equations we

discussed and handle coherences (Braun et al., 2004, Braig and Brouwer,

2005).

Can we model transport involving correlated and/or entangled states

exactly if we use a Fock space picture instead of using NEGF and including

interactions only approximately through self-energies? Sort of, but not

quite.

There are two problems. The first is practical. A N -level problem in

the one-electron picture escalates into a 2N level problem n the Fock space

picture. The second is conceptual.

We saw in Chapter 18 how the NEGF method allows us to include quan-

tum broadening in the one-electron Schrödinger equation. To our knowl-

edge there is no comparable accepted method for including broadening in

the Fock space picture. So the rate equation approach from the last section

works fine for weakly coupled contacts where the resulting broadening is

negligible, but the regime with broadening comparable to the charging en-
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ergy stands out as a major challenge in transport theory. Even the system

with two levels (Fig. 22.7) shows interesting structure in n(µ) in this regime

(“Kondo peak”) that has occupied condensed matter physicists for many

decades.

One could view Coulomb blockade as the bottom-up version of the Mott

transition, a well-studied phenomenon in condensed matter physics. In a

long chain of atoms, the levels ε and ε + U0 (Fig. 22.1) will each broaden

into a band of width ∼ 2t0, t0/~ being the rate at which electrons move

from one atomic site to the next. These are known as the lower and upper

Hubbard bands. If their separation U0 exceeds the width 2t0 of each band

we will have a Mott insulator where the electrochemical potential lies in the

middle of the two bands with very low density of states and hence very low

conductance. But if U0 is small, then the two bands form a single half-filled

band with a high density of states at E = µ0 and hence a high conductance.

Needless to say, the full theory of the Hubbard bands is far more com-

plicated than this oversimplified description might imply and it is one of

the topics that has occupied condensed matter theorists for over half a

century. Since the late 1980s it has acquired an added significance with

the discovery of a new class of superconductors operating at relatively high

temperatures above 100 K, whose mechanism continues to be controversial

and hotly debated.

This problem remains one of the outstanding problems of condensed

matter theory, but there seems to be general agreement that the essential

physics involves a two-dimensional array of quantum dots with an inter-dot

coupling that is comparable to the single dot charging energy.
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Chapter 23

Rotating an Electron

Related video lecture available at course website, Unit 4: L4.1.

Back in Section 12.2 of Part A, we talked about the concept of spin

potentials and how they can be generated in two ways, namely (Fig. 23.1)

(1) use of magnetic contacts with ordinary channels (Section 12.2.1),

(2) use of ordinary contacts with spin-momentum locked channels (Sec-

tion 12.2.2).

µP

 (b) Ordinary contact,
Spin-momentum

locked channel

IV
θ

(a) Magnetic contact,

Ordinary channel

X
x

z

y
µP

Fig. 23.1 Spin potentials can be generated (a) using magnetic contacts with ordinary

channels, or (b) using ordinary contacts with spin-momentum locked channels. In either
case a magnetic probe can be used to measure the spin potential in the channel.

In the first case the channel-contact interface presents different resistances

to the two spins so that the surface potential is different for the two spins

right under the contact, giving rise to a spin potential µS (see Eq. (12.18b),

125

https://www.youtube.com/watch?v=98pgUuDTCno
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Part A) in addition to the usual charge potential µ:

µ =
µup + µdn

2
(23.1a)

µS =
µup − µdn

2
. (23.1b)

This potential persists for a distance up to a spin coherence length from

the contact, and can be measured by placing a magnetic probe within this

range. In the second case the contacts are normal and the current flow

in the channel gives rise to a separation in the potentials µ+ and µ− for

right and left moving electrons. For a 2D spin-momentum locked channel

in the x-y plane, right (+x̂) and left (−x̂) moving electrons correspond to

spins with positive and negative components along ẑ× x̂ = ŷ. A difference

(µ+ − µ−) thus translates into a spin potential µS ∼ µup − µdn, where up

and dn refer to spins pointing along positive and negative y.

Fig. 23.2 Simple circuit model for a voltage probe.

How does a magnetic contact measure the spin potential? Through the

difference in the interface conductances gup and gdn for up and down spins

(Fig. 23.2). The probe floats to a potential µP such that

gup(µup − µP ) + gdn(µdn − µP ) = 0 (23.2a)

→ µP =
gupµup + gdnµdn

gup + gdn
(23.2b)

which can be written in terms of µ, µS and the polarization P of the magnet:

µP = µ+ PµS (23.3a)

P ≡ gup − gdn
gup + gdn

. (23.3b)
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Note that if we reverse a magnet, gup ↔ gdn, so that P → −P . This

means that if we reverse a magnet from +m̂ to −m̂, the probe potential

will change by

µP (+m̂)− µP (−m̂) = 2PµS . (23.4)

Indeed this is the standard method for measuring spin potentials, namely

by looking at the change in the probe potential when the magnet is reversed.

What voltage would the magnetic probe measure if it were neither par-

allel nor anti-parallel to the spins, but instead made some arbitrary angle

with it (Fig. 23.1a)? The answer can be stated quite simply:

µP = µ+ P ·µµµS (23.5)

where P = Pm̂ and the spin potential is a vector pointing in the direction

that defines “up”. The derivation of Eq. (23.5) should be clearer as we

discuss spins in more depth in this chapter.

23.1 Polarizers and Analyzers

How do we understand the general result in Eq. (23.5)? For those unfa-

miliar with electron spin, the simplest analogy is probably that of photon

polarization. As we learn in freshman physics, a polarizer-analyzer combi-

nation lets through a flux proportional to cos2 θ. It is maximum when the

two are parallel (θ = 0◦), and a minimum when the two are perpendicular

(θ = 90◦).

 Photon Flux ~
 

P .
 

A ( )
2

~ cos2 q

Polarizer Analyzer

q P  

   

A

What about electrons? Suppose we have electrons that are all up, so

that µdn = 0, and from Eq. (23.1), we have |µS | = µ = µup/2. Equa-

tion (23.5) then gives

µP
µup

=
1 + P cos θ

2
.

As with photons, the voltage is a maximum when the probe (analyzer)

is parallel to the electron polarization (θ = 0◦). But with electrons the
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0    180   360   540   720

µ P

θ
Fig. 23.3 Probe voltage variation as its magnetization is rotated.

minimum occurs, not when the two are perpendicular (θ = 90◦) but when

the two are antiparallel (θ = 180◦) as shown in Fig. 23.3.

Indeed if we assume a perfect voltage probe with P = 1, we have

µP
µ

=
1 + cos θ

2
= cos2 θ

2

showing that the analyzer lets through a fraction of electrons proportional

to

cos2

(
θ

2

)
︸ ︷︷ ︸

Electrons

rather than cos2 θ︸ ︷︷ ︸
Photons

.

One point that causes some confusion is the following. It seems that

if we had electrons in the channel whose spin direction we did not know,

we could measure it using a magnet. As we turn the magnet the measured

voltage should go through maxima and minima as shown in Fig. 23.3, and

the direction corresponding to a maximum tells us the direction of the

electron spin.

But doesn’t quantum mechanics teach us that the spin of an electron

cannot be exactly measured? Yes, but that is true if we had just one

electron. Here we are talking of an “army” of electrons identically prepared

by an injecting contact and what our magnet measures is the average over

many many such electrons. This is not in violation of any basic principle.

Anyway, the bottom line is that for electron spin, orthogonal directions

are not represented by say z and x that are 90 degrees apart. Rather they

are represented by ‘up’ and ‘down’ that are 180 degrees apart. And that

is why a proper description of electron spin requires spinors rather than

vectors as we will now discuss.
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A vector n̂ is described by three real components, namely the compo-

nents along x, y and z, but spinors are described by two complex compo-

nents, which are its components along up and down:
nx
ny
nz

︸ ︷︷ ︸
Vector

,

{
ψup
ψdn

}
︸ ︷︷ ︸
Spinor

.

Nevertheless we visualize the spinor as an object pointing in some direction

just like a vector. How do we reconcile the visual picture with the 2-

component complex representation?

A spinor pointing along a direction described by a unit vector

x

y

z

q

f

n̂

n̂ ≡


sin θ cosφ

sin θ sinφ

cos θ

 (23.6)

has components given by
cos

(
θ

2

)
e−iφ/2 ≡ c

sin

(
θ

2

)
e+iφ/2 ≡ s

 . (23.7)

This is of course not obvious and later in the chapter I will try to explain

why Eqs. (23.6) and (23.7) represent isomorphic (more correctly “homo-

morphic”) ways to represent an abstract rotatable object pointing in some

direction. For the moment let us accept Eq. (23.7) for the components of

a spinor and work out some of its consequences.
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23.2 Spin in NEGF

Although these subtleties of visualization and interpretation take some time

to get used to, formally it is quite straightforward to incorporate spin into

the quantum transport formalism from Chapter 18. The basic equations

from Eq. (18.1) through (18.4) remain the same, but all the matrices like

H, Σ, Gn, and A become twice as big (Fig. 23.4).

up
dn

(a) Without spin

(b) With spin

Fig. 23.4 Inclusion of spin in NEGF doubles the number of “grid points” or basis
functions.

Ordinarily these matrices are of size (N×N), if N is the number of grid

points (or more formally the number of basis functions) used to describe the

channel. Inclusion of spin basically doubles the number of basis functions:

every grid point turns into two points, an up and a down (Fig. 23.4).

How would we write down H including spin? We can visualize the TB

parameters (See Fig. 17.7) exactly as before except that each on-site element

ααα and the coupling elements βββ are each (2× 2) matrices (Fig. 23.5). In the

ax →

→

y

[bx ]

[bx
+ ]

[by ]

[by
+ ]

[a ]

a

Fig. 23.5 2D Lattice with each element given by a (2× 2) matrix to reflect spin-related
properties.
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simplest case, we can imagine a “spin-innocent” channel that treats both

spin components identically. Such a channel can be modeled by choosing

the TB parameters as follows:

ααα = ε I, βββx = t I, βββy = t I (23.8)

where I is the (2 × 2) identity matrix. We effectively have two identical

decoupled Hamiltonians that includes no new physics.

Similarly we can write the self-energy Σ for ordinary contacts that treat

both spin components identically simply by taking our usual values and

multiplying by I. This would again be in the category of a trivial extension

that introduces no new physics. The results should be the same as what

we would get if we worked with one spin only and multiplied by two at the

end.

All spin-related phenomena like the ones we discussed in Chapter 12

arise either from non-trivial contacts described by Σ with spin-related prop-

erties or from channels described by H with spin-related properties or both.

Let us now try to get a feeling for spin transport problems by applying

the NEGF method to a series of examples, starting with a simple one-level

version of the spin valve we started Chapter 12 with. From a computational

point of view the only question is how to write down H and Σ. Once we

have these, the rest is standard. One can then proceed to understand and

enjoy the physics.

23.3 One-level Spin Valve

Related video lecture available at course website, Unit 4: L4.2.

As we discussed in Chapter 12, a spin valve (Fig. 23.6) shows different

conductances GP and GAP depending on whether the magnetic contacts

have parallel (P) or anti-parallel (AP) magnetizations. Using a simple

model we showed that the magnetoresistance (MR) can be expressed as

MR ≡ GP
GAP

− 1 =
P 2

1− P 2

where the polarization P was defined in terms of the interface resistances.

In that context we noted that the standard expression for the MR for

magnetic tunnel junctions (MTJ’s) has an extra factor of two

MR ≡ GP
GAP

− 1 =
2P 2

1− P 2
(23.9)

https://www.youtube.com/watch?v=jJFryVCp5oU
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Parallel Anti-Parallel

MR =
GP

GAP
- 1

V +-

I

+-V
I

Fig. 23.6 The spin-valve has different conductances GP and GAP depending on whether

the magnetic contacts have parallel (P) or anti-parallel (AP) magnetization.

which could be understood if we postulated that the overall resistance was

proportional to the product of the interface resistances and not their sum.

We could obtain this result including the factor of two directly from

our NEGF model if we apply it to a one-level resistor and assume that the

equilibrium electrochemical potential µ0 is located many kT ’s below the

energy ε of the level as sketched.

[H][S1] [S2]

m0

e

® - ¶ f0 / ¶E

Figure 23.7 summarizes the (2 × 2) matrices H and Σ for this device.

Also shown for comparison are the corresponding (1× 1) “matrices” (that

is, just numbers) for the same device without spin. Note that the chan-

nel is assumed to treat both spins identically so that H is essentially an

identity matrix, but the Σ’s have different values for the up and downspin

components.

Using these matrices it is straightforward to obtain the Green’s function

GR =

 E − ε+ i
2 (γ1u + γ2u) 0

0 E − ε+ i
2 (γ1d + γ2d)

−1
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=
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Fig. 23.7 One-level spin-valve: Modifying the H and Σ for a spin-less one-level device
to represent a one-level spin valve.

and hence the transmission

T̄ = Trace
[
Γ1G

RΓ2G
A
]

=
γ1uγ2u

(E − ε)2 +

(
γ1u + γ2u

2

)2 +
γ1dγ2d

(E − ε)2 +

(
γ1d + γ2d

2

)2 . (23.10)

For the parallel (P) configuration we can assume both contacts to be

identical so that we can write (α > β)

γ1u = γ2u ≡ α (23.11a)

γ1d = γ2d ≡ β (23.11b)

while for the anti-parallel (AP) configuration the second contact has the

roles of α and β reversed with respect to the former:

γ1u = γ2d ≡ α (23.12a)

γ1d = γ2u ≡ β. (23.12b)

Inserting Eqs. (23.11) into Eq. (23.10) we have the P - transmission

T̄P =
α2

(E − ε)2 + α2
+

β2

(E − ε)2 + β2

while using Eqs. (23.12) in Eq. (23.10) gives the AP - transmission

T̄AP =
2αβ

(E − ε)2 +

(
α+ β

2

)2 .
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The measured conductance depends on the average transmission over a

range of energies of a few kT around µ0. Assuming that

ε− µ0 � kT, α, β

we can write

GP ∼ T̄P (E = µ0) =
α2

(µ0 − ε)2 + α2
+

β2

(µ0 − ε)2 + β2
≈ α2 + β2

(µ0 − ε)2

and

GAP ∼ T̄AP (E = µ0) ≈ 2αβ

(µ0 − ε)2
.

This gives us

MR ≡ GP
GAp

− 1 =
α2 + β2

2αβ
− 1 =

2P 2

1− P 2

as stated earlier in Eq. (23.9) with the polarization defined as

P ≡ α− β
α+ β

. (23.13)

Actually we could also obtain the result without the factor of 2, obtained

from the resistor model in Chapter 12, if we assume that µ0 is located right

around the level ε, with kT � α and kT � β. But we leave that as an

exercise. After all this is just a toy problem intended to get us started.

23.4 Rotating Magnetic Contacts

Related video lecture available at course website, Unit 4: L4.3.

We argued in the last section that for an anti-parallel spin valve, the

second contact simply has the roles of α and β reversed relative to the first,

so that we can write

Γ1 =

[
α 0

0 β

]
, Γ2 =

[
β 0

0 α

]
.

But how would we write the corresponding matrix for a contact if it were

pointing along some arbitrary direction defined by a unit vector n̂? The

answer is

Γ =
α+ β

2
I +

α− β
2

[
nz nx − i ny

nx + i ny −nz

]
(23.14)

where nx, ny and nz are the components of the unit vector n̂ along x, y and

z respectively. This result is of course not obvious and we will try to justify

https://www.youtube.com/watch?v=JTMuhnMSVaU
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it shortly. But it is reassuring to note that the results for both the parallel

and the anti-parallel contact come out as special cases of this general result

(Eq. (23.14)):

If nz = +1, nx = ny = 0 : Γ =

[
α 0

0 β

]

If nz = −1, nx = ny = 0 : Γ =

[
β 0

0 α

]
.

One way to understand where Eq. (23.14) comes from is to note that the

appropriate matrix describing a magnet pointing along n̂ would be

Γ̃ =

[
α 0

0 β

]
(23.15)

if we were to take +n̂ and −n̂ as our reference directions instead

of +ẑ and −ẑ as we normally do. How could we then transform the Γ̃

from Eq. (23.15) into the usual ± ẑ basis?

Answer: Transform from the ± n̂ to the ± ẑ basis

ẑ

−ẑ

n̂[
c

s

−n̂

−s∗
c∗

]
︸ ︷︷ ︸

V

n̂

−n̂

n̂[
α

0

−n̂

0

β

]
n̂

−n̂

ẑ[
c∗

−s

−ẑ

s∗

c

]
︸ ︷︷ ︸

V†

(23.16)

using the unitary transformation matrix V whose columns represent the

components of a spinor pointing along ±n̂. The first column follows from

the result we stated earlier in Eq. (23.7), while the second can be obtained

from Eq. (23.7) if we set

θ → π − θ, φ → π + φ

and remove a common phase factor from the two components.

Multiplying out the three matrices in Eq. (23.16) we have

Γ =

[
c −s∗
s c∗

] [
α 0

0 β

] [
c∗ s∗

−s c

]
=

[
c −s∗
s c∗

] [
αc∗ αs∗

−βs βc

]

=

[
αcc∗ + βss∗ (α− β) cs∗

(α− β) sc∗ αss∗ + βcc∗

]
.
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Making use of the definitions of c and s from Eq. (23.7) and some common

trigonometric identities like

2 cos2

(
θ

2

)
= 1 + cos θ,

2 sin2

(
θ

2

)
= 1− cos θ, and (23.17)

2 sin

(
θ

2

)
cos

(
θ

2

)
= sin θ

we can rewrite this as

Γ =
1

2

[
(α+ β) + (α− β) cos θ (α− β) sin θ e−iφ

(α− β) sin θ e+iφ (α+ β)− (α− β) cos θ

]
which leads to the result stated earlier in Eq. (23.14) if we make use of

Eq. (23.6) for the x, y and z components of a unit vector.

