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Preface

Engineers and scientists working on electronic materials and devices need
a working knowledge of “near-equilibrium” (also called “linear” or “low-
field”) transport. By “working knowledge” we mean understanding how to
use theory in practice. Measurements of resistivity, conductivity, mobility,
thermoelectric parameters as well as Hall e↵ect measurements are com-
monly used to characterize electronic materials. Thermoelectric e↵ects are
the basis for important devices, and devices like transistors, which operate
far from equilibrium, invariably contain low-field regions (e.g. the source
and drain) that can limit device performance. These lectures are an intro-
duction to near-equilibrium carrier transport using a novel, Òbottom up
approachÓ as developed by my colleague, Supriyo Datta and presented in
Vol. 1 of this series [1]. Although written by two electrical engineers, it is
our hope that these lectures are also accessible to students in physics, ma-
terials science, chemistry and other fields. Only a very basic understanding
of solid-state physics, semiconductors, and electronic devices is assumed.
Our notation follows standard practice in electrical engineering. For exam-
ple, the symbol, “q,” is used to denote the magnitude of the charge on an
electron and the term, Fermi level (EF ), is used for the chemical potential
in the contacts.

The topic of near-equilibrium transport is easy to either over-simplify
or to encumber by mathematical complexity that obscures the underlying
physics. For example, ballistic transport is usually treated di↵erently than
di↵usive transport, and this separation obscures the underlying unity and
simplicity of the field. These lectures provide a di↵erent perspective on tra-
ditional concepts in electron transport in semiconductors and metals as well
as a unified way to handle both macroscale, microscale, and nanoscale de-
vices. A short introduction to the Boltzmann Transport Equation (BTE),
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which is commonly used to describe near-equilibrium transport, is also in-
cluded and related to the approach used here. Throughout the lectures,
concepts are illustrated with examples. For the most part, electron trans-
port with a simple, parabolic energy band structure is assumed, but the
approach is much more general. A short chapter shows, for example, how
the same approach can be applied to the transport of heat by phonons,
and to illustrate how the theory is applied to new problems, the lectures
conclude with a case study – near-equilibrium transport in graphene.

It should, of course, be understood that this short set of lectures is only
a starting point. The lectures seek to convey the essence of the subject
and prepare students to learn on their own the additional topics needed
to address specific research, development, and engineering problems. On-
line versions of these lectures are available, along with an extensive set
of additional resources for self-learners [2]. In the spirit of the Lessons
from Nanoscience Lecture Note Series, these notes are presented in a still-
evolving form, but we hope that readers find them a useful introduction
to a topic in electronic materials and devices that continues to be relevant
and interesting at the nanoscale.

Mark Lundstrom
Changwook Jeong
Purdue University

June 18, 2012

[1] Supriyo Datta, Lessons from Nanoelectronics: A new approach to trans-
port theory, Vol.1 in Lessons from Nanoscience: A Lecture Notes Series,
World Scientific Publishing Company, Singapore, 2011.

[2] M. Lundstrom, S. Datta, and M.A. Alam, “Lessons from
Nanoscience: A Lecture Note Series,” http://nanohub.org/topics/

LessonsfromNanoscience, 2011.

Note that several typos have been corrected in this version. (MSL,
January 30, 2022)
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Lecture 1

Overview

1.1 Introduction
1.2 Di↵usive electron transport
1.3 Types of electron transport
1.4 Why study near-equilibrium transport?
1.5 Summary
1.6 References

1.1 Introduction

This short set of lectures is about how electrons in semiconductors and met-
als flow in response to driving forces such as applied voltages and di↵erences
in temperature. The simplest description of transport is the famous Ohm’s
Law (Georg Ohm, 1927) ,

I = V/R = GV , (1.1)

which states that the current through a conductor is proportional to the
voltage across it. One goal of these lectures is to develop an understanding
of why and under what conditions the current-voltage characteristic is linear
and to understand how the resistance is related to the material properties
of the resistor. Before launching into the lectures, let’s spend a few minutes
discussing what the following lectures are all about.

1
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1.2 Di↵usive electron transport

The transport of charge carriers such as electrons is a rich and deep field
of physics. While we won’t be delving into the underlying physics in great
detail, it will be necessary to have a firm grasp of some fundamentals.
Consider Fig. 1.1, which illustrates di↵usive electron transport in a simple
resistor (made with an n-type semiconductor for which the current is carried
by electrons in the conduction band).

Fig. 1.1 Illustration of di↵usive electron transport in an n-type semiconductor under
bias.

Because the positive voltage on the right contact attracts electrons,
they tend to flow from left to right, but it is a random walk during which
electrons frequently scatter from defects, impurities, etc. In the traditional
approach, we say that electrons feel a force due to the electric field,

Fe = �qEx = qV/L . (1.2)

The electric field accelerates electrons, but scattering produces an opposing
force, so the result is that in the presence of an electric field, electrons drift
at a steady-state velocity of
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�d = �µnEx = µnV/L , (1.3)

where µn is the mobility, a material-dependent parameter.
We obtain the current by noting that it is proportional to the charge

on an electron, q, the density of electrons per unit volume, n, the cross-
sectional area, A, and to the drift velocity, �d. The current can be written
as

I = nqµn
A

L
V = GV , (1.4)

where

G = nqµn
A

L
= �n

A

L
, (1.5)

with G being the conductance in Siemens (S = 1/Ohms), and �n the con-
ductivity in S/m (1/Ohm-m). Equation (1.4) is a classic result that we
shall try to understand more deeply.

Figure 1.2 is a sketch of what a measured I � V characteristic might
look like for a semiconductor like silicon. We see that there is a region for
which the current varies linearly with voltage. (This is the regime of near-
equilibrium, linear, or low-field transport that we shall be concerned with.
Under high bias, the current becomes a non-linear function of voltage (and
may even be non-monotonic, as in semiconductors like GaAs). A proper
discussion of high-field transport would require another set of lecture notes.
The interested reader can consult Chapter 7 of Lundstrom [1].