Finally let me note that if we define the polarization as a vector whose

magnitude is given by Eq. (23.13) and direction is given by n̂:

P ≡ P n̂ =
α− β
α+ β

n̂ (23.18)

then we could rewrite Eq. (23.14) as

Γ =
α+ β

2

(
I +

[
Pz Px − i Py

Px + i Py −Pz

])
(23.19)

which can be rearranged as shown

Γ

(α+ β)/2
=

[
1 0

0 1

]
︸ ︷︷ ︸

I

+Px

[
0 1

1 0

]
︸ ︷︷ ︸
σx

+Py

[
0 −i

+i 0

]
︸ ︷︷ ︸

σy

+Pz

[
1 0

0 −1

]
︸ ︷︷ ︸

σz

.

Any (2× 2) matrix can be expressed in terms of the four matrices appear-

ing here consist of the identity matrix I along with the three Pauli spin

matrices

σx ≡
[

0 1

1 0

]
, σy ≡

[
0 −i

+i 0

]
and σz ≡

[
1 0

0 −1

]
(23.20)

which are widely used in the spin-related literature.

Making use of the Pauli spin matrices, we could write Eq. (23.19) com-

pactly in the form

Γ =
α+ β

2
(I + σx Px + σy Py + σz Pz)

=
α+ β

2
(I + σσσ · P ) .

(23.21)
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This result applies to the self-energy matrices as well. For example, if

Σ̃ = − i
2

[
α 0

0 β

]
in the ± n̂ basis, then in the ± ẑ basis it is given by

Σ = −i α+ β

4
I − i

α− β
4

σσσ · n̂

= −i α+ β

4
( I + σσσ · P ) .

23.5 Spin Hamiltonians

Related video lecture available at course website, Unit 4: L4.6.

Now that we have seen how to describe contacts with spin-dependent

properties, let us talk briefly about channels with spin-dependent proper-

ties.

23.5.1 Channel with Zeeman splitting

The commonest example is the Zeeman splitting that causes the energies

of the up-spin state to go up by µelB and that of the down spin states to

go down by µelB, µel being the effective magnetic moment of the electron.

If the magnetic field points along + n̂, then in the ± n̂ basis the corre-

sponding Hamiltonian should look like

µel

[
+B 0

0 −B

]
.

Following our discussion in the last section we can write it in the ± ẑ basis

as

HB = µel σσσ · B. (23.22)

The overall Hamiltonian is obtained by adding this to the spin-independent

part multiplied by I. For parabolic dispersion this gives

H =
~2

2m

(
k2
x + k2

y

)
I + µel σσσ · B (23.23)

while for a 2D square lattice we have (see Eq. (17.19))

H = (ε+ 2t cos (kxa) + 2t cos (kya)) I + µel σσσ · B. (23.24)

https://www.youtube.com/watch?v=1ylsdBuexaE
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ax →

→

y

[bx ]

[bx
+ ]

[by ]

[by
+ ]

[a ]

a

The corresponding parameters for the 2D lattice in Fig. 23.5 (also shown

here for convenience) are given simply by

ααα = ε I + µel σσσ · B (23.25a)

βββx = t I, βββy = t I. (23.25b)

Only the on-site parameter ααα is changed relative to the spin independent

channel (Eq. (23.8)).

23.5.2 Channel with Rashba interaction

Related video lecture available at course website, Unit 4: L4.5.

A more complicated example is that of the Rashba spin-orbit coupling

described by a Hamiltonian of the form

HR = η ẑ · (σσσ × k) = η (σxky − σykx) (23.26)

whose effect has been observed in 2D surface conduction channels assumed

to lie in the x-y plane. This is believed to be a relativistic effect whereby the

extremely high atomic scale electric fields (that exist even at equilibrium)

are perceived as an effective magnetic field by the electron and the resulting

“Zeeman splitting” is described by HR.

We will not go into the underlying physics of this effect any further here

and simply address the question of how to include it in our 2D lattice model.

With this in mind we approximate the linear terms with sine functions

HR =
η

a
(σx sin (kya)− σy sin (kxa)) (23.27)

which are written in terms of exponentials:

HR =
η

2ia
σx(e+ikya − e−ikya) − η

2ia
σy(e+ikxa − e−ikxa).

https://www.youtube.com/watch?v=ZevWkN9DT4k
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Clearly HR can be described by a Hamiltonian with

βββx =
i η

2a
σy , βββ†x = − i η

2a
σy

βββy = − i η

2a
σx , βββ†y =

i η

2a
σx

in order to ensure that if we write down the dispersion relation for the

lattice we will indeed get back the original result in Eq. (23.23). Adding

this to the usual spin-independent part from Eq. (23.8) along with any real

magnetic field B we have the overall parameters:

ααα = ε I + µel σσσ · B

βββx = t I +
i η

2a
σy , βββ

†
x = t I− i η

2a
σy

βββy = t I− i η

2a
σx , βββ

†
y = t I +

i η

2a
σx.

(23.28)

23.6 Vectors and Spinors

Related video lecture available at course website, Unit 4: L4.4.

One of the important subtleties that takes some time to get used to is

that we represent spin with two complex components, but we visualize it

as a rotatable object pointing in some direction, which we have learnt to

represent with a vector having three real components. To see the connection

between the spinor and the vector, it is instructive to consider the precession

of a spin in a magnetic field from both points of view.

Consider the one-level device with ε = 0, and with a magnetic field in

the z-direction so that the Schrödinger equation can be written as

d

dt

{
ψu
ψd

}
=

µelBz
i~

[
1 0

0 −1

]
︸ ︷︷ ︸

σz

{
ψu
ψd

}
. (23.29)

These are two separate differential equations whose solution is easily written

down:

ψu(t) = ψu(0) e− iω t/2

ψd(t) = ψd(0) e+ iω t/2

where ω ≡ 2µelBz
~

. (23.30)

https://www.youtube.com/watch?v=3Ex3IG8YJ20
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x

y

z

q

f

n̂

So if the electron starts out at some angle (θ, φ) with a wavefunction
ψu(0) = cos

(
θ

2

)
e−iφ/2

ψd(0) = sin

(
θ

2

)
e+iφ/2


at t = 0, then at a later time it will have a wavefunction given by

ψu(t) = cos

(
θ

2

)
e−iφ/2 e−iωt/2

ψd(t) = sin

(
θ

2

)
e+iφ/2 e+iωt/2


which means that the spin will be rotating around the z-axis such that the

angle θ remains fixed while the angle φ increases linearly with time:

φ(t) = φ(0) + ω t. (23.31)

Making use of Eq. (23.6) for the x, y and z components of the vector n̂ we

can write

nx = sin θ cosφ(t), ny = sin θ sinφ(t) and nz = cos θ. (23.32)

From Eqs. (23.31) and (23.32) we can show that

dnx
dt

= −ω ny,
dny
dt

= +ω nx

which can be written in matrix form

d

dt


nx
ny
nz

 = ω

 0 −1 0

+1 0 0

0 0 0


︸ ︷︷ ︸

Rz


nx
ny
nz

 . (23.33a)
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For comparison we have rewritten the Schrödinger equation we started

with (see Eq. (23.29)) in terms of the rotation frequency ω:

d

dt

{
ψu
ψd

}
=

ω

2i

[
1 0

0 −1

]
︸ ︷︷ ︸

σz

{
ψu
ψd

}
. (23.33b)

If we wanted to describe the rotation of an electron due to a B-

field pointing in the x-direction, it is easy to see how we would modify

Eq. (23.33a): Simply interchange the coordinates, x→ y, y → z, z → x.

d

dt


nx
ny
nz

 = ω

0 0 0

0 0 −1

0 +1 0


︸ ︷︷ ︸

Rx


nx
ny
nz


and we obtain Rx in place of Rz. But it is not as clear how to modify

Eq. (23.33b). The correct answer is to replace σz with σx (Eq. (23.20))

d

dt

{
ψu
ψd

}
=

ω

2i

[
0 1

1 0

]
︸ ︷︷ ︸
σx

{
ψu
ψd

}

but the reason is not as obvious.

Equations (23.33a) and (23.33b) both describe the same physics, namely

the rotation of a spin about the z-axis due to an applied B-field in the z-

direction, one in terms of three real components and the other in terms of

two complex components.

But what do matrices like R in Eq. (23.33a) have in common with

matrices like σ in Eq. (23.33b) that makes them “isomorphic” allowing them

to describe the same physics? Answer: They obey the same “commutation

relations”. Let me explain.

It is easy to check that the matrices

Rx =

 0 0 0

0 0 −1

0 +1 0

 , Ry =

 0 0 +1

0 0 0

−1 0 0

 , Rz =

 0 −1 0

+1 0 0

0 0 0


obey the relations

RxRy −RyRx = Rz

RyRz −RzRy = Rx (23.34a)

RzRx −RxRz = Ry.
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The Pauli spin matrices obey a similar relationship with R replaced by

σ/2i:

σxσy − σyσx = 2i σz

σyσz − σzσy = 2i σx (23.34b)

σzσx − σxσz = 2i σy.

The standard textbook introduction to spin starts from these commutation

relations and argues that they are a property of the “rotation group”. In

order to find a mathematical representation with two components for a

rotatable object, one must first write down three (2× 2) matrices obeying

these commutation properties which would allow us to rotate the spinor

around each of the three axes respectively.

What are the components of a spinor that points along z? Since rotating

it around the z-axis should leave it unchanged, it should be an eigenvector

of σz that is, {
1

0

}
or

{
0

1

}
which indeed represent an upspin and a downspin along z. Similarly if we

want the components of a spinor pointing along x, then we should look at

the eigenvectors of σx, that is,

1√
2

{
+1

+1

}
or

1√
2

{
+1

−1

}
which represent up and down spin along +x. If we consider a spinor pointing

along an arbitrary direction described by a unit vector n̂ (see Eq. (23.6)) and

wish to know what its components are, we should look for the eigenvectors

of

σσσ · n̂ = σx sin θ cosφ+ σy sin θ sinφ+ σz cos θ

=

[
cos θ sin θ e−iφ

sin θ e+iφ − cos θ

]
(23.35a)

which can be written as (c and s defined in Eq. (23.7)){
c

s

}
and

{−s∗
c∗

}
. (23.35b)

In short, the rigorous approach to finding the spinor representation is

to first determine a set of three matrices with the correct commutation

relations and then look at their eigenvectors. Instead in this chapter, I

adopted a reverse approach stating the spinor components at the outset

and then obtaining the matrices through basis transformations.
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23.7 Spin Precession

We have already discussed how to write H and Σ including non-trivial

spin-dependent effects and we could set up numerical models to calculate

the electron density Gn, or the density of states A, or the current using

the standard NEGF equations from Chapter 18. Consider for example,

the non-local spin potential measurement we started this chapter with (see

Fig. 23.8).

a

® x

e[H][SL ] [SR ]

[S1] [S2 ]

IV
µprobe

q

m , ms
z →

Fig. 23.8 Spin potential measurement can be modeled with a 1D channel Hamiltonian
having four contacts, two of which are magnetic described by Σ1, Σ2.

Figure 23.9 shows the result obtained from the numerical model which

supports the basic result stated in Eq. (23.5). The measured voltage os-

cillates as a function of the angle of magnetization of the voltage probe.

It has a constant part independent of the angle and an oscillatory compo-

nent proportional to the polarization P of the voltage probe which can be

understood in terms of Eq. (23.5) stated at the beginning of this chapter.

I am not sure if the experiment shown in Fig. 23.8 has been done, but

what has been done is to keep both magnets fixed and rotate the electron

spin inside the channel.

How do we rotate the spin? One method that has been widely used

is an external magnetic field B which causes the spin direction to precess

around the magnetic field as we discussed in Section 23.6 with an angular
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µ1=1
Floating µ2

2

Floating µRµL = 0

θ

z
x→→y

P2=1

P2=0.5

P2=0

θ /π

V2

Fig. 23.9 Voltage probe signal as the magnetization of the probe is rotated calculated

from NEGF model. For MATLAB script, see Appendix H.4.1.

frequency given by

ω ≡ 2µelBz
~

(same as Eq. (23.30)). (23.36)

This means that the spin voltage at the point where the probe is con-

nected will rotate by an angle ω τ where τ is the time it takes for the

electron to travel from the point of injection to the voltage probe. Writing

τ = L/ν, we have from Eq. (23.5) using Eq. (23.30)

µP = µ+ P2 µs cos

(
2µelL

~ν
Bz

)
. (23.37)

One would expect to see an oscillatory signal as a function of the magnetic

field. However, one is usually not dealing with ballistic transport, and there

is a large spread in the time τ spent by an electron between injection and

detection so that the average value of this signal over all τ is essentially

zero. What is typically observed is not an oscillatory signal as a function

of the B-field but a reduction in the signal from Pµs down to zero, which
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is referred to as the Hanle signal. However, Hanle signals showing several

oscillations have also been observed, but this requires that the spread in τ

be much less than its mean value (see for example, Huang et al., 2007).

Another possible approach to rotating electron spins is to use the Rashba

effect in materials with strong spin-orbit coupling. In many semiconductors,

it is now well established that a surface electric field along z (Fig. 23.9) leads

to an effective magnetic field that depends on the electron momentum. This

can be seen by comparing the Hamiltonians for the B-field (Eq. (23.22))

HB = µel σσσ.B

with that for the Rashba interaction (23.26) which can be rewritten as

HR = η ẑ · (σσσ × k) → η σσσ · (ẑ× k)

suggesting that the effective B-field due to the Rashba interaction is given

by

µelBeff = η ẑ× k (23.38)

so that from Eq. (23.37) we expect an oscillatory signal of the form

µP = µ+ P2µs cos

(
2ηkL

~ν

)
(23.39)

with a period ∆η defined by

2kL

~ν
∆η = 2π → ∆η =

2πat0
kL

sin (ka) .

This is in approximate agreement with the numerical result obtained

from the NEGF method (Fig. 23.10) using an energy E corresponding to

ka = π/3, and a distance of about L = 40 a between the injector and the

detector.

In the structure shown in Fig. 23.10 the electrons traveling along +x

should feel an effective B-field along y. Since the injected spins have a spin

voltage µµµs pointing along the source and drain magnets (x) it should be

rotated. Note that the oscillation should not be observed if the source and

drain magnets point along y rather than along x.

This phenomenon of voltage-controlled spin precession in 2D conductors

with high spin-orbit coupling was predicted in 1990 (Datta & Das, 1990)

and has now been experimentally established (Koo et al., 2009, Wunderlich

et al., 2010, Choi et al., 2015).
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µ1=1
Floating µ2

2

Floating µRµL = 0

Change Rashba constant
with gate voltage (not shown)

z
x→→y

η / at0

V2

Fig. 23.10 In materials with a large Rashba coefficient, a gate voltage should lead to an
oscillatory output, if the source and drain magnets point along x, but not if they point

along z. For MATLAB script, see Appendix H.4.1.

23.8 Spin-charge Coupling

Spin precession is a delicate effect requiring a degree of spin coherence

that is usually available only at low temperatures. That is why voltage-

controlled spin precession seems to have little potential as an electronic

device although it is the basis for many proposals for spin transistors. In-

terestingly, the same basic spin-orbit interaction leads to the phenomenon

of spin-momentum locking which gives rise to robust room temperature ef-

fects that are finding extensive applications as we discussed in Part A (see

Section 12.2.3, Part A).

The phenomenon can be understood by noting that due to the Rashba

interaction (see Eq. (23.26)) an electron in a state k feels an effective mag-
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netic field that can be written as

µBBeff = η ẑ× k. (23.40)

This leads to an E(k) relation of the form

E(k) =
~2k2

2m
± µBBeff =

~2k2

2m
± ηk (23.41)

where the positive and negative signs correspond to spins being parallel or

anti-parallel to Beff .

We can turn this E(k) relation around to note that for a given E, there

are two distinct allowed values of k given by

kf2 =
√
k2
F + k2

0 + k0 and kf1 =
√
k2
F + k2

0 − k0 (23.42a)

where kF =
2mE

~2
, k0 =

ηm

~2
. (23.42b)

In other words, for a given energy E, there are two Fermi circles with radii

kf1 and kf2 (see Fig. 23.11a), corresponding to states with spins parallel

and anti-parallel to Beff respectively.

kf1
kf2

ky

kx

(a) (b)

up+dn+up-­dn-­

+-­

Fig. 23.11 (a) Surface states in materials with high spin-orbit coupling have two differ-
ent Fermi circles with radii kf1 and kf2. Arrows show the direction of the spin associated

with these eigenstates which is parallel and antiparallel to Beff respectively. (b) The
states are divided into ‘+’ and ‘−’ depending on the sign of the group velocity: Each

has two branches labeled ‘up’ and ‘dn’ depending on the sign of the y-component of the
spin. Overall we have four groups up+, dn−,up−, dn+.
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In discussing current flow in ordinary conductors we found it useful

to divide all states into positive and negative moving states, ‘+’ and ‘−’

and assigning them different electrochemical potentials µ+ and µ− (see

Chapters 8–11, Part A). In these 2D conductors with spin-orbit coupling

we can do the same as shown in Fig. 23.11b, but each group now has two

branches corresponding to the two Fermi circles. We label these branches

depending on the sign of the y-component of the spin, up: ŷ · ŝ < 0 and

dn: ŷ · ŝ > 0. Overall we have four groups up+,dn−,up−,dn+.

up+

dn-­
up-­

dn+

Fig. 23.12 Surface states in materials with high spin-orbit coupling have equal number

of modes M for up+, dn−, but a different number of modes N for up−,dn+.