Figure 1.3 illustrates the kind of problem that engineers and applied
scientists are increasingly dealing with – an extremely short conductor, in
this case a small molecule. The resistance of devices like this can be mea-
sured, and we need a theory to understand the measured resistance. Equa-
tion (1.4), seems ill-suited to this problem, but a general transport theory
should be able to treat both large conductors and very small ones. When
we develop this theory, we will find some surprises. For example, we’ll find
that there is an upper limit to the conductance, no matter how short the
conductor is and that conductance comes in quantized units. These facts
are well-known from research on mesoscopic physics (e.g. see Datta [2]) but
they have now become important in device research and engineering.
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Fig. 1.2 Illustration of a typical current vs voltage characteristic for a semiconductor
like silicon.

1.3 Types of electron transport

Electronic transport is a rich and complex field. Some important types of
transport are:

(1) near-equilibrium transport
(2) high-field (or hot carrier) transport
(3) non-local transport in small devices
(4) quantum transport
(5) transport in random / disordered / nanostructured materials
(6) phonon transport

Near-equilibrium transport is di↵usive in conductors that are many
mean–free–paths long, but it is ballistic when the conductor is much shorter
than a mean-free-path. We shall discuss both cases. High field transport in
bulk semiconductors is also di↵usive, but since the carriers gain significant
kinetic energy from the high electric field, they are more energetic (hotter)
than the lattice. Under high applied biases, the current is a nonlinear func-
tion of the applied voltage, and Ohm’s Law no longer holds. (See Chapter
7 of Lundstrom [1] for a discussion of high field transport.)

In modern semiconductor devices, modest applied biases (e.g. 1 V) can
produce large electric fields across the short, active regions. Under these
conditions, carrier transport becomes a nonlocal function of the electric
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Fig. 1.3 Illustration of a small organic molecule (phenyl dithiol) attached to two gold
contacts. The I � V characteristics of small molecules can now be measured experimen-
tally. See, for example, L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and
M. L. Steigerwald, “Dependence of single-molecule junction conductance on molecular
conformation,” Nature, 442, 904-907, 2006.

field, and interesting e↵ects such as velocity overshoot can occur. (See
Chapter 8 of Lundstrom [1] for a discussion of these e↵ects.) Finally, as
devices get very short and the potential changes rapidly on the scale of
the electron’s wavelength, e↵ects like quantum mechanical reflection and
tunneling become important. For an introduction to the field of quantum
tranport, see Datta [3].

Another important class of problems has to do with transport in various
kinds of disordered materials. Much of traditional transport theory assumes
a periodic crystal lattice and makes use of concepts like crystal momentum
and Brillouin zones. In these lectures, we will restrict our attention to this
class of problems. Amorphous materials, however, do not possess long range
order; some interesting new features occur, but many of the essential aspects
of scattering are similar (e.g. see Mott and Davis [4]). Polycrystalline
materials consist of single crystal grains separated by grain boundaries.
The statistical distributions of grain sizes, orientations, and grain boundary
properties complicates the description of electron transport. Indeed, much
of the promise of nanotechnology lies in the hope that artificially structuring
matter at the nanoscale will provide properties not found in nature. We
believe that the approach used in these lectures will prove useful for this
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class of problems as well, but this is a topic of current research, and the
lecture notes volume will have to wait.

Finally, we should mention that although our attention in these lectures
is on electron transport in semiconductors and metals, phonon transport is
also important, and many of the concepts developed to describe electron
transport can just as well describe phonon transport. The calculation of the
thermal conductivity is much like the calculation of the electrical conduc-
tivity. Just as for electrons, there can be near–equilibrium, di↵usive, ballis-
tic, far-from-equilibrium, and quantum (or wave-like) transport of phonons
in crystalline or disordered materials. In modern integrated circuits, power
dissipation from electron transport heats the lattice and generates phonons.
Understanding how to manage this problem requires us to understand both
electron and phonon transport. The performance of thermoelectric devices
used for electronic cooling and for electrical power generation from thermal
gradients is controlled by both electron and phonon transport. Although
our focus in these lectures is on electron transport, a brief discussion of
phonon transport is also included.

1.4 Why study near-equilibrium transport?

Given that near-equilibrium transport in crystalline materials is only a
small subset of carrier transport, one might question the need to devote
an entire volume to the topic. There are some good reasons. First, near-
equilibrium transport is the foundation for understanding transport in gen-
eral. Concepts introduced in the study of near-equilibrium are often ex-
tended to treat more complicated problems, and near-equilibrium trans-
port provides a reference point for comparison when we analyze transport
in more complex situations. Second, near-equilibrium transport measure-
ments are extensively used to characterize electronic materials and to under-
stand the properties of new materials. Finally, near-equilibrium transport
controls or strongly influences the performance of most electronic devices.

There is a very large number of books that discuss low-field transport
from a traditional perspective – typically using the Boltzmann Transport
Equation (e.g. see Refs. [5-7]). In this volume, I use a new approach that
I believe is more physically transparent, mathematically more simple, and
that is more broadly applicable.
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1.5 About these lectures

The list of lectures presented in this collection is:

Lecture 1: Overview
Lecture 2: General Model for Transport
Lecture 3: Resistance: Ballistic to Di↵usive
Lecture 4: Thermoelectric e↵ects: Physical Approach
Lecture 5: Thermoelectric e↵ects: Mathematics
Lecture 6: Introduction to Scattering
Lecture 7: Boltzmann Transport Equation
Lecture 8: Near-equilibrium Transport: Measurements
Lecture 9: Phonon Transport
Lecture 10: Graphene: A Case Study

A brief description of each of these lectures follows.

Lecture 2: General model for Transport

Datta’s model of a nanodevice (a version of the Landauer approach) [8] is
introduced as a general way to describe transport in nanodevices – as well
as in bulk metals and semiconductors.

Lecture 3: Resistance: Ballistic to Di↵usive

The resistance of a ballistic conductor and concepts such as the quantum
contact resistance are introduced and discussed. The results are then gen-
eralized to treat transport all the way from the ballistic to di↵usive regimes.
We will show how to treat bulk conductors (electrons free to move in 3D)
and will also discuss 2D conductors (electrons free to move in a plane) and
1D conductors (electrons free to move along a wire).

Lecture 4: Thermoelectric E↵ects: Physical Approach

The e↵ect of temperature gradients on current flow and how electrical cur-
rents produce heat currents will be discussed. Coupled equations for the
electric and heat currents will be presented, and applications to electronic
cooling and the generation of electrical power from thermal gradients will
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be briefly discussed. In this lecture, we use a physical approach and try to
keep the mathematics to a minimum.

Lecture 5: Thermoelectric E↵ects: Mathematics

Beginning with the general model for transport, we mathematically derive
expressions for the four thermoelectric transport coe�cients:

(i) Electrical conductivity
(ii) Seebeck coe�cient (or “thermopower”)
(iii) Peltier coe�cient
(iv) Electronic heat conductivity

We also discuss the relationship of the coe�cients (e.g. the Kelvin relation
and the Wiedemann-Franz Law).

Lecture 6: Introduction to Scattering

In Lectures 1-5, scattering is described by a mean-free-path (mfp) for
backscattering. In this lecture, we show how the mfp is related to the
time between scattering events and briefly discuss how the scattering time
is related to underlying physical processes.

Lecture 7: Boltzmann Transport Equation

Semi-classical carrier transport is traditionally described by the Boltzmann
Transport Equation (BTE) (e.g. [1, 5-7]). In this lecture, we present the
BTE, show how it is solved, and relate it to the Landauer approach used
in these lectures. As an example of the use of the BTE, we derive the
conductivity in the presence of an applied B-field.

Lecture 8: Near-equilibrium Transport: Measurements

Measurements of near-equilibrium transport are routinely used to charac-
terize electronic materials. This lecture is a brief introduction to commonly-
used techniques such as van der Pauw and Hall e↵ect measurements.
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Lecture 9: Phonon Transport

Most of the heat flow in semiconductors is carried by phonons (i.e. quan-
tized lattice vibrations). In the presence of a small temperature gradi-
ent, phonon transport is also a problem in near-equilibrium transport, and
the techniques developed for electron transport can be readily extended to
phonons. This lecture is an introduction to phonon transport. Key similar-
ities and di↵erences between electron and phonon transport are discussed.

Lecture 10: Graphene: A Case Study

In Lectures 1–8 we largely consider applications of near-equilibrium electron
transport to traditional materials, such as semiconductors with a parabolic
energy band, but the theory is much more general. As an example of how to
apply the concepts in these lectures, we discuss near-equilibrium transport
in graphene, a material that has recently attracted a lot of attention and
was the subject of the 2010 Nobel Prize in Physics.

Appendix: Brief Summary of Key Results

The central ideas conveyed in these notes are easy to grasp, but the notes
contain many equations so that the reader can see all the steps in the deriva-
tions of key results. To assist the reader in performing computations, the
key results are summarized in this short appendix, which includes pointers
to specific results in the various lectures. Expressions for the four transport
parameters for materials with simple bandstructures are often needed and
are also listed in this appendix.

1.6 Summary

My objectives for this collection of lectures are very simple:

(1) To introduce the essentials of near-equilibrium carrier transport using
a “bottom up” approach that works at the nanoscale as well as at the
macroscale.

(2) To acquaint students with some key results (e.g. the quantum of con-
ductance, common measurement techniques).
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(3) To provide a basic foundation upon which students can build as they
encounter problems in research and engineering.

Your goal in reading these lecture notes should be to acquire a firm
understanding of the fundamental concepts and to develop an ability to
apply these fundamentals to real problems. Those interested in developing
a deeper understanding of the physics of transport should consult Refs. [2,
3, 8].

1.7 References

For an introduction to high-field transport and to non-local transport in
semiconductor devices, see Chapters 7 and 8 in:

[1] Mark Lundstrom, Fundamentals of Carrier Transport 2nd Ed., Cam-
bridge Univ. Press, Cambridge, U.K., 2000.

Chapters 1 and 2 in the following book are a good introduction to the so-
called Landauer approach.

[2] Supriyo Datta, Electronic Transport in Mesoscopic Systems, Cambridge
Univ. Press, Cambridge, U.K., 1995.

For an introduction to quantum transport, see:

[3] Supriyo Datta, Quantum Transport: Atom to transistor, Cambridge
Univ. Press, Cambridge, U.K., 2005.

For a classic introduction to electronic conduction in noncrystalline mate-
rials, see:

[4] N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Ma-
terials, Clarendon Press, Oxford, U.K., 1971.

Three classic references on low-field transport are:

[5] J.M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press,
Cambridge, U.K., 1964.
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[6] A.C. Smith, J. Janak, and R. Adler, Electronic Conduction in Solids,
McGraw-Hill, New York, N.Y. 1965.

[7] N.W. Ashcroft and N.D. Mermin, Solid–State Physics, Saunders Col-
lege, Philadelphia, PA, 1976.

The conceptual approach used in these lectures is presented in a succinct
form by Datta:

[8] Supriyo Datta, Lessons from Nanoelectronics: A new approach to trans-
port theory, World Scientific Publishing Company, Singapore, 2011.

A collection of additional resources on carrier transport can be found at:

[9] Mark Lundstrom and Supriyo Datta, “Electronics from the Bottom
Up,”
http://nanohub.org/topics/ElectronicsFromTheBottomUp, 2011.

Hear a lecture on this chapter at:

[10] M. Lundstrom, “General Model for Transport,” http://nanohub.org/
topics/LessonsfromNanoscience, 2011.
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Lecture 2

General Model for Transport

2.1 Introduction
2.2 Mathematical model
2.3 Modes
2.4 Transmission
2.5 Near-equilibrium transport
2.6 Transport in the bulk
2.7 Summary
2.8 References

2.1 Introduction

In this chapter, we introduce a simple, but surprisingly useful model for
electron transport. As sketched in Fig. 2.1, we first seek to understand the
I-V characteristics of a nanoscale electronic device. The approach is due to
R. Landauer in a form developed by Datta [1, 2, 3]. As indicated in Fig.
2.1, the contacts play an important role, but we will see that the final result
can be generalized to describe transport in the bulk, for which the current is
controlled by the properties of the material between the contacts. We shall
not attempt to spatially resolve quantities within the device. In practice
this can be important, especially for devices under moderate or high bias.
Semiconductor devices are often described by the so-called semiconductor
equations [4], that make use of the type of bulk transport equation that we
shall discuss.

The heart of the device, the channel, is a material that is described
by its density-of-states, the DOS, D(E � U), where E is energy, and U a
self-consistent electrostatic potential, U . An external gate may be used to

13
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Fig. 2.1 Illustration of a model nanoscale electronic device. The voltage, V , lowers the
Fermi level of contact 2 by an amount, qV .

move the states up and down in energy (as in a transistor), but in these
lectures we will assume a two-terminal device and set U = 0.