Two of these groups up+ and dn− correspond to the larger Fermi circle

of radius kf2 and have a number of modes M that is greater than the

number of modes N for the other two up− and dn+ which correspond to

the smaller Fermi circle of radius kf1 (W : Width of conductor):

M =
kf2W

π
and N =

kf1W

π
. (23.43)

As we discussed in Part A (Chapters 8–12) whenever a current I flows

in any material, there is a separation in the electrochemical potentials µ+

and µ− (Eq. (12.24), GB : Ballistic conductance)

I = GB
µ+ − µ−

q
. (23.44)

But in the materials with spin-orbit coupling that we are discussing, this

separation in µ+ and µ− manifests itself as a difference in the electrochem-

ical potentials for µup and µdn:

µup =
Mµ+ +Nµ−

M +N
and µdn =

Nµ+ +Mµ−

M +N
(23.45)
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giving rise to a spin potential (see Eq. (23.1)) in the y-direction

µsy =
µup − µdn

2
= p

µ+ − µ−
2

(23.46)

where we have defined the channel polarization as

p ∼ M −N
M +N

. (23.47)

In Eq. (23.47) we are not using the equality sign since we have glossed over

a “little” detail involving the fact that the y-component of the spins in each

of the groups up± and dn± has a distribution (see Fig. 23.11), which on

averaging gives rise to a numerical factor.

Making use of Eqs. (23.44) and (23.46) we can rewrite the y-component

of the spin potential in terms of the current I:

µsy =
q

2GB
pI. (23.48)

Note that the channel polarization “p” appearing in Eq. (23.48) is a chan-

nel property that determines the intrinsic spin potential appearing in the

channel. It is completely different from the probe polarization “P” defined

in Eq. (23.3) which is a magnet property that comes into the picture only

when we use a y-directed magnetic probe to measure the intrinsic spin

potential µsy induced in the channel by the flow of current (I).

This is a remarkable result that shows a new way of generating spin

potentials. We started this chapter with spin valves that generate spin

potentials through the spin-dependent interface resistance of magnetic con-

tacts. By contrast Eq. (23.48) tells us that a spin voltage can be generated

in channels with spin-momentum locking simply by the flow of current with-

out the need for magnetic contacts, arising from the difference between M

and N . The spin voltage can be measured with magnetic contacts.

Alternatively we could reverse the voltage and current terminals and

invoke reciprocity (Section 10.3.3) to argue that a current injected through

a magnetic contact will generate a charge voltage at the ordinary contacts.

This is our view of the Rashba-Edelstein (RE) effect and its inverse

which have been observed in a wide variety of materials like topological

insulators and narrow gap semiconductors. Similar effects are also observed

in heavy metals where it is called the (inverse) spin Hall effect (SHE) and

is often associated with bulk scattering mechanisms, but there is some

evidence that it could also involve the surface mechanism described here.
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23.9 Superconducting Contacts

Let me end this chapter (which is too long already) with a brief note about

an area of great current interest, that can be addressed using the NEGF

methods described in this book. This area involves electrical conduction in

devices with normal channel materials like the ones we have been talking

about, but one or both contacts (source / drain) are superconducting.

It takes considerable discussion to clarify the conceptual basis for han-

dling superconducting contacts and the associated phenomenon of Andreev

scattering, but the key point is that the “quasi-particles” are not described

by the Hamiltonian H that we have been discussing but by the Bogoliubov-

deGennes (BdG) Hamiltonian, HBdG.

If the channel has no spin-related properties and can be described by

a spinless Hamiltonian H, then structures with superconducting contacts

can be described by a (2× 2) HBdG (see for example, deGennes, 1968)

HBdG =

[
H− µI ∆

∆∗ −(H∗ − µI)

]
(23.49)

I being the identity matrix of the same size as H, and ∆ being the order

parameter of the superconductor, which is set to zero for the normal con-

tact(s) and the channel. The electrochemical potential µ is set to zero for

the superconducting contact.

Using HBdG we can find the Σ’s for the contacts in the same way and

proceed to use the same NEGF equations as summarized in Appendix G.

Interpreting the results, however, will require an appreciation of the con-

ceptual basis underlying the BdG equation (see Datta and Bagwell, 1999).

Note that the electrochemical potential µ is assumed zero in the super-

conducting contact. But this is not possible if there are multiple supercon-

ducting contacts held at different potentials. The calculation is then more

involved because solutions at different energies get coupled together (see

Samanta and Datta, 1997).

Finally I should mention that there is a lot of current interest in channel

materials whose Hamiltonian includes spin-orbit coupling and other spin-

related properties, and this requires a (4×4) HBdG (see for example, Pikulin

et al., 2012, San-Jose et al., 2013).
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Quantum to Classical

Related video lecture available at course website, Unit 4: L4.1.

In this book (Part B) we have introduced the formalism of quantum

transport, while Part A was based on the semiclassical view that treats

electrons primarily as particles, invoking its wave nature only to obtain

the density of states, D(E) and the number of modes, M(E). The dis-

tinction between quantum and classical viewpoints is a much broader topic

of general interest and we believe that spin transport provides a natural

framework for understanding and exploring at least some aspects of it. Let

me try to elaborate with a few thoughts along these lines.

24.1 Matrix Electron Density

Related video lecture available at course website, Unit 4: L4.7.

Earlier we talked about the connection between vector n̂ along which

a spin points and the wavefunction ψψψ representing it. To relate Eq. (23.5)

to the NEGF method we need to consider quantities like Gn ∼ ψψψψψψ† rather

than the wavefunction ψψψ, since the NEGF is formulated in terms of Gn.

Besides it is Gn and not ψψψ that is observable and can be related to exper-

iment.

We have often referred to Gn as the matrix electron density whose

diagonal elements tell us the number of electrons at a point. With spin

included, Gn at a point is a (2× 2) matrix and the elements of this matrix

tell us the number of electrons N or the net number of spins S.

To see this consider an electron pointing in some direction n̂ represented

by a spinor wavefunction of the form (see Eq. (23.7))

151

https://www.youtube.com/watch?v=98pgUuDTCno
https://www.youtube.com/watch?v=FVwnzkJvH9A
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x

y

z

q

f

n̂

ψψψ =


cos

(
θ

2

)
e−iφ/2 ≡ c

sin

(
θ

2

)
e+iφ/2 ≡ s


so that the corresponding (2× 2) electron density Gn is given by

ψψψψψψ† =

{
c

s

}{
c∗ s∗

}
=

[
cc∗ cs∗

sc∗ ss∗

]
.

Making use of Eq. (23.6) and Eq. (23.17) we have

ψψψψψψ† =
1

2

[
1 + nz nx − i ny
nx + i ny 1− nz

]
=

1

2
[I + σσσ · n̂] .

For a collection of N electrons we can add up all their individual contribu-

tions to ψψψψψψ† to obtain the net Gn given by

Gn

2π
=

1

2

[
N + Sz Sx − i Sy
Sx + iSy N − Sz

]

=
1

2
(NI + σσσ · S) .

(24.1)

Given a Gn we can extract these quantities from the relations

N =
1

2π
Trace [Gn] , S =

1

2π
Trace [σσσGn] (24.2)

which follow from Eq. (24.1) if we make use of the fact that all three matrices

(Eq. (23.20)) have zero trace, along with the following properties of the

Pauli spin matrices that are easily verified.

σ2
x = σ2

y = σ2
z = I (24.3a)
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σxσy = −σyσx = i σz (24.3b)

σyσz = − σzσy = i σx (24.3c)

σzσx = − σxσz = i σy. (24.3d)

In summary, all the information contained in the (2 × 2) Hermitian

matrix Gn can be expressed in terms of four real quantities consisting of a

scalar N and the three components of a vector S which can be extracted

using Eq. (24.2).

If the transverse components of spin are negligible then we can describe

the physics in terms of N and Sz only. We could interpret the non-zero

components on the diagonal

(N + Sz) as number of up electrons

(N − Sz) as number of down electrons

(per unit energy) and then write semiclassical equations for the two types

of electrons.

Consider for example, the experiment that we discussed in Chapter 23.

An input magnet injects spins into the channel which produce a voltage on

the output magnet given by

µP = µ+ P · µµµs. (24.4)

When can we understand these measurements just in terms of up and down

q
µP

-
+ 0    180   360   540   720

µ P

θ
Fig. 24.1 An input magnet injects spins into the channel which produce a voltage on
the output magnet that depends on the cosine of the angle between the two magnets.

spins? One possibility is that the magnets are all collinear and there is no

spin-orbit coupling so that we are restricted to angles θ that are multiples of

180 degrees (Fig. 24.1). Another possibility is that various spin dephasing
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processes are strong enough to reduce transverse components of spin to

negligible proportions. And if the z-components are reduced too, then we

would not have to worry about spin at all.

What if we had collinear magnets but they point not along z, but along

x? Now the Gn matrix is not diagonal

Gn

2π
→

[
N Sx

Sx N

]
and it might appear that a semiclassical description is not possible. The

trick is to choose the coordinates or more generally the “basis” correctly.

What we should do is to select a basis in which up and down point along

+x and −x respectively so that in this basis Gn is diagonal

Gn

2π
→

[
N + Sup 0

0 N + Sdn

]
.

In a word, we should simply call the direction of the magnet z instead of x!

This sounds like a trivial observation, but it represents a general truth.

Later in Section 24.4 we will discuss the concept of pseudo-spins, or diverse

quantum objects that can be viewed as spins. Such pseudo-spins too can

also be visualized in classical terms, if we use a basis in which off-diagonal

elements play a negligible role. More generally, the wave function ψψψ for

any quantum object can be viewed as a giant spin with a large number of

components, and classical visualizations are accurate when the off-diagonal

elements of ψψψψψψ† play a negligible role.

24.2 Matrix Potential

Related video lecture available at course website, Unit 4: L4.8.

To get a little more insight, let us now consider the matrix version of

the classical model for a voltage probe that we used earlier (see Fig. 23.2) to

obtain the scalar version of the result stated at the beginning of Chapter 23:

µP = µ+ P ·µµµs (Same as Eq. (23.5)).

Now we can obtain the general vector version by starting from the NEGF

model for a probe (Fig. 24.2) with the current given by (see Eq. (18.4))

I ∼ Trace (Γ [fPA − Gn])

so that for zero probe current we must have

fP =
Trace [Γ Gn]

Trace [A]
.

https://www.youtube.com/watch?v=yvaoS8D1Jpw
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fP

NEGF

 
[Γ] = γ [I +


σ .

P]

 
[G

n
] = π (NI +


σ .

S)

[A] = πDI

fP

fup fdn

gdngup

Semiclassical

Fig. 24.2 Model for a probe connected to a channel.

Making use of Eq. (24.1) for Gn, assuming that the density of states (D)

is spin-independent

A

2π
=

D

2
I

writing the probe coupling in the form (see Eq. (23.21))

Γ = γ (I + σσσ · P)

and noting that the Pauli matrices all have zero trace, we obtain

fP = Trace

(
[I + σσσ · P]

[
N

D
I + σσσ · S

D

])
. (24.5)

Once again there is an identity that can be used to simplify this expres-

sion: For any two vectors P and B, it is straightforward (but takes some

algebra) to verify that

[σσσ · P] [σσσ · B] = (P · B) I + iσσσ · [P×B],

→ [I +σσσ · P] [b I + σσσ · B] = (b+ P · B) I + σσσ · [P + B + iP×B]. (24.6)

Making use of this identity and noting once again that the Pauli matrices

have zero trace, we can write from Eq. (24.5)

fP =
N

D
+ P · S

D
≡ f + P · fs (24.7)

in terms of the charge occupation f and the spin occupation fs. We can

translate these occupations into potentials µ and µs, using the linear rela-

tion between the two for small bias (see Eq. (2.11)) to obtain the relation

stated earlier (see Eq. (23.5)).
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24.3 Spin Circuits

Related video lecture available at course website, Unit 4: L4.9.

The NEGF method leads naturally to a (2 × 2) complex matrix Gn

at each point, which can be straightforwardly translated into four physi-

cally transparent components, like N , S or µ, µµµS , which represent a four-

component voltage. We could also define four-component currents I, IS
with 4× 4 conductance matrices G that connect voltages to currents. The

resulting spin circuits look superficially like traditional circuits, except

that the nodal voltages and currents have four components each. Simi-

larly one could use electron densities with four components N , S to write

a differential equation superficially similar to the diffusion equation.

The question one could ask is whether these four-component formula-

tions are equivalent to the NEGF method discussed here. The answer is

that they capture a subset of the effects contained in the NEGF and there

are many problems where this subset may be adequate. Let me explain.

At the beginning of Chapter 23, I mentioned that including spin in-

creases the size of the matrices by a factor of two since every point along

z effectively becomes two points, an up and a down. So if there are three

points in our channel, the matrix Gn will be of size (6× 6).

1up 1dn 2up 2dn 3up 3dn

1up

1dn

2up

2dn

3up

3dn

 N1 , S1

 N2 , S2

 N3 , S3
up
dn

® z
1 2 3

Instead of using the entire Gn matrix, as we do in the full NEGF method we

could use just the (2× 2) diagonal blocks of this matrix, representing each

block with four components. What we will clearly miss is the information

contained in the off-diagonal elements between two spatial elements which

as we saw in Chapter 19 gives rise to quantum interference effects. But we

may not be missing much, since as we discussed, dephasing processes often

destroy these interference effects anyway.

https://www.youtube.com/watch?v=Zn1Y15T-L7g
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Spin information is usually more robust. While phase relaxation times

are often sub-picosecond, spin relaxation times are much longer, in nanosec-

onds. And so it is important to retain the information in the (2× 2) diag-

onal blocks, even if we are throwing away the rest. This four-component

spin diffusion approach will reduce to standard two-component spin diffu-

sion (the celebrated Valet-Fert equation) if spin dephasing processes were

strong enough to destroy the transverse components Sx,y of the spin.

Formally we could do that starting from the NEGF method by defin-

ing a suitable D-matrix of the type discussed in Chapter 18 relating the

inscattering to the electron density (× denotes element by element multi-

plication)

Σin = D× Gn (Same as Eq. (18.35b)).

The dephasing process can be viewed as extraction of the electron from a

state described by Gn and reinjecting it in a state described by D×Gn. We

introduced two models A and B with D defined by Eqs. (18.37) and (18.38)

respectively. Model A was equivalent to multiplying Gn by a constant

so that the electron was reinjected in exactly the same state that it was

extracted in, causing no loss of momentum, while Model B threw away the

off-diagonal elements causing loss of momentum as we saw in the numerical

example in Fig. 19.7. We could define a Model C having a D-matrix that

retains spin information while destroying momentum:

D

D0
=

1up

1dn

2up

2dn

3up

3dn

1up[
1

1

0

0

0

0

1dn

1

1

]
0

0

0

0

2up

0

0[
1

1

0

0

2dn

0

0

1

1

]
0

0

3up

0

0

0

0[
1

1

3dn

0

0

0

0

1

1

]
. (24.8)

One could view this as Model B-like with respect to the lattice, but

Model A-like with respect to spin. We could rewrite the NEGF equation

Gn = GR Σin GA

as [Gn] i,i =
∑
j

[GR]i, j [Σin]j, j [GA]j, i

= D0

∑
j

[GR]i, j [Gn]j, j [GA]j, i
(24.9)
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where the indices i, j refer to lattice points and we have made use of the

fact that in our Model C, Σin is diagonal as far as the lattice is concerned.

We have seen earlier that at any point on the lattice the 2 × 2 matrix

Gn can be expressed in terms of four components, namely N and S so that

with a little algebra we could rewrite Eq. (24.9) in the form
N

Sx
Sy
Sz


i

=
∑
j

 4× 4

“Hopping”

Matrix


i,j


N

Sx
Sy
Sz


j

(24.10)

where the (4 × 4) matrix could be viewed as describing the probability

of the (N , S) at a point j hopping to a point i in one time step. Indeed

the (1 × 1) version of Eq. (24.10) resembles the standard description of

Brownian motion on a lattice that leads to the drift-diffusion equation.

Spin diffusion equations based on alternative approaches like the Kubo

formalism have been discussed in the past (see for example, Burkov et al.,

2004). The main point I want to convey is that NEGF-based approaches

can also be used to justify and benchmark spin diffusion models which

could well capture the essential physics and provide insights that a purely

numerical calculation misses.

24.4 Pseudo-spin

A B

One of the nice things about the formalism of spin matrices (Chapter 23)

is that it goes way beyond spins; it applies to any two-component complex

quantity. For example in Chapters 17 and 18 we talked about the graphene

lattice where the unit cell has an “A” atom (on the lattice sites marked

with a red circle) and a “B” atom (on the unmarked lattice sites).

The wavefunction in a unit cell is described by a two component complex

quantity:

ψψψ =

{
ψA
ψB

}
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and we could look at the corresponding Gn and use our old relation from

Eq. (24.1) to define a pseudo-spin

Gn

2π
=

[
ψAψ

∗
A ψAψ

∗
B

ψBψ
∗
A ψBψ

∗
B

]
→

[
N + Sz Sx − iSy
Sx + iSy N − Sz

]
.

This has nothing to do with the real spin, just that they share the same

mathematical framework. Once you have mastered the framework, there is

no need to re-learn it, you can focus on the physics. In the literature on

graphene, there are many references to pseudo spin and what direction it

points in.

f=1 f=0

r t
1

e+ikz

r e-ikz
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Let me point out a less familiar example of pseudospin involving an ex-

ample we have already discussed. In Chapter 19, we discussed the potential

variation across a single scatterer with transmission equal to T (Fig. 19.7).

Let us just look at the diagonal elements of Gn for the same problem.

There are oscillations on the left of the barrier with a constatnt density on

the right. The reason Fig. 19.7 shows oscillations on the right as well is

that we were looking at the occupation obtained from Gn(j, j)/A(j, j) and

A has oscillations on the right. But let us not worry about that.

N
o
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Let us see how we can use pseudospins to understand the spatial varia-

tion of the diagonal elements of Gn by viewing positive and negative going

states as the up and down components of a pseudospin. The pseudospinor

wavefunction on the left and right of the barrier have the form

Left Right

ψψψ →
{
e+ikz

re−ikz

}
,

{
te+ikz

0

}
Left Right

ψψψψψψ† →
[

1 r∗e+i2kz

re−2ikz rr∗

]
,

[
tt∗ 0

0 0

]

→
[
N + Sz Sx − iSy
Sx + iSy N − Sz

]
.

This suggests that the pseudospins to the left of the barrier are described

by (assuming r and t are real)

Left Right

N = (1 + r2)/2 N = t2/2

Sz = (1− r2)/2 Sz = t2/2

Sx = r cos (2kz) Sx = 0

Sy = −r sin (2kz) Sy = 0.

In other words, on the left of the barrier, the pseudospin is rotating round

and round in the x-y plane. When we plot Gn(z, z), we are looking at

the sum of the two pseudospin components and squaring the sum, which

amounts to

Trace

({
1 1

}
ψψψψψψ†

{
1

1

})
= Trace

([
1 1

1 1

]
ψψψψψψ†

)
.

In effect we are using a pseudomagnet with Γ =

[
1 1

1 1

]
which corresponds

to one polarized 100% along x. So from Eq. (24.4), the measured potential

should be proportional to

Left Right

N + x̂ · S → 1 + r2

2
+ r cos (2kz)

t2

2

which describes the numerical results quite well.
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This is a relatively familiar problem where the concept of pseudospin

probably does not add much to our undergraduate understanding of one-

dimensional standing waves. The purpose was really to add our under-

standing of pseudospins!

24.5 Quantum Information

A) S = 0  B) S = Nk n2

Now that we have seen how “spins” appear everywhere, let us talk

briefly about the information content of a single spin which as we discussed

in Chapter 16 is related to the thermodynamic entropy.

24.5.1 Quantum entropy

We talked about the entropy of two examples of a collection of N spins

obtained from the expression

S

k
= −

∑
i

pi ln (pi). (24.11)

From a quantum mechanical point of view we could write the wavefunction

of a single spin in collection A as

ψψψ =

{
1

0

}
→ ψψψψψψ† =

[
1 0

0 0

]
and interpret the diagonal elements of ψψψψψψ† (1 and 0) as the pi’s to use in

Eq. (24.11). Writing ψψψψψψ† for a spin in collection B requires us to take a

sum of two equally likely possibilities:

ψψψψψψ† = 0.5

[
1 0

0 0

]
+ 0.5

[
0 0

0 1

]
=

[
0.5 0

0 0.5

]
.

Once again we can interpret the diagonal elements of ψψψψψψ† (both 0.5) as

the pi’s to use in Eq. (24.11) and get our semiclassical answers. What if

we have collection C, which looks just like collection A, but the spins all

pointing along x and not z.



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 162

162 Lessons from Nanoelectronics: B. Quantum Transport

C) S = 0

We then have

ψψψ =
1√
2

{
1

1

}
→ ψψψψψψ† =

[
0.5 0.5

0.5 0.5

]
.

If we just took the diagonal elements of ψψψψψψ† (both 0.5) we obtain the same

answer as we got for collection B which is obviously wrong. A collection

with all spins pointing along x (C) should have the same entropy as a

collection pointing along z (A) rather than a random collection (B).

The correct answer is obtained if we first diagonalize ψψψψψψ† and then use

its diagonal elements (which are the eigenvalues) as the pi’s in Eq. (24.11).

This is accomplished if we generalize Eq. (24.11) to write

S

k
= −Trace [ρρρ ln (ρρρ)] (24.12)

where ρρρ = ψψψψψψ† is a (2× 2) matrix (called the density matrix).

24.5.2 Does interaction increase the entropy?

Back in Chapter 16 we discussed how a perfect anti-parallel (AP) spin

valve could function like an info-battery (Fig. 16.3) that extracts energy

from a collection of spins as it goes from the low entropy state A to the

high entropy state B. But exactly how does this increase in entropy occur?

In Chapter 16 we described the interaction as a “chemical reaction”

u+D ⇔ U + d (Same as Eq. (16.7))

where u and d represent up and down channel electrons, while U and D

represent up and down localized spins.

From a microscopic point of view the exchange interaction creates a

superposition of wavefunctions as sketched on the next page.

We have shown equal superposition of the two possibilities for simplicity,

but in general the coefficients could be any two complex numbers whose

squared magnitude adds up to one.

Now the point is that the superposition state

1√
2
u×D +

1√
2
d× U
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u  D 1
2

u  D  + 1
2

d U× × ×

has zero entropy just like the original state u×D. Indeed we could picture

a pseudo-spin whose up and down components are u×D and d× U . The

interaction merely rotates the pseudo-spin from the z to the x direction and

as we discussed in the last section, mere rotation of spins or pseudo-spins

causes no generation of entropy.

So how does the increase in entropy occur? The itinerant electron even-

tually gets extracted from the channel. At that moment there is a “collapse

of the wavefunction” either into a u×D or a d× U depending on whether

the channel electron is extracted by the source as an up electron or by the

drain as a down electron. The localized spin is left behind in a down or an

up state with 50% probability each. This is when the entropy increases by

k ln(2).

24.5.3 How much information can one spin carry?

Suppose we decide to use the spin of the electron, that is the direction

of the input magnet in Fig. 24.1 to convey information. It would seem

that we could send large amounts of information, since there are now many

possibilities. For example, suppose we choose a set of say 64 directions of
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the magnetization to convey information, it would seem that the entropy

would be

S/k = ln(64).

Note that we are using 64 figuratively to represent the number of magneti-

zation directions we use, which could just as well be 10 or 100.

We have seen in Chapters 12 and 23 that a magnetic voltage probe

making an angle θ with the injected spins measures a voltage proportional

that depends on θ (Fig. 24.1) and it would seem that we could measure

the direction of spin simply by measuring the voltage. This would allow us

to encode 64 possible values of θ thereby transmitting ln(64) rather than

ln(2).

But how can this be correct? Didn’t we argue earlier that for one spin

S/k = ln(2) rather than ln(64)? These two arguments can be recon-

ciled by noting that in order to measure a voltage that depends on θ we

need many many electrons so that we can take their average. An individ-

ual electron would either transmit or not transmit into the magnet with

specific probabilities that depend on θ. Only by averaging over many elec-

trons would we get the average values that we have discussed. This means

that we could send ln(64) worth of information, but only if we send many

identically prepared electrons, so that the receiver can average over many

measurements.

But couldn’t we take one electron that we receive and create many

electrons with the same wavefunction? After all, we can always copy a

classical bit of information. There is a “no cloning theorem” that says we

cannot copy the quantum state of an electron. The sender has to send us

identically prepared electrons if we want to make many measurements and

average.

These concepts are of course part of the field of quantum information

on which much has been written and will be written. At the heart of this

field is the q-bit and spin is its quintessential example.
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Epilogue:
Probabilistic Spin Logic (PSL)

Intel has a website, From Sand to Circuits (http://www.intel.com/

about/companyinfo/museum/exhibits/sandtocircuits/index.htm) de-

scribing the amazing process that turns grains of sand into the chips that

have enabled the modern information age. This book has been about the

physics that these “grains of sand” and the associated technology have

helped illuminate in the last 30 years, the physics that helped validate

the concept of an elastic resistor with a clean separation of entropy-driven

processes from the force-driven ones.

As we discussed in Chapter 1, the amazing progress of electronics has

been enabled by continued downscaling whereby more transistors can be

packed into a chip. The basic physics of field effect transistors (FET)

has not changed much, though significant advances have been enabled by

innovative geometry and/or materials. At this time devices incorporating

new physics like tunneling FET’s and negative capacitance FET’s are also

being explored to continue the downscaling.

Another field that has made great strides in the last two decades is

that of spintronics which seeks to control the spin of electrons instead of

traditional electronics based on the control of its charge. It has merged

with what used to be a distinct field of research, namely nanomagnetics, to

form a single thriving field which has had great impact on memory devices.

This book has been about electronic transport and in the last few chap-

ters we have talked a little about spin transport. But a serious discus-

sion of magnetics would take us too far afield. Nevertheless I would like

to briefly introduce the reader to the remarkable synergistic relationship

between magnets and spins, because they exemplify two key concepts in

information theory, namely the bit which is at the heart of standard digi-

tal computing, and the q-bit which is at the heart of the emerging field of

165
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quantum computing. I would also like to use it to motivate a concept that

is intermediate between a bit and a q-bit, which we call a p-bit (Camsari

et al., 2017a).

25.1 Spins and Magnets

Loosely speaking, every electron is like an elementary magnet with a mag-

netic moment given by the Bohr magneton

µB =
q~
2m

= 9.27× 10−24A ·m2 (25.1)

roughly what we would get if a current of 1 mA were circulating in a square

loop with dimensions 0.1 nm × 0.1 nm loop. This was established back in

the 1920s by the celebrated experiment due to Stern and Gerlach. More

correctly the electron magnetic moment is given by

µel =
gs
2
µB (25.2)

gs being the “g-factor” which is approximately equal to 2 for electrons in

vacuum but could be significantly different in solids, just as the effective

mass of electrons in solids can differ from that in vacuum. We will not

worry about this “detail” and assume gs = 2 for the following discussion.

If each electron is like a magnet then why are all materials not magnetic?

Because usually the electrons are all paired with every up magnet balanced

by a corresponding down magnet. It is only in magnetic materials like iron

that internal interactions make it energetically favorable for a large number

of electrons to line up in the same direction giving rise to a macroscopic

magnetization whose magnitude is given by

Ms = µB
Ns
Ω

(25.3)

Ns being the number of spins in a volume Ω. The magnitude of the mag-

netization of a magnet is fixed as long as the temperature T is well below

its transition (Curie) temperature Tc. But its direction denoted by the unit

vector m̂ can change when a magnetic field is applied. The dynamics of m̂

is described by the Landau-Lifshitz-Gilbert (LLG) equation which is widely

used in the field of magnetics.

Which direction does the magnetization m̂ point? Usually magnets have

an easy axis, say the z-axis such that the magnet has two stable states ± ẑ.

If we put it along + ẑ it will stay that way, and if we put it along − ẑ it

will stay that way.
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But how do we put it along +ẑ or −ẑ? The old method was to use a

magnetic field in the z-direction. A more recent method is the use of spin

currents: a large enough flux of z-directed electronic spins can also make

the magnet switch just like a magnetic field (see Fig. 25.1a). This is one of

the two key discoveries that have enabled the integration of nanomagnetics

with spintronics that I mentioned. The other is the use of spin-valves

and magnetic tunnel junctions (MTJ’s) to READ (R) information for a

magnet using the difference between the parallel (GP ) and anti-parallel

(GAP ) conductances that we discussed earlier, see Fig. 23.6.

V

(a) MTJ

Free
Layer

Fixed
Layer

I
mz

+ 1

− 1

Magnetic  Field

Spin  Current

+HK
+ Ic

-HK
- Ic

(b) Free Layer 
Magnetization

+HK
+ Ic

-HK
- Ic

GP

GAP

(c) Terminal
Conductance Magnetic  Field

Spin  Current

Fig. 25.1 (a) A magnet has an “easy axis” assumed to be along z. An external magnetic
field or a spin current can be used to change its magnetization between −1 and +1 if

it exceeds a critical field HK . (b) A magnetic tunnel junction (MTJ) has one free layer
whose magnetization can be flipped relatively easily compared to the fixed layer. (c) The
change in the magnetization of the free layer translates into a change in the conductance
G of the MTJ.
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25.1.1 Pseudospins and pseudomagnets

Before moving on, let me mention an important lesson we can learn from the

synergistic relationship between spins and magnets that has emerged in the

last twenty years. We saw in Chapter 24 that diverse 2-component quantum

objects can be viewed as two-component pseudo-spins (Section 24.4). Could

we use these pseudospins to encode and transmit information? Perhaps, but

our experience suggests that for information processing it is not enough to

have a spin, we also need a magnet.

In standard charge-based architectures information is stored in capac-

itors and transmitted from capacitor to capacitor. Similarly we need a

magnet to implement a spin capacitor and devices to transmit the informa-

tion from magnet to magnet. Developments in the last decade have given

us the basic ingredients. Whether we can build a information processing

technology around it, remains to be seen.

It is tempting to go beyond simple spins and look at all kinds of exotic

two-component pseudo-spins or even giant multi-component quasi-spins

that maintain phase coherence over useful lengths of time. But it seems to

me that a key question one should ask is, “do we have a quasi-magnet to

generate and detect the quasi-spin?”

25.2 Unstable Magnets

Magnets with two stable states are routinely used to represent strings of

0’s and 1’s called bits in magnetic disks. A well-known problem with nano-

magnets is that they can become unstable, unless the 0 and 1 states are

separated by an energy barrier well in excess of the thermal energy kT .

Indeed magnets have to be designed to have barriers ∼ 40 kT in order to

ensure that they can store information reliably for acceptable lengths of

time, say a few years. If the barrier is << 40 kT the magnet is unstable.

At any given time they are either 0 or 1, but they continually fluctuate

between the two.

It has been argued that this problem represents an opportunity. Low

barrier magnets will switch back and forth in time between 0 and 1 so that

their conductance fluctuates between GP and GAP (Fig. 25.1). Mathemat-

ically we can write

GMTJ = Gavg + ∆G× sgn(rand(−1,+1)) (25.4a)

where Gavg =
GP +GAP

2
, ∆G =

GP −GAP
2

(25.4b)
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and rand(−1,+1) represents a random number between −1 and +1. The

signum function (sign) converts negative values to −1 and positive values

to +1. This describes the magnetization of a telegraphic magnet which

fluctuates between −1 and +1, but does not take on intermediate values.

We can translate this conductance fluctuation into a voltage fluctuation

using a potential divider circuit as shown in Fig. 25.2.

V =
VDD

2

GMTJ −GL
GMTJ +GL

. (25.5a)

Since GMTJ only takes on two values GP and GAP , we can write the voltage

V in the form

V = Vavg + ∆V × sgn(rand(−1,+1)). (25.5b)

This property has been used to build random binary number generators

(RNG’s) (see for example Grollier et al., 2016).

GMTJ

GL

V+
VDD

2

�VDD

2

GP

GAP

GMTJ

Time (arb. Units) 

V

Fig. 25.2 Conductance of an MTJ with barrier height << 40 kT fluctuates with time

and can be translated into a fluctuating voltage with a potential divider circuit as shown.

Stable magnets are routinely used to represent binary bits. At the other

extreme, there is a large research activity in the area of quantum computers

whose building blocks are q-bits represented by single spins that can exist

in states that are neither ‘0’ or ‘1’, but rather a superposition of the two

represented by a spinor s = {a b}T . Unstable magnets are either 0 or 1

at any given time, but they continually fluctuate between the two values,

allowing us to implement something intermediate between a bit and a q-bit,

what we call a probabilistic bit or a p-bit.
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25.3 Three-terminal p-bits

The power of modern electronics lies not in the individual bits but in the

amazing functionalities that are made possible by interconnecting large

numbers of bits to build circuits. How can we interconnect p-bits to build

p-circuits? We believe two-terminal p-bits like MTJ’s are not suitable

for the purpose. We need three-terminal transistor-like units, such that

the stochastic output Vi of the ith p-bit is controlled by its input νi (see

Fig. 25.3):

Vi(t+ ∆t) = ∆V × sgn

(
rand(−1,+1) + tanh

νi(t)

V0

)
. (25.6a)

If the input voltage νi is zero, the output Vi fluctuates equally between −1

and +1 just like the 2-terminal p-bit. But the input voltage changes the

relative probabilities, pinning it to +1 for large positive νi, and to −1 for

large negative νi. The scale for what is large is set by the parameter V0

which is assumed equal to ∆V/5 in the plot.

Vi Vi

Fig. 25.3 Three-terminal p-bit or a p-transistor: An input voltage νi controls the

stochastic output Vi of the ith p-bit as described mathematically by Eq. (25.6a). In
this plot V0 = ∆V/5.

In short we now have a p-bit that listens to its input. If the input is derived

from the outputs of other p-bits, they will become correlated. This can be

achieved by interconnecting different p-bits with passive circuit elements

like resistors or capacitors such that

νi(t) =
∑
j

Jij Vj(t). (25.6b)

How would we build a three-terminal p-bit that follows Eq. (25.6a)? A

relatively straightforward approach was described in Camsari (2017b) that

combines a low-barrier MTJ with an ordinary transistor. Many other ap-

proaches should be possible, not necessarily based on magnets, and we will
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not go into the different possibilities. Instead let me conclude by addressing

the motivational question: Why would we want to build p-circuits of the

type described by Eqs. (25.6)?

25.4 p-circuits

Equations. 25.6 are essentially the same as those used to describe stochastic

neural networks which can be designed for all kinds of functions by choosing

the weights Jij appropriately. Rather than implement them with software

simulations based on deterministic hardware, we could build p-circuits to

mimic them in hardware which should be more efficient. Let me give an

example.

A well-known concept in family trees is that of relatedness in family

trees like the one shown in Fig. 25.4a. Consider two siblings F1 and F2

having the same parents GF and GM. Their relatedness is 50%, which we

can understand by writing

F1 = 0.5 GF + 0.5 GM

F2 = 0.5 GF + 0.5 GM.

Assuming GF and GM are uncorrelated, we have

〈F1× F2〉 = 0.25 (〈GF ×GF 〉+ 〈GF ×GM〉+ 〈GM ×GF 〉+ 〈GM ×GM〉)
= 0.25

(
1 + 0 + 0 + 1

)
= 0.5

where the angle brackets denote an average over many genes of GF and

GM. If GF and GM are uncorrelated then they are as likely to have the

same sign (product = +1) as to have the opposite sign (product = −1), so

that the average value of GF × GM is zero. By contrast, both GF × GF
and GM ×GM are always +1.