The channel of our device is connected to two ideal contacts, which
are assumed to be large regions in which strong scattering maintains near-
equilibrium conditions. Accordingly, each contact is described by an equi-
librium Fermi function (or occupation number),

f0 =
1

1 + e(E�EF )/kBTL
, (2.1)

where EF is the Fermi level (chemical potential) of the contact, and TL is
the temperature of the lattice, which is also the temperature of the elec-
trons because of the assumed near-equilibrium conditions. Each of the two
contacts is in equilibrium, but if a voltage, V , is applied across the device,
then EF2 = EF1 � qV .

The connection of the contacts to the channel is described by a charac-
teristic time, ⌧ , which describes how long it takes electrons to get in and
out of the device. For a very small device (e.g. a single molecule), ⌧ is
controlled by the contact. For longer devices with good contacts, we will
see that ⌧ becomes the transit time for electrons to cross the channel. In
general, the two connections might be di↵erent, so ⌧1 and ⌧2 may be di↵er-
ent. Sometimes it is convenient to express ⌧ in units of energy according
to � = ~/⌧ . If the channel is a single molecule, � has a simple physical in-
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terpretation; it represents the “broadening” of the molecular energy levels
due to the finite lifetimes of the electrons in a molecular level.

Although this model is very simple, we shall see that it is also very
powerful. We shall be concerned with two questions:

(1) How is the electron density in the device related to the Fermi levels in
the contacts, to the density of states, and to the characteristic times?

(2) How is the electron current through the device related to the same
parameters?

Before we develop the mathematical model, we briefly summarize the
key assumptions. For a fuller discussion of these assumptions, see Refs. [1,
2, 3].

(1) The channel of the device is described by a bandstructure, E(k). This
assumption is not necessary; for the more general case, see Ref. [1].

(2) The contacts are large with strong inelastic scattering that maintain
near-equilibrium conditions.

(3) We assume that electrons feel a self-consistent (mean-field) potential,
U , due to the other electrons and the applied biases. (This assumption
breaks down for “strongly correlatedÓ transport,” such as single elec-
tron charging.) In practice, we would find the self-consistent potential
by solving the Poisson equation. It is important for devices like tran-
sistors, but in these notes, we restrict our attention to two-terminal
devices and set U = 0.

(4) All inelastic scattering takes place in the contacts. Electrons flow from
left to right (or right to left) in independent energy channels.

(5) The contacts are reflectionless (ÒabsorbingÓ). Electrons that enter the
contact from the channel are equilibriated according to the Fermi level
of the contact.

Although these assumptions may appear restrictive, we will find that they
describe a large class of problems. Having specified the model device, we
turn next to the mathematical analysis.

2.2 Mathematical model

To develop the mathematical model, consider first the case where only the
first (left) contact is connected to the channel. Contact 1 will seek to fill
up the states in the channel according to EF1. Eventually, contact 1 and
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the channel will be in equilibrium with number of electrons between E and
E + de given by

N 0
01(E)dE = D(E)dEf1(E) , (2.2)

where D(E) is the density-of-states at energy, E, in the channel and f1(E)
is the equilibrium Fermi function of contact 1. Note that N 0

01dE is the
total number of electrons, not the number density. The density-of-states
includes the factor of two for spin degeneracy. We can also write a simple
rate equation to describe the process by which equilibrium between the
contact and channel is achieved. The rate equation is

F1 =
dN 0(E)

dt

����
1

=
N 0

01(E)�N 0(E)

⌧1(E)
. (2.3)

According to Eq. (2.3), dN 0/dt is positive if the number of the electrons
in the channel is less than the equilibrium number and negative if it is
more. If the channel is initially empty, the channel fills up until equilib-
rium is achieved, and if is initially too full of electrons, it emptys out until
equilibrium with the contact is reached.

On the other hand, if only contact 2 is connected to the channel, a
similar set of equations can be developed,

N 0
02(E)dE = D(E)dEf2(E) , (2.4)

F2 =
dN 0(E)

dt

����
2

=
N 0

02(E)�N 0(E)

⌧2(E)
. (2.5)

In practice, both contacts are connected at the same time and both
inject or withdraw electrons from the channel. The total rate of change of
the electron number in the device is

dN 0(E)

dt

����
tot

= F1 + F2 =
dN 0(E)

dt

����
1

+
dN 0(E)

dt

����
2

. (2.6)

In steady-state, dN 0/dt = 0, and we can solve for the steady-state number
of electrons in the channel as

N 0(E)dE =
D(E)dE

2
f1(E) +

D(E)dE

2
f2(E) , (2.7)
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where we have assumed that ⌧1 = ⌧2 and used eqns. (2.2) and (2.4). Finally,
we obtain the total, steady-state number of electrons in the channel by
integrating over all of the energy channels,

N =

Z
N 0(E) dE =

Z 
D(E)

2
f1(E) +

D(E)

2
f2(E)

�
dE . (2.8)

Equation (2.8) is the answer to our first question. It gives the number
of electrons in the channel of the device in terms of the density-of-states of
the channel and the Fermi functions of the two contacts. Finally, a word
about notation. The quantity, N 0 has units of number / energy; it is the
di↵erential carrier density, N 0(E) = dN/dE|E .

We should note the similarity of eqn. (2.8) to the standard expression
for the equilibrium electron number in a semiconductor [4],

N0 =

Z
D(E)f0(E)dE . (2.9)

The di↵erence is that eqn. (2.9) refers to the number of electrons in equi-
librium whereas eqn. (2.8) describes a device that may be in equilibrium
(if EF1 = EF2) or very far from equilibrium if the Fermi levels are very
di↵erent.

We should remember that N is the total number of electrons in the
channel, and D(E) is the total density-of-states, the number of states per
unit energy. In 1D, D / L, the length of the channel. In 2D, D / A, the
area of the channel, and in 3D, D / ⌦, the volume of the channel. For
device work we usually prefer to express the final answers in terms of the
electron density (per unit length in 1D, per unit area in 2D, and per unit
volume in 3D).