Similarly the relatedness of first cousins C1 and C2 is known to be 12.5%

which can be understood by writing

C1 = 0.5 F1 + 0.5 M1, and C2 = 0.5 F2 + 0.5 M2

so that

〈C1× C2〉 = 0.25 (〈F1× F2〉+ 〈F1×M2〉+ 〈M1× F2〉+ 〈M1×M2〉)
= 0.25

(
0.5 + 0 + 0 + 0

)
= 0.125.
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GFGM

F1 F2M1 M2

C1 C2

grandparents

parents

(a) Probabilistic
network

GFGM

F1 F2 M2M1

C1 C2

(b) p-circuit to
mimic (a)

Fig. 25.4 (a) A well-known probabilistic network: A child C receives half its genetic
information from each of the parents F,M who in turn get it from their parents. (b) A

p-circuit composed of interconnected p-transistors designed to mimic the probabilistic

network in (a).

Now the point is that a probabilistic network like this can be emulated

with a circuit where each node is represented by a 3-terminal p-bit, and

information is propagated from node i to node j by connecting the output

Vi to the input νj as shown in Fig. 25.4b. The relatedness of two physical

nodes, A and B, can now be obtained by measuring the correlation between

the voltages V at the corresponding circuit nodes.

〈VA × VB〉 =

∫ T

0

dt

T
VA(t)VB(t).

The product of VA and VB can be obtained with a simple logic gate (specif-

ically XNOR) and its output can be integrated with a long time constant

(� T ) RC circuit. Note that what we are measuring is a time average but

it mimics the genetic relatedness, which is an ensemble average.
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I chose this example because of its familiar flavor, but probabilistic net-

works occur in many everyday problems, though they usually have ‘children’

with more than two ‘parents’, since a particular event is often influenced by

more than two causes. In medical diagnosis, for example, multiple factors

could lead to a particular symptom. To represent the causal relationships

in general it may be necessary to introduce auxiliary nodes or ‘hidden vari-

ables’. But let me not digress too far.

The point is that probabilistic nodes are common in everyday life and

p-bits provide a natural representation. Moreover, probabilistic algorithms

have proved very successful in machine learning, optimization and invertible

logic among others. A p-computer should be able to implement such algo-

rithms much more efficiently than a deterministic computer with artificially

introduced randomness.

To build a p-computer we need three-terminal p-bits that can be in-

terconnected into large scale p-circuits. Here we motivated the concept of

p-bits with unstable magnets since spins and magnets span the full range

from bits to p-bits to q-bits. But it is quite likely that as the field progresses,

other physical realizations will emerge that go beyond spins and magnets,

using different kinds of “pseudo-spins” and other generalized spin-like en-

tities (Chapter 24) some of which could be based on charge.

In a seminal paper, Simulating Physics with Computers (Feynman,

1982) Feynman talked about probabilistic computers (p-computers) before

going on to introduce the concept of quantum computers (q-computers),

and highlighting the differences between the two. His vision arguably

inspired the research into q-bits and q-computers. I would argue that

p-bits and p-computers also deserve attention. They should operate ro-

bustly at room temperature with existing technology, unlike q-computers

which require cryogenic temperatures to preserve quantum coherence. If

p-computers can achieve even a fraction of the expected performance of

q-computers, it should be at least a worthwhile intermediate step.

Perhaps, more intriguing is the possibility that a p-bit, could take dig-

ital computing to a new level by providing a natural building block for

something that is more like the human brain.
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Suggested Reading

This book is based on a set of two online courses originally offered in 2012 on

nanoHUB-U and more recently in 2015 on edX. These courses are now avail-

able in self-paced format at nanoHUB-U (https://nanohub.org/u) along

with many other unique online courses.

In preparing the second edition we decided to split the book into parts

A and B following the two online courses available on nanoHUB-U entitled

Fundamentals of Nanoelectronics

Part A: Basic Concepts Part B: Quantum Transport.

Video lecture of possible interest in this context: NEGF: A Different Per-

spective. A detailed list of video lectures available at the course website

corresponding to different sections of this volume (Part B: Quantum Trans-

port) have been listed at the beginning.

Even this Second Edition represents lecture notes in unfinished form. I

plan to keep posting additions/corrections at the book website.

This book is intended to be accessible to anyone in any branch of science

or engineering, although we have discussed advanced concepts that should

be of interest even to specialists, who are encouraged to look at my earlier

books for additional technical details.

Datta S. (1995). Electronic Transport in Mesoscopic Systems

Datta S. (2005). Quantum Transport: Atom to Transistor

Cambridge University Press
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Over 50 years ago David Pines in his preface to the Frontiers in Physics

lecture note series articulated the need for both a consistent account of a

field and the presentation of a definite point of view concerning it. That

is what we have tried to provide in this book, with no intent to slight any

other point of view or perspective.

The viewpoint presented here is unique, but not the topics we discuss.

Each topic has its own associated literature that we cannot do justice to.

What follows is a very incomplete list representing a small subset of the rel-

evant literature, consisting largely of references that came up in the text.

Chapter 1

Figure 1.5 is reproduced from

McLennan M. et al. (1991) Voltage Drop in Mesoscopic Systems, Phys.

Rev. B, 43, 13846.

A recent example of experimental measurement of potential drop across

nanoscale defects

Willke P. et al. (2015) Spatial Extent of a Landauer Residual-resistivity

Dipole in Graphene Quantified by Scanning Tunnelling Potentiom-

etry, Nature Communications, 6, 6399.

The transmission line model referenced in Section 1.8 is discussed in Sec-

tion 9.4 and is based on

Salahuddin S. et al. (2005) Transport Effects on Signal Propagation in

Quantum Wires, IEEE Trans. Electron Dev. 52, 1734.

Some of the classic references on the non-equilibrium Green’s function

(NEGF) method

Martin P.C. and Schwinger J. (1959) Theory of Many-particle Systems I,

Phys. Rev. 115, 1342.

Kadanoff L.P. and Baym G. (1962) Quantum Statistical Mechanics, Fron-

tiers in Physics, Lecture note series, Benjamin/Cummings.

Keldysh (1965) Diagram Technique for Non-equilibrium Processes, Sov.

Phys. JETP 20, 1018.
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The quote on the importance of the “channel” concept in Section 1.8 is

taken from

Anderson P.W. (2010) 50 years of Anderson Localization, ed. E. Abra-

hams, Chapter 1, Thoughts on localization.

The quote on the importance of physical pictures, even if approximate, in

Section 1.9 is taken from

Feynman R.P. (1963) Lectures on Physics, vol. II-2, Addison-Wesley.

Part 1: Contact-ing Schrödinger

Chapter 17

This discussion is based on Chapters 2–7 of Datta (2005).

For a detailed discussion of the self-consistent field method, the reader can

look at

Herman F. and Skillman S. (1963) Atomic Structure Calculations,

Prentice-Hall.

Slater J.C. (1963–1974) Quantum Theory of Molecules and Solids, Vols.

I–IV, McGraw-Hill.

Chapter 18

This discussion is based on Chapter 8 of Datta (1995), and Chapters 8–10

of Datta (2005).

An experiment showing approximate conductance quantization in a hydro-

gen molecule.

Smit R.H.M. et al. (2002) Measurement of the Conductance of a Hydrogen

Molecule, Nature 419, 906.

A standard text on NEGF

Haug H. and Jauho A.P. (1996) Quantum Kinetics in Transport and Optics

of Semiconductors, Springer-Verlag.
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The following reference is probably the first to apply NEGF to a device with

contacts.

Caroli C. et al. (1972) A Direct Calculation of the Tunneling Current, J.

Phys. C: Solid State Physics, 5, 21.

The NEGF method was related to the Landauer approach in

Datta, S. (1989) Steady-State Quantum Kinetic Equation, Phys. Rev.,

B40, 5830.

Meir Y. And Wingreen N. (1992) Landauer Formula for the Current

through an Interacting Electron Region, Phys. Rev. Lett. 68,

2512.

Extensive numerical results based on the method of Datta (1989) are pre-

sented in

McLennan M. et al. (1991) Voltage Drop in Mesoscopic Systems, Phys.

Rev. B, 43, 13846.

The dephasing model described in Section 18.4 is based on

R. Golizadeh-Mojarad et al. (2007), Non-equilibrium Green’s function

based model for dephasing in quantum transport, Phys. Rev. B

75, 081301 (2007).

A glimpse of the impressive progress in NEGF-based device modeling

Steiger S. et al. (2011) NEMO5: A Parallel Multiscale Nanoelectronics

Modeling Tool, IEEE Transactions on Nanotechnology, 10, 1464.

Chapter 19

A paper on localization by the person who pioneered the field along with

many other seminal concepts.

Anderson P.W. et al. (1981) New Method for a Scaling Theory of Local-

ization, Phys. Rev. B 23, 4828.

Resonant tunneling is discussed in more detail in Chapter 6 of Datta (1995)

and Chapter 9 of Datta (2005).
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Part 2: More on NEGF

Chapter 20

Two experiments reporting the discovery of quantized conductance in bal-

listic conductors.
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For more on edge states in the quantum Hall regime the reader could look

at Chapter 4 of Datta (1995) and references therein.

Chapter 21

A couple of classic references on the NEGF treatment of interactions
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MATLAB codes available on our website.
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including references to the literature on topological insulators.

Xiu F. et al. (2011) Manipulating Surface States in Topological Insu-

lator Nanoribbons, Nature Nanotechnology 6, 216 and references

therein.

Electrical control of spins, or the so-called Datta-Das oscillations

Datta S. and Das B. (1990) Electronic analog of the electro-optic modula-

tor, Appl. Phys. Lett., 56, 665.

Koo H.C. et al. (2009) Control of Spin Precession in a Spin- Injected Field

Effect Transistor, Science 325, 1515.

Wunderlich et al. (2010) Spin Hall Effect Transistor, Science 330, 1801.

Choi et al. Electrical detection of coherent spin precession using the bal-

listic intrinsic spin Hall effect (2015) Nat. Nanotech. 10, 666.

A classic reference describing the BdG equation.

P.G. de Gennes (1968) Superconductivity of Metals and Alloys, Advanced

Book Classics (1968).

A couple of references that could help the reader apply the NEGF discussed
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Appendix F

List of Equations and Figures Cited
From Part A

The equations cited here from Part A (Basic Concepts) of this book are

listed in this appendix for the convenience of the readers. If the meaning of

a symbol is not clear from the context, the list of symbols at the beginning

of this book may be useful.

Cited Equations

Eq. (2.11): f(E)− f0(E) ≈
(
−∂f0

∂E

)
(µ− µ0)

Eq. (3.1):
I

V
=

∫ +∞

−∞
dE

(
−∂f0

∂E

)
G(E)

Eq. (3.3): I =
1

q

∫ +∞

−∞
dE G(E) (f1(E)− f2(E))

Eq. (6.17): N(p) =

{
2
L

L/p
, π

LW

(L/p)
2 ,

4π

3

LA

(L/p)
3

}

Eq. (9.5):
∂f

∂t
+ vz

∂f

∂z
+ Fz

∂f

∂pz
= Sopf

Eq. (10.1): G4t =
I

(µ∗1 − µ∗2)/q
= M

q2

h

T

1− T

Eq. (10.2): G2t =
I

(µ1 − µ2)/q
= M

q2

h
T

Eq. (10.3): Im =
1

q

∑
m

Gm,n (µm − µn)

Eq. (11.5):
VH
W

= vdB

189



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 190

190 Lessons from Nanoelectronics: B. Quantum Transport

Eq. (11.6): RH =
VH
I

=
B

q(N/LW )

Eq. (11.10): ωc =

∣∣∣∣qvBp
∣∣∣∣
E=µ0

=

∣∣∣∣qBm
∣∣∣∣
E=µ0

Eq. (12.18a): µ =
µup + µdn

2

Eq. (12.18b): µS =
µup − µdn

2

Eq. (12.19a): µP = µ+
PµS

2

Eq. (12.19b): P =
gup − gdn
gup + gdn

Eq. (12.24): I = GB
µ+ − µ−

q

Eq. (15.18): pi =
1

Z
e−(Ei−µNi)/kT

Eq. (16.7): u+D ⇐⇒ U + d

Cited Figures

Fig. F.1 (Same as Fig. 3.5, Part A) A long resistor can be viewed as a series of ideal

elastic resistors. However, we have to exclude the resistance due to all the conceptual

interfaces that we introduce which are not present in the physical structure.
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μ1
μ2

A

B

e-e-

(a)

μ1 μ2

(b)

Fig. F.2 (Same as Fig. 12.6, Part A) (a) Asymmetric contacts are central to the oper-

ation of the “solar cell”. (b) If contacted symmetrically no electrical output is obtained.
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Appendix G

NEGF Equations

S1 S2

S0
H

µ1

µ2

Source       Drain

“Input”:

(1) H-matrix parameters chosen appropriately to match energy levels

or dispersion relations.

(2) Procedure for obtaining Σm for terminal m is summarized below

in Section G.1.

Σ = Σ0 + Σ1 + Σ2 + · · ·

Σin = Σin
0 + Σin

1 + Σin
2 + · · ·

Γj = i
[
Σj −Σ†j

]
, j = 0, 1, 2, · · ·

“Required Equations”:

1. Green’s Function:

GR = [EI−H−Σ]
−1

and GA =
[
GR
]†

(same as Eq. (18.1))

2. “Electron Density” times 2π:

Gn = GR Σin GA (same as Eq. (18.2))

193
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3. “Density of states” times 2π:

A = GRΓ GA = GAΓ GR = i[GR −GA] (same as Eq. (18.3a))

4a. Current / energy at terminal “m”:

Ĩm =
q

h
Trace [Σin

mA− Γm Gn] (same as Eq. (18.4))

4b. Current / energy at terminal “m”, to be used only if Σ0 is zero

Im =
q

h

∑
n

T̄mn (fm(E)− fn(E)) (same as Eq. (18.31))

T̄mn ≡ Trace
[
ΓmGRΓnGA

]
(same as Eq. (18.32))

G.1 Self-energy for Contacts

(1) For 1D problems, the self-energy function for each contact has a

single non-zero element t eika corresponding to the point that is

connected to that contact (see Section 19.1).

bb +

t

[H] S2S1

ee

a

(2) 2D Hamiltonians for any conductor with a uniform cross-section

can be visualized as a linear 1D chain of “atoms” each having an

on-site matrix Hamiltonian ααα coupled to the next “atom” by a

matrix βββ.

Each of the matrices ααα and βββ is of size (n× n), n being the number of

basis functions describing each unit.

The self-energy matrix Σm for terminal m is zero except for the last

(n× n) block at the surface. This block is obtained from

βββ g βββ† (Same as Eq. (20.6a))
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b + b
ΗC

where the surface Green function g is calculated from a recursive relation:

g−1 = (E + i0+) I−ααα− βββ gβββ† (Same as Eq. (20.6b))

In the rest of this Appendix, we will obtain Eqs. (20.6). To obtain these

results, first we consider just the last point of the device and its connection

to the infinite contact described by Hc:[
ααα B

B† Hc

]
where B ≡

[
βββ 0 0 · · ·

]
.

The overall Green’s function can be written as[
A −B

−B† Ac

]−1

≡
[

GR · · ·
· · · · · ·

]
where

A ≡ (E + i0+)I −ααα (G.1)

Ac ≡ (E + i0+)Ic −Hc (G.2)

With a little matrix algebra we can show that the top block of the

Green’s function, GR is given by

GR = [A−B A−1
c B†]−1 (G.3)

so that we can identify self-energy as

Σ = BA−1
c B†.

Since B has only one non-zero element βββ, we can write

Σ = βββgβββ† (same as Eq. (20.6a))

where g represents the top block of [Ac]
−1 , often

A −βββ 0 0 · · ·
−βββ† A −βββ 0 · · ·

0 −βββ† A −βββ · · ·
...

...
...

...
. . .


−1

≡


g · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
...

...
...

...
. . .

 (G.4)
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To obtain Eq. (20.6b), we apply Eq. (G.3) to the (N × N) matrix in

Eq. (G.4) treating the first block A as the “device”, and the rest of the

(N − 1)× (N − 1) as contact, to obtain

gN = [A− βββgN−1βββ
†]−1 (G.5)

where gN represents the g on the right-hand side of Eq. (G.4) if the matrix

on the left is of size N ×N . One could solve Eq. (G.5) recursively starting

from g1 to g2 and so on till gN is essentially the same as gN−1. At that

point we have the solution to Eq. (20.6b)

g = [A− βββ gβββ†]−1 (Similar to Eq. (20.6b))

G.2 Self-energy for Elastic Scatterers in Equilibrium:

Σ kl = Dkl, ij Gij , [Σin] kl = Dkl, ij [Gn] ij (G.6)

where summation over repeated indices is implied and

D kl, ij =
〈
[Us] ki [Us]

∗
lj

〉
(G.7)

where 〈· · · 〉 denotes average value, and we are considering a general scat-

tering potential with non-zero off-diagonal elements.

In Chapter 18 we assumed that only the diagonal elements are non-zero

then the D can be simplified from a fourth-order tensor to a second-order

tensor or in other words a matrix

D kl = 〈 [Us] kk [Us]
∗
ll 〉 . (G.8)

In terms of this matrix, Eq. (G.6) can be rewritten as

Σkl = Dkl Gkl, [Σin]kl = Dkl [Gn] kl (G.9)

which amounts to an element by element multiplication:

Σ = D ×G, Σin = D ×Gn (see Eqs. (18.35))

G.3 Self-energy for Inelastic Scatterers

(See Chapter 21, and also Datta(2005 ))

[Σin] kl = Dkl, ij (~ω) [Gn(E − ~ω) ] ij (G.10a)

Γ kl = Dkl, ij (~ω) [Gn(E − ~ω) + Gp(E + ~ω) ] ij (G.10b)
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where Gp = A−Gn, and summation over repeated indices is implied.

Σkl = hkl︸︷︷︸
Hilbert

Transform

of Γkl

− i

2
Γkl (G.10c)

For scatterers in equilibrium with temperature Ts,

Dkl,ij(+~ω)

Dji,lk(−~ω)
= e−~ω/kTs (G.11)
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Appendix H

MATLAB Codes Used for Text
Figures

These codes are included here mainly for their pedagogical value. It is

planned to make soft copies available through our website Link of codes.

H.1 Chapter 19

H.1.1 Fig. 19.2 Transmission through a single point

scatterer in a 1D wire

1 clear all

2

3 t0=1;Np=11;X=[0:1:Np -1];

4 L=diag ([1 zeros(1,Np -1)]);R=diag([zeros(1,Np -1) 1])

;

5 zplus=i*1e-12;

6

7 H0=2*t0*diag(ones(1,Np))-t0*diag(ones(1,Np -1) ,1)...

8 -t0*diag(ones(1,Np -1) ,-1);

9 N1=3;N2=9; UB1 =2*t0;UB2 =0*2*t0;

10 H0(N1 ,N1)=H0(N1 ,N1)+UB1;H0(N2 ,N2)=H0(N2 ,N2)+UB2;H=

H0;

11

12 VV=0;UV=linspace(0,-VV ,Np);%Linear Potential

13

14 ii=1;dE=5e-2; for EE=[-.5:dE :4.5]* t0

15 ck=(1-(EE -UV(1)+zplus)/(2*t0));ka=acos(ck);

16 s1=-t0*exp(i*ka);sig1=kron(L,s1);

199
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17 ck=(1-(EE -UV(Np)+zplus)/(2*t0));ka=acos(ck)

;

18 s2=-t0*exp(i*ka);sig2=kron(R,s2);

19 gam1=i*(sig1 -sig1 ');gam2=i*(sig2 -sig2 ');

20

21 G=inv((EE*eye(Np))-H-diag(UV)-sig1 -sig2);

22 Tcoh(ii)=real(trace(gam1*G*gam2*G'));

23 E(ii)=EE/t0;ii=ii+1;

24 end

25

26 hold on

27 h=plot(Tcoh ,E,'k-o');

28 set(h,'linewidth ' ,[1.2])

29 set(gca ,'Fontsize ' ,[36])

30 axis ([ -0.1 1.1 -.5 4.5]);

31 grid on

H.1.2 Fig. 19.4 Normalized conductance for a wire with

M = 1 due to one scatterer

1 clear all

2

3 t0=1;Np=11;X=[0:1:Np -1];

4 L=diag ([1 zeros(1,Np -1)]);R=diag([zeros(1,Np -1) 1])

;

5 zplus=i*1e-12;

6

7 H0=2*t0*diag(ones(1,Np))-t0*diag(ones(1,Np -1) ,1)...

8 -t0*diag(ones(1,Np -1) ,-1);

9 N1=3;N2=9; UB1 =2*t0;UB2 =2*t0;

10 H0(N1 ,N1)=H0(N1 ,N1)+UB1;H0(N2 ,N2)=H0(N2 ,N2)+UB2;H=

H0;

11

12 VV=0;UV=linspace(0,-VV ,Np); % Linear potential

13

14 ii=1;dE=5e-4; for EE=[ -.25:dE :1.25]* t0

15 ck=(1-(EE -UV(1)+zplus)/(2*t0));ka=acos(ck);

16 theta(ii)=(real(ka)*(N2-N1+1)/pi);
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17 s1=-t0*exp(i*ka);sig1=kron(L,s1);

18 ck=(1-(EE -UV(Np)+zplus)/(2*t0));ka=acos(ck)

;

19 s2=-t0*exp(i*ka);sig2=kron(R,s2);

20 gam1=i*(sig1 -sig1 ');gam2=i*(sig2 -sig2 ');

21

22 G=inv((EE*eye(Np))-H-diag(UV)-sig1 -sig2);

23 Tcoh(ii)=real(trace(gam1*G*gam2*G'));

24 E(ii)=EE/t0;ii=ii+1;

25 end

26

27 hold on

28 h=plot(Tcoh ,E,'k');

29 set(h,'linewidth ' ,[3.0])

30 set(gca ,'Fontsize ' ,[36])

31 axis ([ -0.1 1.1 -.25 1.25]);

32 grid on

H.1.3 Fig. 19.5 Normalized conductance for a wire with

M = 1 due to six scatterers

1 clear all

2 t0=1;

3 Np =100; Np1 =11; Np2 =23; Np3 =7; Np4 =31;

4 L=diag ([1 zeros(1,Np -1)]);R=diag([zeros(1,Np -1) 1])

;

5 zplus=i*1e-12;

6

7 H0=2*t0*diag(ones(1,Np))-t0*diag(ones(1,Np -1) ,1)...

8 -t0*diag(ones(1,Np -1) ,-1);

9 UB=2*t0;n=1;

10 H=H0+UB*diag([n zeros(1,Np1) 1 zeros(1,Np2) n zeros

(1,Np3) n ...

11 zeros(1,Np4) n zeros(1,Np-Np1 -Np2 -Np3 -Np4 -6) n

]);

12

13 ii=1; for EE=[ -.25:1e -3:1]* t0

14 % for EE=t0:-dE:t0
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15 ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

16 s1=-t0*exp(i*ka);s2=-t0*exp(i*ka);

17 sig1=kron(L,s1);sig2=kron(R,s2);

18 gam1=i*(sig1 -sig1 ');gam2=i*(sig2 -sig2 ');

19

20 G=inv((EE*eye(Np))-H-sig1 -sig2);

21 A=real(diag(i*(G-G')));ii

22 Gn=G*gam1*G';

23

24 Tcoh(ii)=real(trace(gam1*G*gam2*G'));TM(ii)=

real(trace(gam2*Gn));

25 E(ii)=EE/t0;ii=ii+1;

26 end

27

28 hold on

29 %h=plot(Tcoh ./(6. -5* Tcoh),E,'k-o');

30 h=plot(Tcoh ,E,'k');

31 set(h,'linewidth ' ,[3.0])

32 set(gca ,'Fontsize ' ,[36])

33 axis ([-.1 1.1 -.25 1])

34 grid on

H.1.4 Figs. 19.6–19.7 Potential drop across a scatterer

calculated from NEGF

1 clear all

2

3 t0=1;Np=51;X=[0:1:Np -1];Nh=floor(Np/2);

4 L=diag ([1 zeros(1,Np -1)]);R=diag([zeros(1,Np -1) 1])

;

5 zplus=i*1e-12;D=9e-2*t0^2;

6

7 sigB=zeros(Np);siginB=zeros(Np);

8

9 H0=2*t0*diag(ones(1,Np))-t0*diag(ones(1,Np -1) ,1)...

10 -t0*diag(ones(1,Np -1) ,-1);

11 N1=Nh+1; UB1 =1*t0;

12 H0(N1 ,N1)=H0(N1 ,N1)+UB1;H=H0;
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13

14 EE=t0;

15 ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

16 v=2*t0*sin(ka);

17 % Semiclassical profile

18 T=real(v^2/( UB1^2+v^2));R1=(1-T)/T;

19 TT=real(v^2/(D+v^2));R2=1*(1-TT)/TT;

20 RR =[0.5 R2*ones(1,Nh) R1 R2*ones(1,Nh) 0.5];

21 RR=cumsum(RR);Vx=ones(1,Np+2) -(RR./RR(Np+2));

22 Fclass=Vx([2:Np+1]);

23 %Based on resistance estimates

24

25 s1=-t0*exp(i*ka);sig1=kron(L,s1);

26 ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

27 s2=-t0*exp(i*ka);sig2=kron(R,s2);

28 gam1=i*(sig1 -sig1 ');gam2=i*(sig2 -sig2 ');

29

30 G=inv((EE*eye(Np))-H-sig1 -sig2);

31 Tcoh=real(trace(gam1*G*gam2*G'));

32

33 change =100;

34 while change >1e-6

35 G=inv((EE*eye(Np))-H-sig1 -sig2 -sigB);

36 sigBnew=diag(diag(D*G));%sigBnew=D*G;

37 change=sum(sum(abs(sigBnew -sigB)));

38 sigB=sigB +0.25*( sigBnew -sigB);

39 end

40 A=real(diag(i*(G-G')));change =100;

41 while change >1e-6

42 Gn=G*(gam1+siginB)*G';

43 siginBnew=diag(diag(D*Gn));%siginBnew=D*Gn;

44 change=sum(sum(abs(siginBnew -siginB)));

45 siginB=siginB +0.25*( siginBnew -siginB);

46 end

47 F=real(diag(Gn))./A;

48

49 hold on

50 h=plot(X,F,'k');
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51 set(h,'linewidth ' ,[3.0])

52 h=plot(X,Fclass ,'r-o');

53 set(h,'linewidth ' ,[1.2])

54 set(gca ,'Fontsize ' ,[36])

55 xlabel(' z ---> ')

56 grid on

57 axis ([-10 60 0 1])

H.1.5 Figs. 19.8–19.9 Potential drop across two scatterers

in series calculated from NEGF

1 clear all

2

3 t0=1;Np=51;X=[0:1:Np -1];Nh=floor(Np/2);

4 L=diag ([1 zeros(1,Np -1)]);R=diag([zeros(1,Np -1) 1])

;

5 zplus=i*1e-12;D=9e-20*t0^2;

6

7 sigB=zeros(Np);siginB=zeros(Np);

8

9 H0=2*t0*diag(ones(1,Np))-t0*diag(ones(1,Np -1) ,1)-...

10 t0*diag(ones(1,Np -1) ,-1);

11 N1=Nh -3;N2=Nh+3; UB1 =2*t0;UB2 =2*t0;

12 H0(N1 ,N1)=H0(N1 ,N1)+UB1;H0(N2 ,N2)=H0(N2 ,N2)+UB2;H=

H0;

13

14 EE =0.6*t0;EE =0.81* t0;

15 ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

16 v=2*t0*sin(ka);

17

18 %Semiclassical profile

19 T=real(v^2/( UB1^2+v^2));R1=(1-T)/T;

20 TT=real(v^2/(D+v^2));R2=0*(1-TT)/TT;

21 RR =[0.5 R2*ones(1,Nh -4) R1 zeros (1,6) R1 R2*ones(1,

Nh -4) 0.5];

22 RR=cumsum(RR);Vx=ones(1,Np+1) -(RR./RR(Np+1));

23 Fclass=Vx([2:Np+1]);

24 %Based on resistance estimates
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25

26 s1=-t0*exp(i*ka);sig1=kron(L,s1);

27 ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

28 s2=-t0*exp(i*ka);sig2=kron(R,s2);

29 gam1=i*(sig1 -sig1 ');gam2=i*(sig2 -sig2 ');

30

31 G=inv((EE*eye(Np))-H-sig1 -sig2);

32 Tcoh=real(trace(gam1*G*gam2*G'));

33

34 change =100;

35 while change >1e-6

36 G=inv((EE*eye(Np))-H-sig1 -sig2 -sigB);

37 sigBnew=diag(diag(D*G));sigBnew=D*G;

38 change=sum(sum(abs(sigBnew -sigB)));

39 sigB=sigB +0.25*( sigBnew -sigB);

40 end

41 A=real(diag(i*(G-G')));change =100;

42 while change >1e-6

43 Gn=G*(gam1+siginB)*G';

44 siginBnew=diag(diag(D*Gn));siginBnew=D*Gn;

45 change=sum(sum(abs(siginBnew -siginB)));

46 siginB=siginB +0.25*( siginBnew -siginB);

47 end

48 F=real(diag(Gn))./A;

49

50 hold on

51 h=plot(X,F,'k');

52 set(h,'linewidth ' ,[3.0])

53 %h=plot(X,Fclass ,'r-o');

54 %set(h,'linewidth ' ,[1.2])

55 set(gca ,'Fontsize ' ,[36])

56 xlabel(' z ---> ')

57 grid on

58 axis ([-10 60 0 1])
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H.2 Chapter 20

H.2.1 Fig. 20.1 Numerically computed transmission as a

function of energy

1 clear all

2

3 %Constants (all MKS , except energy which is in eV)

4 hbar =1.06e-34;q=1.6e-19;qh=q/hbar;B=0;

5

6 %inputs

7 a=2.5e-9;t0=1;

8 NW=25;Np=1;L=zeros(Np);R=L;L(1,1)=1;R(Np ,Np)=1;

zplus=i*1e-12;

9

10 %Hamiltonian

11 al=4*t0;by=-t0;bx=-t0;

12 alpha=kron(eye(NW),al)+kron(diag(ones(1,NW -1) ,+1),

by)+kron(diag(ones(1,NW -1) ,-1),by ');

13 alpha=alpha+diag ([1:1: NW ].*0);

14 alpha=alpha+diag([ zeros (1,8) 0*ones (1,9) zeros (1,8)

]);

15 beta=kron(diag(exp(i*qh*B*a*a*[1:1: NW])),bx);

16 H=kron(eye(Np),alpha);

17 if Np >1

18 H=H+kron(diag(ones(1,Np -1) ,+1),beta)+kron(diag(ones

(1,Np -1) ,-1),beta ');end

19

20 ii=0; for EE=[ -0.05:1e -2:1.05]* t0

21 ii=ii+1; ig0=(EE+zplus)*eye(NW)-alpha;

22 if ii==1

23 gs1=inv(ig0);gs2=inv(ig0);end

24 change =1;

25 while change >1e-6

26 Gs=inv(ig0 -beta '*gs1*beta);

27 change=sum(sum(abs(Gs -gs1)))/(sum(sum(abs(gs1)+abs(

Gs))));

28 gs1 =0.5*Gs +0.5* gs1;

29 end
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30 sig1=beta '*gs1*beta;sig1=kron(L,sig1);gam1=i*(sig1 -

sig1 ');

31

32 change =1;

33 while change >1e-6

34 Gs=inv(ig0 -beta*gs2*beta ');

35 change=sum(sum(abs(Gs -gs2)))/(sum(sum(abs(gs2)+abs(

Gs))));

36 gs2 =0.5*Gs +0.5* gs2;

37 end

38 sig2=beta*gs2*beta ';sig2=kron(R,sig2);gam2=i*(sig2 -

sig2 ');

39

40 G=inv((EE*eye(Np*NW))-H-sig1 -sig2);

41 DD=real(diag(i*(G-G')))./2/pi;

42 Tcoh(ii)=real(trace(gam1*G*gam2*G'));E(ii)=EE/t0;ii

43 end

44

45 ii=1; for kk=pi *[ -1:0.01:1]

46 H=alpha+beta*exp(i*kk)+beta '*exp(-i*kk);

47 [V,D]=eig(H);EK(:,ii)=sort(abs(diag(D)))./t0;K(ii)=

kk/pi;ii=ii+1;

48 end

49

50 X=linspace (0 ,9 ,101);Ean= 2*(1-cos(pi*X./(NW+1)));

51 hold on

52 figure (1)

53 h=plot(Tcoh ,E,'k');

54 set(h,'linewidth ' ,[3.0])

55 %h=plot(X,Ean ,'k--');

56 %set(h,'linewidth ' ,[1.2])

57 set(gca ,'Fontsize ' ,[36])

58 axis ([0 10 -.1 1])

59 % Fig .21.1a, Transmission versus width , at E=t0

60 clear all

61

62 %Constants (all MKS , except energy which is in eV)

63 hbar =1.06e-34;q=1.6e-19;qh=q/hbar;B=0;
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64

65 %inputs

66 a=2.5e-9;t0=1;

67 NW=25;Np=1;L=zeros(Np);R=L;L(1,1)=1;R(Np ,Np)=1;

zplus=i*1e-12;

68

69 %Hamiltonian

70 al=4*t0;by=-t0;bx=-t0;

71 alpha1=kron(eye(NW),al)+kron(diag(ones(1,NW -1) ,+1),

by)+kron(diag(ones(1,NW -1) ,-1),by ');

72

73 ii=0;EE=t0*1; for NN =[0:1:NW -1]

74 ii=ii+1;

75

76 alpha=alpha1+diag([ zeros(1,NN) 100* ones(1,NW-NN)]);

77 beta=kron(diag(exp(i*qh*B*a*a*[1:1: NW])),bx);

78 H=kron(eye(Np),alpha);

79 if Np >1

80 H=H+kron(diag(ones(1,Np -1) ,+1),beta)+kron(diag(ones

(1,Np -1) ,-1),beta ');end

81

82 ig0=(EE+zplus)*eye(NW)-alpha;

83 if ii==1

84 gs1=inv(ig0);gs2=inv(ig0);end

85 change =1;

86 while change >1e-6

87 Gs=inv(ig0 -beta '*gs1*beta);

88 change=sum(sum(abs(Gs -gs1)))/(sum(sum(abs(gs1)+abs(

Gs))));

89 gs1 =0.5*Gs +0.5* gs1;

90 end

91 sig1=beta '*gs1*beta;sig1=kron(L,sig1);gam1=i*(sig1 -

sig1 ');

92

93 change =1;

94 while change >1e-6

95 Gs=inv(ig0 -beta*gs2*beta ');
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96 change=sum(sum(abs(Gs -gs2)))/(sum(sum(abs(gs2)+abs(

Gs))));

97 gs2 =0.5*Gs +0.5* gs2;

98 end

99 sig2=beta*gs2*beta ';sig2=kron(R,sig2);gam2=i*(sig2 -

sig2 ');