Having answered our first question, how the electron number is related
to the properties of the channel and contacts, we now turn to the second
question, the steady-state current. When a steady-state current flows, one
contact tries to fill up states in the channel and the other tries to empty
them. If EF1 > EF2, contact 1 injects electrons and contact 2 removes
them, and vice versa if EF1 < EF2.

The rates at which electrons enter or leave contacts 1 and 2 are given
by eqns. (2.3) and (2.5). In steady state,

F1 + F2 = 0 . (2.10)

.



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

18 Near-equilibrium Transport: Fundamentals and Applications

The current is defined to be positive when it flows into contact 2, so

I 0 = qF1 = �qF2 . (2.11)

Using our earlier results, eqns. (2.2) and (2.4), we find

I 0(E) =
q

2⌧(E)
(N 0

01 �N 0
02) =

2q

h

�(E)

2
⇡D(E) (f1 � f2) , (2.12)

where

� ⌘ ~
⌧(E)

, (2.13)

Finally, the total current is found by integrating over all of the energy
channels,

I =

Z
I 0(E)dE =

2q

h

Z
�(E)⇡

D(E)

2
(f1 � f2) dE . (2.14)

According to eqn. (2.14), current only flows when the Fermi levels of the
two contacts di↵er. In that case, there is a competition – one contact keeps
trying to fill up the channel while the other one keeps trying to empty it.

This concludes the mathematical derivation that answers our two ques-
tions about how the steady-state number of electrons and current are re-
lated to the properties of the channel and contacts. The key results, eqns.
(2.8) and (2.14) are repeated below.

N =

Z
D(E)

2
(f1 + f2) dE

I =
2q

h

Z
�(E)⇡

D(E)

2
(f1 � f2) dE .

(2.15)

The remainder of these lecture notes largely consists of understanding and
applying these results.

2.3 Modes

The fact that the current is proportional to (f1�f2) makes sense, and 2q/h
is a set of fundamental constants that we shall see is important, but what is
the product, �⇡D/2? It is an important quantity. According to eqn. (2.13),
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� has units of energy. The density-of-states, D(E), has units of 1/energy.
(Recall that we deal with total electron numbers, not electron densities, so
the 3D density-of-states here does not have units of 1/energy-volume, as is
customary in semiconductor physics.) Accordingly, we conclude that the
product, �⇡D/2 is dimensionless. We shall see that it is the number of
conducting channels at energy, E.

Figure 2.2 is a sketch of a two-dimensional, ballistic channel.
The total density-of-states is

D(E)/A = D2D(E) = gv
m⇤

⇡~2 , (2.16)

where D2D is the 2D density-of-states per unit area, the number of states
per J�m2. The final result assumes parabolic energy bands with an e↵ec-
tive mass of m⇤ and occupation of a single subband (due to confinement in
the vertical direction) with a valley degeneracy of gv.

Fig. 2.2 A simple, 2D electronic device with channel width, W and length, L. For the
calculation of the average x-directed velocity, ballistic transport is assumed – i.e. the
channel is much shorter than a mean-free-path for scattering.

Let’s do an “experiment” to determine the characteristic time, ⌧ . From
eqns. (2.7) and (2.12), we find

qN 0(E)dE

I 0(E)dE
=

~
�

(f1 + f2)

(f1 � f2)
. (2.17)

Now in our experiment we apply a large voltage to contact 2, which makes
EF2 << EF1 so f2 << f1, and eqn. (2.17) becomes

qN 0(E)dE

I 0(E)dE
=

stored charge

current
=

~
�
= ⌧(E) . (2.18)
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The number of electrons in the channel is N 0(E) = n0
s(E)WL, where ns is

the electron density per unit area. The di↵erential current can be written
as I 0(E) = qWn0

s(E) h�+x (E)i, so from eqn. (2.18), we find

⌧(E) =
L⌦

�+x (E)
↵ , (2.19)

which is just the average transit time of carriers across the channel.
To evaluate ⌧(E), we need h�+x (E)i, the average velocity in the +x

direction. From Fig. 2.2, we see that for ballistic transport, in which
electrons travel across the device without changing direction,

⌦
�+x (E)

↵
= �(E) hcos ✓i . (2.20)

A simple calculation gives

hcos ✓i =

R ⇡/2
�⇡/2 cos ✓ d✓

⇡
=

2

⇡
, (2.21)

so we find the average ballistic velocity in the +x direction as

⌦
�+x (E)

↵
=

2

⇡
� =

2

⇡

r
2(E � EC)

m⇤ , (2.22)

where the final result assumes parabolic energy bands. (We also assumed
isotropic conditions, so that �(E) is not a function of ✓.) Defining

M(E) ⌘ �(E)⇡
D(E)

2
(2.23)

and using � = ~/⌧ and D = D2DWL, we find

M(E) = WM2D(E) = W
h

4

⌦
�+x (E)

↵
D2D(E) . (2.24)

Similar arguments in 1D and 3D yield

M(E) = M1D(E) =
h

4

⌦
�+x (E)

↵
D1D(E)

M(E) = WM2D(E) = W
h

4

⌦
�+x (E)

↵
D2D(E)

M(E) = AM3D(E) = A
h

4

⌦
�+x (E)

↵
D3D(E) .

(2.25)
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Note that the number of conducting channels at energy, E, is proportional
to the width of the conductor in 2D and to the cross-sectional area in 3D.

We now have expressions for the number of channels at energy, E in
1D, 2D, and 3D, but we should try to understand the result. For parabolic
energy bands, we can evaluate (2.24) to find

WM2D(E) = gvW

p
2m⇤(E � Ec)

⇡~ , (2.26)

where gv is the valley degeneracy. Parabolic energy bands are described by

E(k) = EC +
~2k2
2m⇤ , (2.27)

which can solved for k to write

WM2D(E) = gv
Wk

⇡
= gv

W

�B(E)/2
, (2.28)

where �B = 2⇡/k is the de Broglie wavelength of electrons at energy, E.
We now see how to interpret eqn. (2.24); M(E) is simply the number of
electron half wavelengths that fit into the width of the conductor. This
occurs because the boundary conditions insist that the wavefunction goes
to zero at the two edges of the conductor.