100

101 G=inv((EE*eye(Np*NW))-H-sig1 -sig2);

102 DD=real(diag(i*(G-G')))./2/pi;

103 Tcoh(ii)=real(trace(gam1*G*gam2*G'));E(ii)=NN;

104 X(ii)=(NN+1)*(acos(1-(EE/2/t0)))/pi;

105 X1(ii)=(NN+1)*sqrt(EE/2/t0)/pi;ii

106

107 end

108

109 hold on

110 figure (1)

111 h=plot(E,Tcoh ,'k');

112 set(h,'linewidth ' ,[3.0])

113 %h=plot(E,X,'k');

114 %h=plot(E,X1,'k--');

115 %set(h,'linewidth ' ,[1.2])

116 set(gca ,'Fontsize ' ,[36])

117 axis ([0 NW -.1 10])

118 grid on

H.2.2 Fig. 20.3 Transmission calculated from NEGF for

ballistic graphene sheet and CNT

1 clear all

2

3 %Constants (all MKS , except energy which is in eV)

4 hbar =1.06e-34;q=1.6e-19;qh=q/hbar;a=1e-9;

5

6 %inputs

7

8 t0=-2.5;D=1e-50; ctr =0; zplus=i*1e-3;

9 NL=1;L=zeros(NL);R=L;L(1,1)=1;R(NL ,NL)=1;
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10 config =1;%1 for armchair , 2 for zigzag edge

11 NW=floor (14* sqrt (3));% Armchair

12 %NW =14;% Zigzag

13

14 %Hamiltonian

15 al=t0*[0 1 0 0;1 0 1 0;0 1 0 1;0 0 1 0];

16 if config ==1

17 bL=t0*[0 0 0 0;0 0 0 0;0 0 0 0;1 0 0 0];

18 bW=t0*[0 0 0 0;1 0 0 0;0 0 0 1;0 0 0 0]; end

19 if config ==2

20 bW=t0*[0 0 0 0;0 0 0 0;0 0 0 0;1 0 0 0];

21 bL=t0*[0 0 0 0;1 0 0 0;0 0 0 1;0 0 0 0]; end

22

23 n=4;% al=4;bW=-1;bL=-1;n=1;

24 alpha=kron(eye(NW),al)+kron(diag(ones(1,NW -1) ,+1),

bW)+kron(diag(ones(1,NW -1) ,-1),bW ');

25 alpha=alpha+kron(diag(ones (1,1) ,1-NW),bW)+kron(diag

(ones (1,1),NW -1),bW ');% for CNT 's

26

27 sigB=zeros(NW*NL*n);siginB=zeros(NW*NL*n);

28

29 ii=0; for EE=t0 *[ -0.5:+0.01:+0.5]

30 ii=ii+1;

31 ig0=(EE+zplus)*eye(NW*n)-alpha;

32 if ii==1

33 gs1=inv(ig0);gs2=inv(ig0);end

34

35 BB=0; beta=kron(diag(exp(i*qh*BB*a*a*[1:1: NW])),bL);

36 %beta=kron(eye(NW),bL);

37 H=kron(eye(NL),alpha);if NL >1

38 H=H+kron(diag(ones(1,NL -1) ,+1),beta)+

39 kron(diag(ones(1,NL -1) ,-1),beta ');end

40

41 change =1;

42 while change >1e-4

43 Gs=inv(ig0 -beta '*gs1*beta);

44 change=sum(sum(abs(Gs -gs1)))/(sum(sum(abs(gs1)+abs(

Gs))));
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45 gs1 =0.5*Gs +0.5* gs1;

46 end

47 sig1=beta '*gs1*beta;sig1=kron(L,sig1);gam1=i*(sig1 -

sig1 ');

48 change =1;

49 while change >1e-4

50 Gs=inv(ig0 -beta*gs2*beta ');

51 change=sum(sum(abs(Gs -gs2)))/(sum(sum(abs(gs2)+abs(

Gs))));

52 gs2 =0.5*Gs +0.5* gs2;

53 end

54 sig2=beta*gs2*beta ';sig2=kron(R,sig2);gam2=i*(sig2 -

sig2 ');

55

56 G=inv((EE*eye(NW*NL*n))-H-sig1 -sig2);

57 T(ii)=real(trace(gam1*G*gam2*G'));E(ii)=EE/t0;

58 if EE==0

59 T(ii)=T(ii -1);end ,EE

60 end

61

62

63 hold on

64 h=plot(T,E,'k');

65 set(h,'linewidth ' ,[3.0])

66 set(gca ,'Fontsize ' ,[36]);

67 axis ([0 10 -0.5 +0.5])

68 title(' W = 24 * 2b ')

69 grid on

H.2.3 Fig. 20.4 Normalized Hall resistance versus B-field

for ballistic channel

1 clear all

2

3 %Constants (all MKS , except energy which is in eV)

4 hbar =1.06e-34;q=1.6e-19;m=0.1*9.1e-31;qh=q/hbar;

5

6 %inputs
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7 a=2.5e-9;t0=(hbar ^2) /(2*m*(a^2)*q);

8 NW=25;Np=1;L=zeros(Np);R=L;L(1,1)=1;R(Np ,Np)=1;

zplus=i*1e-12;

9

10 %Hamiltonian

11 al=4*t0;by=-t0;bx=-t0;

12 alpha=kron(eye(NW),al)+kron(diag(ones(1,NW- 1)

,+1),by)+kron(diag(ones(1,NW -1) ,-1),by ');

13 alpha=alpha+diag ([1:1: NW ].*0);

14

15 EE=t0;ii=0; for B=0:0.1:50

16 %B=0;ii=0;for EE =[ -0.05:0.01:1]* t0

17 ii=ii+1;E(ii)=B;

18 ig0=(EE+zplus)*eye(NW)-alpha;

19 if ii==1

20 gs1=inv(ig0);gs2=inv(ig0);end

21

22 beta=kron(diag(exp(i*qh*B*a*a*[1:1: NW])),bx);

23 H=kron(eye(Np),alpha);

24 if Np >1

25 H=H+kron(diag(ones(1,Np -1) ,+1),beta)+kron(diag(ones

(1,Np -1) ,-1),beta ');end

26

27 change =1;

28 while change >5e-5

29 Gs=inv(ig0 -beta '*gs1*beta);

30 change=sum(sum(abs(Gs -gs1)))/(sum(sum(abs(gs1)+abs(

Gs))));

31 gs1 =0.5*Gs +0.5* gs1;

32 end

33 sig1=beta '*gs1*beta;sig1=kron(L,sig1);gam1=i*(sig1 -

sig1 ');

34

35 change =1;

36 while change >5e-5

37 Gs=inv(ig0 -beta*gs2*beta ');

38 change=sum(sum(abs(Gs -gs2)))/(sum(sum(abs(gs2)+abs(

Gs))));
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39 gs2 =0.5*Gs +0.5* gs2;

40 end

41 sig2=beta*gs2*beta ';sig2=kron(R,sig2);gam2=i*(sig2 -

sig2 ');

42

43 G=inv((EE*eye(Np*NW))-H-sig1 -sig2);

44 Gn=G*gam1*G';

45

46 A=i*(G-G');V=real(diag(Gn./A));

47 Tcoh=real(trace(gam1*G*gam2*G'));TM=real(trace(gam2

*Gn));

48 %Y(ii)=Tcoh;ii

49 Y(ii)=(V(1)-V(NW))/Tcoh;ii

50 end

51

52 hold on

53 h=plot(E,Y,'k');

54 set(h,'linewidth ' ,[3.0])

55 set(gca ,'Fontsize ' ,[36])

56 xlabel(' B-field (T) ---> ')

57 ylabel(' R_{xy} ---> ')

58 grid on

H.2.4 Fig. 20.5 Grayscale plot of local density of states

1 clear all

2

3 %Constants (all MKS , except energy which is in eV)

4 hbar =1.06e-34;q=1.6e-19;m=0.1*9.1e-31;qh=q/hbar;B

=20;

5

6 %inputs

7 a=2.5e-9;t0=(hbar ^2) /(2*m*(a^2)*q);

8 NW=25;Np=1;L=zeros(Np);R=L;L(1,1)=1;R(Np ,Np)=1;

zplus=i*1e-12;

9

10 %Hamiltonian

11 al=4*t0;by=-t0;bx=-t0;
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12 alpha=kron(eye(NW),al)+kron(diag(ones(1,NW -1) ,+1),

by)+kron(diag(ones(1,NW -1) ,-1),by ');

13 alpha=alpha+diag ([1:1: NW ].*0);

14 beta=kron(diag(exp(i*qh*B*a*a*[1:1: NW])),bx);

15 H=kron(eye(Np),alpha);

16 if Np >1

17 H=H+kron(diag(ones(1,Np -1) ,+1),beta)+kron(diag(ones

(1,Np -1) ,- 1),beta ');end

18

19 ii=0; for EE =[ -0.05:0.008:1.05]* t0

20 ii=ii+1; ig0=(EE+zplus)*eye(NW)-alpha;

21 if ii==1

22 gs1=inv(ig0);gs2=inv(ig0);end

23 change =1;

24 while change >1e-4

25 Gs=inv(ig0 -beta '*gs1*beta);

26 change=sum(sum(abs(Gs -gs1)))/(sum(sum(abs(gs1)+abs(

Gs))));

27 gs1 =0.5*Gs +0.5* gs1;

28 end

29 sig1=beta '*gs1*beta;sig1=kron(L,sig1);gam1=i*(sig1 -

sig1 ');

30

31 change =1;

32 while change >1e-4

33 Gs=inv(ig0 -beta*gs2*beta ');

34 change=sum(sum(abs(Gs -gs2)))/(sum(sum(abs(gs2)+abs(

Gs))));

35 gs2 =0.5*Gs +0.5* gs2;

36 end

37 sig2=beta*gs2*beta ';sig2=kron(R,sig2);gam2=i*(sig2 -

sig2 ');

38

39 G=inv((EE*eye(Np*NW))-H-sig1 -sig2);

40 DD(:,ii)=real(diag(i*(G-G')))./2/pi;

41 Gn=G*gam1*G';

42 NN(:,ii)=real(diag(Gn))./2/pi;

43 end
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44

45 XX=DD;

46 lo=.4* min(min(XX));hi=.4* max(max(XX));

47

48 figure (1)

49 hold on

50 imagesc(XX ,[lo hi])

51 colormap(gray)

52 set(gca ,'Fontsize ' ,[36])

53 grid on

54 axis ([0 140 0 25])

H.3 Chapter 22

H.3.1 Fig. 22.7, n versus µ, single dot

1 clear all

2 %define constants

3 eps = 10; U = 20;

4

5 %define N and H matrices

6 N = diag ([0 1 1 2]);

7 H = diag ([0 eps eps 2*eps+U]);

8

9 ii=1; for mu = 0:0.1:50

10 p = expm(-(H-mu*N));

11 rho = p/trace(p);

12 n(ii) = trace(rho*N);X(ii)=mu;ii=ii+1;

13 end

14

15 G=diff(n);G=[0 G];G=G./max(G);

16 hold on;

17 grid on;

18 h=plot(X,n,'k');

19 set(h,'linewidth ' ,2.0)

20 set(gca ,'Fontsize ' ,36)

21 xlabel('\mu / kT --->');

22 ylabel(' n ---> ');
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H.3.2 Fig. 22.8, I versus V , single quantum dot

1 clear all

2 %define constants

3 eps = 10; U = 20; g1=1; g2=1;N = [0 1 1 2];

4

5 ii=1; mu1 =0; for mu2 =0:1:50

6 f1a=g1/(1+ exp(eps -mu1));

7 f2a=g2/(1+ exp(eps -mu2));

8 f1b=g1/(1+ exp(eps+U-mu1));

9 f2b=g2/(1+ exp(eps+U-mu2));

10

11 W1=[0 g1 -f1a g1 -f1a 0;

12 f1a 0 0 g1 -f1b;

13 f1a 0 0 g1 -f1b;

14 0 f1b f1b 0];W1=W1-diag(sum(W1));

15

16 W2=[0 g2 -f2a g2 -f2a 0;

17 f2a 0 0 g2 -f2b;

18 f2a 0 0 g2 -f2b;

19 0 f2b f2b 0];W2=W2-diag(sum(W2));

20

21 W=W1+W2;

22 [V,D]=eig(W);diag(D);

23 P=V(:,1);P=P./sum(P);

24 I1(ii)=N*W1*P;

25 I2(ii)=N*W2*P;

26 X(ii)=mu2;ii=ii+1;

27 end

28

29 grid on;

30 %h=plot(X,I1,'k');

31 %set(h,'linewidth ' ,2.0)

32 h=plot(X,I2 ,'k');

33 set(h,'linewidth ' ,2.0)

34 set(gca ,'Fontsize ' ,36)

35 xlabel('qV/kT --->');

36 ylabel(' Normalized current ---> ');
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H.3.3 Fig. 22.9, n versus µ, double quantum dot

1 clear all

2 %define constants

3 eps1 = 20; eps2 = 20; t = 10;

4 U = 20;

5

6 %define N and H matrices

7 N = diag([ones (1,1)*0 ones (1,4)*1 ones (1,6)*2 ones

(1,4)*3 ones (1,1) *4]);

8 H0 = 0;

9 h11 = [eps1 t;t eps2];H1 = blkdiag(h11 ,h11);

10 h21 = [2* eps1+U 0;0 2*eps2+U];

11 h22 = [eps1+eps2 0;0 eps1+eps2];

12 H2 = blkdiag(h21 ,h22 ,h22);H2(1:2 ,3:4)=t;H2(3:4 ,1:2)

=t;

13 h31=[eps1 +2* eps2+U t;t 2*eps1+eps2+U];H3 = blkdiag(

h31 ,h31);

14 H4 = 2*eps1 +2* eps2 +2*U;

15 H = blkdiag(H0,H1,H2,H3,H4);

16

17 ii=1; for mu = 0:60

18 p = expm(-(H-mu*N));

19 rho = p/trace(p);

20 n(ii) = trace(rho*N);X(ii)=mu;ii=ii+1;

21 end

22

23 hold on;

24 grid on;

25 box on;

26 h=plot(X,n,'k');

27 set(h,'linewidth ' ,2.0)

28 set(gca ,'Fontsize ' ,36)

29 xlabel('\mu / kT --->');

30 ylabel(' n ---> ');
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H.4 Chapter 23

H.4.1 Fig. 23.9 Voltage probe signal as the magnetization

of the probe is rotated

1 clear all

2 hbar =1.06e-34;q=1.6e-19;m=0.1*9.1e-31;a=2.5e-9;t0=(

hbar ^2) /(2*m*(a^2)*q);

3 sx=[0 1;1 0];sy=[0 -i;i 0];sz=[1 0;0 -1]; zplus=1i*1

e-12;

4

5 Np=50;N1=10;N2=20;X=1*[0:1:Np -1];

6 L=diag ([1 zeros(1,Np -1)]);

7 R=diag([ zeros(1,Np -1) 1]);

8 L1 =0.1* diag([ zeros(1,N1 -1) 1 zeros(1,Np -N1)]);

9 L2 =0.1* diag([ zeros(1,N2 -1) 1 zeros(1,Np -N2)]);

10

11 ii=0; for theta =[0:0.1:4]* pi

12 P1 =0.7*[0 0 1];

13 P2=1*[ sin(theta) 0 cos(theta)];ii=ii+1;

14

15 H0=diag(ones(1,Np));

16 HR=diag(ones(1,Np -1) ,1);HL=diag(ones(1,Np -1) ,-1);

17

18 H=2*t0*kron(H0,eye(2))-t0*kron(HL,eye(2))-t0*kron(

HR,eye(2));

19

20 EE=t0;ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

21 sL=-t0*exp(1i*ka)*eye (2);sR=sL;

22 s1=-t0*exp(1i*ka)*(eye (2)+P1(1)*sx+P1(2)*sy+P1(3)*

sz);

23 s2=-t0*exp(1i*ka)*(eye (2)+P2(1)*sx+P2(2)*sy+P2(3)*

sz);

24

25 sigL=kron(L,sL);sigR=kron(R,sR);

26 sig1=kron(L1,s1);sig2=kron(L2 ,s2);

27 gamL=1i*(sigL -sigL ');gamR=1i*(sigR -sigR ');

28 gam1=1i*(sig1 -sig1 ');gam2=1i*(sig2 -sig2 ');

29
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30 G=inv(((EE+zplus)*eye(2*Np))-H-sigL -sigR -sig1 -sig2)

;

31

32 % {1 L} {2 R} = {a} {b}

33

34 TM1L=real(trace(gam1*G*gamL*G'));

35 TML1=real(trace(gamL*G*gam1*G'));

36 Taa=[0 TM1L;TML1 0];

37

38 TM12=real(trace(gam1*G*gam2*G'));

39 TM1R=real(trace(gam1*G*gamR*G'));

40 TML2=real(trace(gamL*G*gam2*G'));

41 TMLR=real(trace(gamL*G*gamR*G'));

42 Tab=[TM12 TM1R;TML2 TMLR];

43

44 TM21=real(trace(gam2*G*gam1*G'));

45 TM2L=real(trace(gam2*G*gamL*G'));

46 TMR1=real(trace(gamR*G*gam1*G'));

47 TMRL=real(trace(gamR*G*gamL*G'));

48 Tba=[TM21 TM2L;TMR1 TMRL];

49

50 TM2R=real(trace(gam2*G*gamR*G'));

51 TMR2=real(trace(gamR*G*gam2*G'));

52 Tbb=[0 TM2R;TMR2 0];

53

54 Taa=diag(sum(Taa)+sum(Tba))-Taa;Tba=-Tba;

55 Tbb=diag(sum(Tab)+sum(Tbb))-Tbb;Tab=-Tab;

56 if abs(sum(sum([Taa Tab;Tba Tbb]))) > 1e-10

57 junk =100,end

58

59 V=-inv(Tbb)*Tba *[1;0];

60 VV2(ii)=V(1);VVR(ii)=V(2);

61 angle(ii)=theta/pi;