We can now re-write eqns. (2.15) as

N =

Z
D(E)

2
(f1 + f2) dE

I =
2q

h

Z
M(E) (f1 � f2) dE

, (2.29)

which shows that to compute the number of electrons and the current, we
need two di↵erent quantities, D(E) and M(E). The density-of-states is a
familiar quantity. For parabolic energy bands, we know that the 1D, 2D,
and 3D densities-of-states are given by

1D : D(E) = D1D(E)L =
L

⇡~

s
2m⇤

(E � Ec)
H(E � Ec)

2D : D(E) = D2D(E)A = A
m⇤

⇡~2H(E � Ec)

3D : D(E) = D3D(E)⌦ = ⌦
m⇤
p

2m⇤(E � Ec)

⇡2~3 H(E � Ec) ,

(2.30)
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where L is the length of the 1D channel, A the area of the 2D channel, ⌦
is the volume of the 3D channel, and H is the Heaviside step function. We
now also know how to work out the corresponding results for M(E); for
parabolic energy bands they are

M(E) = M1D(E) = H(E � Ec)

M(E) = WM2D(E) = Wgv

p
2m⇤(E � Ec)

⇡~ H(E � Ec)

M(E) = AM3D(E) = Agv
m⇤

2⇡~2 (E � Ec)H(E � Ec) ,

(2.31)

where W is the width of the 2D channnel and A is the cross sectional area
of the 3D channel. Figure 2.3 compares the density-of-states and number
of modes (conducting channels) in 1D, 2D, and 3D for the case of parabolic
energy bands (E(k) = Ec + ~2k2/2m⇤).

Fig. 2.3 Comparison of the density-of-states, D(E), and number of channels, M(E), in
1D, 2D, and 3D. Parabolic energy bands are assumed in each case.

We can summarize the main points of this section as follows.

(1) The density-of-states vs. E is used to compute carrier densities.
(2) The number of modes (channels) vs. E is used to compute the current.
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(3) The number of modes at energy, E, is proportional to the average
velocity (in the direction of transport) at energy, E, times the density-
of-states, D(E).

(4) M(E) depends on the bandstructure and on dimensionality.

Although we assumed parabolic energy bands to work out examples,
the main results, eqn. (2.25), are general. See Lecture 10 – the graphene
case study to see how to work out M(E) for graphene. For general band-
structures, a numerical procedure can be used [5].

2.4 Transmission

Figure 2.2 showed how electrons flow from contact 1 to contact 2 under
ballistic conditions. Figure 2.4 shows the di↵usive case.

Fig. 2.4 A simple, 2D electronic device with channel width, W and length, L. In this
case, di↵usive transport is assumed – the channel is many mean-free-paths long.

Electrons injected from contact 1 (or 2) undergo a random walk. Some
of these random walks terminate at the injecting contact and some at the
other contact. If there is a positive voltage on contact 2, then a few more
of the random walks terminate on contact 2. The average distance between
scattering events is known as the mean-free-path. Transport is “di↵usive”
when the sample length is much longer than the mean-free-path. A key
parameter in our model is the quantity �⇡D/2, which we have seen is
M(E) for ballistic transport. The broadening, �, is related to the transit
time according to � = ~/⌧ . We expect the transit time to increase when
transport is di↵usive, so �⇡D/2 will decrease. In this section, we will show
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that for di↵usive transport �⇡D/2 = M(E)T (E), where T (E)  1 is known
as the “transmission.”

For ballistic transport, there is a distribution of transit times because
carriers are injected into the channel at di↵erent angles. Accordingly, we
evaluated � from the average transit time and found

�(E) =
~

h⌧(E)i , (2.32)

where

h⌧(E)i = L⌦
�+x (E)

↵ =
L

�(E) hcos ✓i =
L

�(E) (2/⇡)
. (2.33)

Our challenge now is to determine h⌧(E)i for the case of di↵usive transport.
Consider a device with a very long channel (L >> �), then Fick’s Law

of di↵usion should apply. If we inject electrons from contact 1 and collect
them from contact 2, then the current in our 2D device should be given by

J = qDn
dns

dx
A/cm . (2.34)

As shown in Fig. 2.5, there is a finite concentration of injected electrons at
x = 0, �ns(0), and for a long channel, �ns(L) ! 0. The electron profile is
linear because no recombination-generation is assumed. The total number
of electrons in the device is N = ns(0)WL/2, where W is the width of
the conductor in the direction normal to current flow, and L is the length.
From our definition of transit time, we find

⌧ =
qN

I
=

Wq�ns(0)L/2

WqDn�ns(0)/L
=

L2

2Dn
, (2.35)

where we have used I = JW and dns/dx = �ns(0)/L. We conclude that
the di↵usive transit time is

⌧D =
L2

2Dn
(2.36)

while the ballistic transit time was

⌧B =
L⌦
�+x
↵ . (2.37)
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Putting this all together, we find

�(E)⇡
D(E)

2
=

~
⌧D
⇡
D

2
=

~
⌧B
⇡
D

2
⇥ ⌧B
⌧D

⌘ M(E)T (E) , (2.38)

where

T (E) =
⌧B
⌧D

. (2.39)

Fig. 2.5 Illustration of di↵usion in a channel many mean-free-paths long.

We see that in the presence of scattering, we just need to replace M(E) by
M(E)T (E).

To evaluate T (E), we use eqn. (2.39) with eqns. (2.36) and (2.37) and
find

T (E) =
2Dn

L
⌦
�+x
↵ . (2.40)

The di↵usion coe�cient describes the random walk of electrons; it is re-
lated to the carrier velocity and the mean-free-path for backscattering, �,
according to

Dn =
h�+x i�

2
cm2/s . (2.41)
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(This expression is not obvious. You can check that it is dimensionally
correct but will have to wait until Lecture 6 for the derivation and for a
precise definition of the mean-free-path for backscattering.) Finally, using
eqns. (2.40) and (2.41), we find a simple expression for the transmission:

T (E) =
�

L
<< 1 . (2.42)

As expected, the product �⇡D/2 = M(E)T (E) is greatly reduced from its
ballistic value.

Our “derivation” of T (E) here is no more than a plausibility argument.
As we will discuss in Lecture 6, the transmission is the probability that an
electron at energy, E injected from contact 1 exits in contact 2 (or vice
versa). It must be a number between 0 and 1. Equation (2.42) is accurate
in the di↵usive limit that we have considered (L >> �), but it fails when
L is short. The correct, general expression is

T (E) =
�(E)

�(E) + L
, (2.43)

which reduces to eqn. (2.42) for the di↵usive limit of L >> �, but for the
ballistic limit of L << � it approaches 1. This expression is reasonable,
but we will see in Lecture 6 that it can be derived with relatively few
assumptions and that it is valid not only in the ballistic and di↵usive limits,
but in between as well.