62 I2(ii)=TM21;IL(ii)=TML1;IR(ii)=TMR1;

63

64 Gn=G*(gam1+V(1)*gam2+V(2)*gamR)*G';

65 Gn=Gn([2*N2 -1:2*N2],[2*N2 -1:2*N2]);

66 A=i*(G-G');A=A([2*N2 -1:2*N2],[2*N2 -1:2*N2]);
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67 g2=i*(s2 -s2 ');XX2(ii)=real(trace(g2*Gn)/trace(g2*A)

);

68 end

69 X2=VV2;XR=VVR;max(X2)-min(X2)

70

71 hold on

72 h=plot(angle ,X2,'k');

73 set(h,'linewidth ' ,2.0)

74 h=plot(angle ,XX2 ,'ro');

75 set(h,'linewidth ' ,2.0)

76 set(gca ,'Fontsize ' ,36)

77 xlabel(' \theta / \pi ---> ')

78 ylabel(' V_{2} ---> ')

79 grid on

H.4.2 Fig. 23.10 Voltage probe signal due to variation of

gate voltage controlled Rashba coefficient

1 clear all

2 hbar =1.06e-34;q=1.6e-19;m=0.1*9.1e-31;a=2.5e-9;t0=(

hbar ^2) /(2*m*(a^2)*q);

3 sx=[0 1;1 0];sy=[0 -1i;1i 0];sz=[1 0;0 -1]; zplus=1i

*1e-12;

4

5 Np=50;N1=5;N2=45;X=1*[0:1:Np -1];

6 L=diag ([1 zeros(1,Np -1)]);

7 R=diag([ zeros(1,Np -1) 1]);

8

9 L1 =0.1* diag([ zeros(1,N1 -1) 1 zeros(1,Np -N1)]);

10 L2 =0.1* diag([ zeros(1,N2 -1) 1 zeros(1,Np -N2)]);

11

12 ii=0; for al =[0:0.005:0.3]* t0

13 P1=[0 0 0.7];P2=[0 0 0.7];ii=ii+1;

14 alph=al*1;% Rashba

15 BB=al*0;% Hanle

16

17 H0=diag(ones(1,Np));

18 HR=diag(ones(1,Np -1) ,1);HL=diag(ones(1,Np -1) ,-1);
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19 beta=t0*eye (2) +1*i*alph*sx;

20 alpha =2*t0*eye(2)+1*BB*sx;

21

22 H=kron(H0 ,alpha)-kron(HL,beta ')-kron(HR ,beta);

23

24 EE=t0;ck=(1-(EE+zplus)/(2*t0));ka=acos(ck);

25 sL=-t0*exp(1i*ka)*eye (2);sR=sL;

26 s1=-t0*exp(1i*ka)*(eye (2)+P1(1)*sx+P1(2)*sy+P1(3)*

sz);

27 s2=-t0*exp(1i*ka)*(eye (2)+P2(1)*sx+P2(2)*sy+P2(3)*

sz);

28

29 sigL=kron(L,sL);sigR=kron(R,sR);

30 sig1=kron(L1,s1);sig2=kron(L2 ,s2);

31 gamL=1i*(sigL -sigL ');gamR=1i*(sigR -sigR ');

32 gam1=1i*(sig1 -sig1 ');gam2=1i*(sig2 -sig2 ');

33

34 G=inv(((EE+zplus)*eye(2*Np))-H-sigL -sigR -sig1 -sig2)

;

35

36 % {1 L} {2 R} = {a} {b}

37 TM1L=real(trace(gam1*G*gamL*G'));

38 TML1=real(trace(gamL*G*gam1*G'));

39 Taa=[0 TM1L;TML1 0];

40

41 TM12=real(trace(gam1*G*gam2*G'));

42 TM1R=real(trace(gam1*G*gamR*G'));

43 TML2=real(trace(gamL*G*gam2*G'));

44 TMLR=real(trace(gamL*G*gamR*G'));

45 Tab=[TM12 TM1R;TML2 TMLR];

46

47 TM21=real(trace(gam2*G*gam1*G'));

48 TM2L=real(trace(gam2*G*gamL*G'));

49 TMR1=real(trace(gamR*G*gam1*G'));

50 TMRL=real(trace(gamR*G*gamL*G'));

51 Tba=[TM21 TM2L;TMR1 TMRL];

52

53 TM2R=real(trace(gam2*G*gamR*G'));
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54 TMR2=real(trace(gamR*G*gam2*G'));

55 Tbb=[0 TM2R;TMR2 0];

56

57 Taa=diag(sum(Taa)+sum(Tba))-Taa;Tba=-Tba;

58 Tbb=diag(sum(Tab)+sum(Tbb))-Tbb;Tab=-Tab;

59 if abs(sum(sum([Taa Tab;Tba Tbb]))) > 1e-10

60 junk =100,end

61

62 V=-inv(Tbb)*Tba *[1;0];

63 VV2(ii)=V(1);VVR(ii)=V(2);

64 alp(ii)=al*2/t0;% eta/t0/a

65

66 Gn=G*(gam1+V(1)*gam2+V(2)*gamR)*G';A=i*(G-G');

67 VV(ii)=real(trace(gam2*Gn)/trace(gam2*A));

68 end

69

70 hold on

71 h=plot(alp ,VV2 ,'k');

72 set(h,'linewidth ' ,2.0)

73 h=plot(alp ,VV,'ro');

74 set(h,'linewidth ' ,2.0)

75 set(gca ,'Fontsize ' ,36)

76 ylabel(' Voltage ---> ')

77 grid on
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Büttiker probe, 63
ballistic, 4

conductance, 4
resistance, 6

ballistic conductor, 83, 90
bandstructure, 41
basis functions, 23, 30, 41
basis transformation, 84, 87
Bogoliubov-deGennes Hamiltonian,

150
Bohr magneton, 166
Boltzmann transport equation, 13,

21, 46
Born approximation, 78, 107
broadening, 52, 90, 100, 110
Brownian motion, 44, 158

carbon nanotube, 90
channel, 1
channel polarization, 149
coherent transport, 15, 48, 76, 97
commutation relations, 141
complementary transistor pair, 2

conductance, 3
conductivity, 3
conjugate transpose, 44
contact, 21, 97
Coulomb blockade, 108
Coulomb gap, 110
Coulomb repulsion, 118
critical field, 167
current-voltage characteristics, 110
cyclotron frequency, 94

de Broglie relation, 24, 25
degrees of freedom, 10
delta function, 101
density functional theory, 29, 108
density of states, 6, 24, 53
dephasing, 46, 63, 74, 98, 156
diagonalization, 84
differential operator, 26
diffusion coefficient, 6
diffusive, 3
dispersion relation, 25, 33, 37, 40, 81
drift-diffusion equation, 158
Drude formula, 5

E-k relation, 23, 38
easy axis, 166
edge states, 93
effective mass, 5, 36, 166
eigenvalue, 26, 85
eigenvector, 142

231



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 232

232 Lessons from Nanoelectronics: B. Quantum Transport

elastic dephasing, 99
elastic resistor, 10, 14, 21, 44, 45, 97,

98, 165
elastic scattering, 100
electric field, 8
electrochemical potential, 7, 10, 23,

41
electron affinity, 28
electron-electron interaction, 28, 46,

108
electrostatic potential, 7
energy-momentum relation, 24, 33, 41
entangled states, 117
entropy, 13, 161
entropy-driven process, 13, 21

Fermi fucntion, 108
Fermi’s golden rule, 99
Feynman, 17, 173
field effect transistor, 1, 165
first principles approach, 23, 31, 41
Fock space, 112, 117
force-driven process, 13
four-component spin diffusion, 157
fractional quantum Hall effect, 96

g-factor, 166
graphene, 32, 38, 40
group velocity, 25

Hall effect, 92
Hall resistance, 92
Hall voltage, 92
Hamiltonian, 22, 43, 118
Hanle signal, 145
hardwall boundary condition, 90
Hartree approximation, 29
Hermitian, 42, 58, 153
holomorphic, 129
hopping matrix, 158
Hubbard band, 121

identity matrix, 84
in-scattering, 62
incoherence, 46
incoherent process, 55, 63

inelastic processes, 11
inelastic scattering, 98
inelastic transport, 98
information, 168
inteface resistance, 131
Intel, 165
inter-dot coupling, 117
interface resistance, 6, 70, 74
inverter, 2
ionization levels, 29
ionization potential, 28
isomorphic, 129

Josephson currents, 55
Joule heat, 11

Kirchoff’s law, 59
Kondo peak, 121
Kubo formalism, 158

Landau levels, 94, 95
Landauer resistor, 11
Langevin equation, 44
Laplacian operator, 25
law of equilibrium, 113
linear dispersion, 90
LLG equation, 166
low bias conductance, 110

magnetic moment, 137, 166
magnetic tunnel junction, 131, 167
magnetization, 131, 166
magnetoresistance , 131
many-body perturbation theory, 44,

107
matrix electron density, 47, 151
Maxwell’s demon, 99
mean field theory, 108
mean free path, 3
memory devices, 165
mesoscopic physics, 46
mode, 86
momentum relaxation, 46, 47
momentum relaxation time, 5
Moore’s Law, 4
Mott insulator, 121



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 233

Index 233

Mott transition, 121

nanomagnetics, 165
NEGF formalism, 14, 23
Newton’s Law, 13
no cloning theorem, 164
non-equilibrium Green’s function, 21,

97
number of modes, 5, 17, 68, 83, 90

occupancy factor, 48
Ohm’s law, 3, 73
open boundary condition, 46, 66
orthogonal basis function, 31

p-n junction, 12
parabolic dispersion, 34, 66, 137
partitioning, 99
Pauli spin matrices, 136, 155
Peltier effect, 12
periodic boundary condition, 90
perturbation theory, 107
phase coherence length, 74
phase relaxation, 47, 77
phase-coherent, 46, 74
photoemission, 28
Poisson equation, 108
polarization, 131
precession, 139
pseudospin, 158, 160, 168

quantum coherence, 173
quantum conductance, 68
quantum dot, 117
quantum Hall effect, 92
quantum interference, 75
quantum mechanics, 24
quantum of conductance, 81
quantum transport, 14, 22
quasi-Fermi level, 8
quasi-magnet, 168
quasi-particles, 150
quasi-spin, 168

Rashba Hamiltonian, 138
Rashba interaction, 138, 145

Rashba-Edelstein effect, 149
resistance, 1
resistivity, 3
rotation group, 142

scanning probe microscopy, 75
scatterer resistance, 74
scattering operator, 46
scattering potential, 101
Schrödinger equation, 13, 21, 24, 44,

50
self consistent field, 29, 108, 109
self consistent potential, 29, 108, 111
self-energy, 22, 66, 67, 87, 89, 100,

137, 194
self-interaction correction, 109, 111
semi-empirical approach, 31, 41, 108
single electron charging energy, 29,

109
singlet state, 119
spectral function, 47, 57, 100
spin degeneracy, 54
spin Hall effect, 149
spin potential, 125
spin precession, 143
spin valve, 134, 167
spin-charge coupling, 146
spin-current, 167
spin-momentum locking, 125, 146
spin-orbit coupling, 145
spinor, 128, 151, 169
spintronics, 18, 165
Stern-Gerlach experiment, 166
strong localization, 73
subband, 86
superconducting contact, 150

Taylor expansion, 40, 92
temperature broadening, 110
tensor, 64
tight-binding approach, 32
tight-binding model, 42, 108
transfer time, 110
translationally invariant, 34, 38
transmission, 68, 82
transmission line, 17



May 15, 2018 11:50 ws-book9x6 Lessons from Nanoelectronics: B. Quantum Transport 10440-main page 234

234 Lessons from Nanoelectronics: B. Quantum Transport

triplets, 119

uncertainty relation, 53
unit cell, 38
Unstable magnets, 168

Valet-Fert equation, 157
vector potential, 37, 94

wave equation, 24

wavefunction, 27, 29, 50

wavevector, 25

weak localization, 73

Zeeman splitting, 137, 138

zigzag configuration, 90


	Preface
	Acknowledgments
	List of Available Video Lectures Quantum Transport
	Constants Used in This Book
	Some Symbols Used
	1. Overview
	1.1 Conductance
	1.2 Ballistic Conductance
	1.3 What Determines the Resistance?
	1.4 Where is the Resistance?
	1.5 But Where is the Heat?
	1.6 Elastic Resistors
	1.7 Transport Theories
	1.7.1 Why elastic resistors are conceptually simpler

	1.8 Is Transport Essentially a Many-body Process?
	1.9 A Different Physical Picture

	Contact-ing Schrödinger
	17. The Model
	17.1 Schrödinger Equation
	17.1.1 Spatially varying potential

	17.2 Electron-electron Interactions and the SCF Method
	17.3 Differential to Matrix Equation
	17.3.1 Semi-empirical tight-binding (TB) models
	17.3.2 Size of matrix, N = nb

	17.4 Choosing Matrix Parameters
	17.4.1 One-dimensional conductor
	17.4.2 Two-dimensional conductor
	17.4.3 TB parameters in B-field
	17.4.4 Lattice with a ``Basis"


	18. NEGF Method
	18.1 One-level Resistor
	18.1.1 Semiclassical treatment
	18.1.2 Quantum treatment
	18.1.3 Quantum broadening
	18.1.4 Do multiple sources interfere?

	18.2 Quantum Transport Through Multiple Levels
	18.2.1 Obtaining Eqs. (18.1)
	18.2.2 Obtaining Eqs. (18.2)
	18.2.3 Obtaining Eq. (18.3)
	18.2.4 Obtaining Eq. (18.4): the current equation

	18.3 Conductance Functions for Coherent Transport
	18.4 Elastic Dephasing

	19. Can Two Offer Less Resistance than One?
	19.1 Modeling 1D Conductors
	19.1.1 1D ballistic conductor
	19.1.2 1D conductor with one scatterer

	19.2 Quantum Resistors in Series
	19.3 Potential Drop Across Scatterer(s)


	More on NEGF
	20. Quantum of Conductance
	20.1 2D Conductor as 1D Conductors in Parallel
	20.1.1 Modes or subbands

	20.2 Contact Self-Energy for 2D Conductors
	20.2.1 Method of basis transformation
	20.2.2 General method
	20.2.3 Graphene: ballistic conductance

	20.3 Quantum Hall Effect

	21. Inelastic Scattering
	21.1 Fermi's Golden Rule
	21.1.1 Elastic scattering
	21.1.2 Inelastic scattering

	21.2 Self-energy Functions

	22. Does NEGF Include ``Everything?"
	22.1 Coulomb Blockade
	22.1.1 Current versus voltage

	22.2 Fock Space Description
	22.2.1 Equilibrium in Fock space
	22.2.2 Current in the Fock space picture

	22.3 Entangled States


	Spin Transport
	23. Rotating an Electron
	23.1 Polarizers and Analyzers
	23.2 Spin in NEGF
	23.3 One-level Spin Valve
	23.4 Rotating Magnetic Contacts
	23.5 Spin Hamiltonians
	23.5.1 Channel with Zeeman splitting
	23.5.2 Channel with Rashba interaction

	23.6 Vectors and Spinors
	23.7 Spin Precession
	23.8 Spin-charge Coupling
	23.9 Superconducting Contacts

	24. Quantum to Classical
	24.1 Matrix Electron Density
	24.2 Matrix Potential
	24.3 Spin Circuits
	24.4 Pseudo-spin
	24.5 Quantum Information
	24.5.1 Quantum entropy
	24.5.2 Does interaction increase the entropy?
	24.5.3 How much information can one spin carry?


	25. Epilogue: Probabilistic Spin Logic (PSL)
	25.1 Spins and Magnets
	25.1.1 Pseudospins and pseudomagnets

	25.2 Unstable Magnets
	25.3 Three-terminal p-bits
	25.4 p-circuits

	Suggested Reading

	Appendices
	Appendix F List of Equations and Figures Cited From Part A 
	Appendix G NEGF Equations
	G.1 Self-energy for Contacts
	G.2 Self-energy for Elastic Scatterers in Equilibrium:
	G.3 Self-energy for Inelastic Scatterers 

	Appendix H MATLAB Codes Used for Text Figures
	H.1 Chapter 19
	H.1.1 Fig. 19.2 Transmission through a single point scatterer in a 1D wire
	H.1.2 Fig. 19.4 Normalized conductance for a wire with M=1 due to one scatterer
	H.1.3 Fig. 19.5 Normalized conductance for a wire with M=1 due to six scatterers
	H.1.4 Figs. 19.6–19.7 Potential drop across a scatterer calculated from NEGF
	H.1.5 Figs. 19.8–19.9 Potential drop across two scatterers in series calculated from NEGF

	H.2 Chapter 20
	H.2.1 Fig. 20.1 Numerically computed transmission as a function of energy
	H.2.2 Fig. 20.3 Transmission calculated from NEGF for ballistic graphene sheet and CNT
	H.2.3 Fig. 20.4 Normalized Hall resistance versus B-field for ballistic channel
	H.2.4 Fig. 20.5 Grayscale plot of local density of states

	H.3 Chapter 22
	H.3.1 Fig. 22.7, n versus , single dot
	H.3.2 Fig. 22.8, I versus V, single quantum dot
	H.3.3 Fig. 22.9, n versus , double quantum dot

	H.4 Chapter 23
	H.4.1 Fig. 23.9 Voltage probe signal as the magnetization of the probe is rotated
	H.4.2 Fig. 23.10 Voltage probe signal due to variation of gate voltage controlled Rashba coefficient


	Appendix I Table of Contents of Part A: Basic Concepts
	Appendix J Available Video Lectures for Part A: Basic Concepts
	Index