To summarize, we can write in general

�(E)⇡
D(E)

2
= M(E)T (E) , (2.44)

with M(E) being given by eqns. (2.25) and T (E) by eqn. (2.43). People
speak of three di↵erent transport regimes:

Di↵usive : L >> � T = �/L << 1

Ballistic : L << � T ! 1

Quasi� ballistic : L ⇡ � T < 1 .

(2.45)

Our simple transport model can be used to describe all three regions.
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2.5 Near-equilibrium (linear) transport

To summarize, we have developed an expression for the current in a
nanoscale device that can be expressed in two di↵erent ways:

I =
2q

h

Z
�(E)⇡

D(E)

2
(f1 � f2) dE

I =
2q

h

Z
T (E)M(E) (f1 � f2) dE .

(2.46)

There is no limitation to small applied biases yet, but if we apply a large
bias, then there could be a lot of inelastic scattering that would invali-
date our assumption that the current flows in independent energy channels.
Since our interest is in near-equilibrium transport, we now simplify these
equations for low applied bias.

The two Fermi functions in eqn. (2.46) are di↵erent when there is an
applied bias. Recall that an applied bias lowers the Fermi level by �qV . If
the applied bias is small, we can write

(f1 � f2) ⇡ � @f0
@EF

�EF . (2.47)

From the form of the equilibrium Fermi function,

f0 =
1

1 + e(E�EF )/kBTL
, (2.48)

we see that

@f0
@EF

= �@f0
@E

. (2.49)

Equations (2.49) and (2.47) can be used in eqn. (2.46) along with �EF =
�qV to obtain

I =


2q2

h

Z
T (E)M(E)

✓
�@f0
@E

◆
dE

�
V = GV . (2.50)

The final result,

G =
2q2

h

Z
T (E)M(E)

✓
�@f0
@E

◆
dE , (2.51)

is just the conductance in Ohm’s Law, but now we have an expression that
relates the conductance to the properties of the material. It is important
to remember that this expression is valid in 1D, 2D, or 3D, if we use the
appropropiate expression for M(E).
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2.6 Transport in the bulk

In this lecture, we have developed a model for the current or conductance
of a device whose channel length may be short or long. When the channel
is long, the contacts play no role, and the current is limited by the material
properties of the channel. We can develop an expression for the current
in a bulk conductor from either of the two forms of the current equations,
eqn. (2.46). Let’s use the first form.

Assuming near-equilibrium conditions, we can use eqn. (2.47) to write
eqn. (2.46) as

I =
2q

h

Z 
�(E)⇡

D(E)

2

✓
� @f0
@EF

◆
�EF

�
dE . (2.52)

A bulk conductor is, by definition, in the di↵usive limit, so

�(E) =
~

⌧(E)
=

~
L2/2Dn(E)

. (2.53)

To be specific, let’s assume a 2D conductor for which we can write

D(E) = WLD2D(E) . (2.54)

Now using eqns. (2.53) and (2.54) in (2.52), we find

Jnx = I/W =

Z
qDn(E)D2D(E)

✓
� @f0
@EF

◆
dE

�
�EF

L
. A/cm (2.55)

Figure 2.6 illustrates how we think about a bulk resistor. In a conven-
tional resistor, the potential and electrochemical potential (or quasi-Fermi
level) drop linearly along the length. In our model device, the Fermi levels
are only defined in the two contacts. Since the bulk resistor is assumed to be
under low bias and near equilibrium everywhere, we can conceptually place
two contact separated by a length, L >> �, anywhere along the length
of the resistor. The average electrochemical potential in the first contact,
becomes EF1 for our “device,” and the average electrochemical potential in
the second contact, our EF2. Because the electrochemical potential drops
linearly with position, �EF /L becomes dFn/dx, and we can write (2.55)
as

Jnx = �n
d(Fn/q)

dx
, (2.56)
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where the conductivity is

�n =

Z
q2Dn(E)D2D(E)

✓
�@f0
@E

◆
dE . (2.57)

Fig. 2.6 Illustration of how a near-equilibrium bulk conductor is conceptually treated
as a device with two contacts.

Equations (2.56) and (2.57) are standard results that are conventionally
obtained from irreversible thermodynamics or by solving the Boltzmann
Transport Equation [7]. We have obtained the standard expressions for
bulk materials by assuming that the channel of our model device is much
longer that a mean-free-path.

Real resistors can be linear even when quite large voltages are applied.
How does this occur? It occurs because when the resistor is long, electrons
do not drop down the total potential drop in one step. Instead, they con-
tinually gain a little energy and then dissipate it by emitting phonons. If
the resistor is long and the voltage drop not too large, then the electrons
are always near equilibrium, and we can conceptually divide up the resis-
tor into sub-devices, as sketched in Fig. 2.6, where only a fraction of the
potential drop occurs.

Equation (2.56) can also be written di↵erently. Conventional semicon-
ductor theory tells us that for a non-degenerate, n-type semiconductor
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ns = N2De(Fn�Ec)/kBTL

N2D = gv
m⇤kBTL

⇡~2

Fn = Ec + kBTL ln
N2D

ns

�n = nsqµn .

(2.58)

(Note that the units of the 2D conductivity, �n, are Siemens or 1/⌦.) Using
eqns. (2.58), the current equation, (2.56) becomes

Jnx = nsqµnEx + qDn
dns

dx
, (2.59)

where

Dn

µn
=

kBTL

q
(2.60)

is the Einstein relation. Equation (2.59) is the well-known “drift-di↵usion”
equation, which is often the starting point for analyzing semiconductor
devices [4]. We see that it assumes steady-state, near-equilibrium, non-
degenerate conditions (and we have also assumed a uniform temperature
along the resistor).

Finally, you may be wondering: “What about holes?” In standard
semiconductor physics, the conduction and valence bands are described by
two di↵erent electrochemical potentials (or quasi-Fermi levels), Fn and Fp.
This occurs because we have two separate populations of carriers that

are in equilibrium with carriers in the same band but not with carriers in
the other band. The recombination-generation processes that couple the
two populations are typically slow in comparison to the scattering processes
that establish equilibrium within each band. For electrons in the conduction
band, we have

Jnx = �n
d(Fn/q)

dx

�n =

Z
q2Dn(E)D2D(E)

✓
� @f0
@EF

◆
dE

f0 =
1

1 + e(E�Fn(x))/kBTL
,

(2.61)
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and for electrons in the valence band, we have

Jpx = �p
d(Fp/q)

dx

�p =

Z
q2Dp(E)D2D(E)

✓
� @f0
@EF

◆
dE

f0 =
1

1 + e(E�Fp(x))/kBTL
.

(2.62)

The total current is the sum of the contributions from each band. It is
important to note that these equations refer to electrons in both the con-
duction and valence bands. The occupation factor, f0, describes the prob-
ability that an electron state is occupied. It is often useful to visualize the
resulting current flow in the valence band in terms of holes, but the expres-
sions that we used were derived for electrons, and we did not inquire as to
whether they were in the conduction or valence bands because it does not
matter.

2.7 Summary

This has been a long lecture, but the final result is a simple one that we
shall see is very powerful. Equation (2.51) describes the conductance of
a linear resistor very generally. The conductance is proportional to some
fundamental constants, (2q2/h), which we will see in the next lecture is
the “quantum of conductance,” that is associated with the contacts. The
conductance is related to the number of conducting channels at energy,
E, M(E), and to the transmission, T (E), which is the probability that
an electron with energy, E, injected from one contact exits at the other
contact. We find the total conductance by integrating the contributions
of all of the energy channels. Equation (2.51) is valid in 1D, 2D, or 3D
– we simply need to use the correct expressions for M(E). It is valid for
very short (ballistic) resistors or very long (di↵usive) resistors and for the
region in between. The next lecture will begin with eqn. (2.51). Finally,
it should be mentioned, that we have assumed isothermal conditions – the
two contacts are at the same temperature. The implications of temperature
gradients will be discussed in Lectures 4 and 5.
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Lecture 3

Resistance: Ballistic to Di↵usive
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3.3 2D resistors: di↵usive to ballistic
3.4 Discussion
3.5 Summary
3.6 References

3.1 Introduction

We are now ready to use the general model introduced in Lecture 2. We
will consider a simple problem, determining the resistance of 1D, 2D, and
3D resistors beginning with very short (ballistic) resistors, then treating
conventional, di↵usive resistors, and finally treating the entire ballistic to
di↵usive spectrum. As sketched in Fig. 3.1, in a 1D resistor (a “nanowire”)
electrons are free to move in only one dimension. In a 2D resistor (in which
electrons are said to be confined in a “quantum well”) electrons are free
to move in two dimensions. In a 3D resistor, electrons are free to move in
all three dimensions. According to conventional semiconductor theory (e.g.
[1]), we would write the resistances as

1D : R1D = ⇢1D L ⇢1D =
1

nlqµn

2D : R2D = ⇢2D
L

W
⇢2D =

1

nsqµn

3D : R3D = ⇢3D
L

A
⇢3D =

1

nqµn
.

(3.1)

35
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(Note that the resistivities, ⇢, have di↵erent units in di↵erent dimensions,
and the carrier densities, nl, ns, andn are per unit length, area, and volume
respectively.) These expressions are reasonable; the resistance is propor-
tional to the length of the resistor in each case. It is inversely proportional
to the width in 2D or cross-sectional area in 3D because increasing W or A
is like adding resistors in parallel. We shall see however, that these equa-
tions are not always correct – even for such a simple device, interesting
things can happen.

Fig. 3.1 Sketch of 1D, 2D, and 3D resistors. In this chapter, we will focus on 2D
resistors, but the same techniques apply in 1D and 3D as well.

Our starting point is the Landauer expression for the conductance, eqn.
(2.51), which is repeated below

G =
2q2

h

Z
T (E)M(E)

✓
�@f0
@E

◆
dE S = (1/⌦) . (3.2)

Equation (3.2) is valid in 1D, 2D, and 3D, as long as we use the correct
expression for the number of conducting channels, M(E). To be specific,
consider 2D, for which it is convenient to write

G =
1

⇢2D

W

L
= �s

W

L
. (3.3)
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We will see that for wide and long di↵usive conductors, the sheet conduc-
tance, �s, is independent of W and L. For short conductors, �s becomes
a function of L and for narrow conductors, the conductance increases with
W in a stepwise manner.

In this lecture, we will focus on 2D resistors, just to make the discussion
concrete, but similar considerations apply to 1D and to 3D resistors. Recall
also that the � (@f0/@E) term in eqn. (3.2) came from a Taylor series
expansion of (f1 � f2) assuming that the temperature of the two contacts
was the same. As we will see in the next lecture, there are two driving
“forces” for current flow, di↵erences in the Fermi levels of the two contacts
(caused by di↵erent voltages) and di↵erences in the temperatures of the
two contacts. In this lecture we assume that the two contacts are at the
same temperature.

3.2 2D resistors: ballistic

We begin with a ballistic resistor, for which T (E) = 1. The term,
M(E) = WM2D(E) was given in eqn. (2.25) for general bands and by
(2.31) for parabolic energy bands, so we just need to understand the term,
� (@f0/@E), in eqn. (3.2). We refer to this term as the “Fermi window.”

Figure 3.2 is a sketch of f0(E) and � (@f0/@E) vs. E. We see that
(�@f0/@E) is significant only for an energy range of a few kBTL near the
Fermi level. It is readily shown that the area under the � (@f0/@E) vs. E
curve is one, so for low temperatures, we may write

�@f0
@E

⇡ � (E � EF ) . (3.4)

Finally, using eqn. (3.4) with T (E) = 1 in eqn. (3.2), we find

Gball =
2q2

h
M (EF ) , (3.5)

which is a general expression valid in any dimension. If the number of
channels is small, then we can simply count them, and we find that the
conductance or resistance cannot be any value, it is quantized according to

Rball =
1

M(EF )

h

2q2
=

12.9 k⌦

M(EF )
. (3.6)
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Fig. 3.2 Sketch of the Fermi function and its derivative vs. energy. The
function,� (@f0/@E), is called the ”Fermi window” for conduction.

Note that the ballistic resistance is independent of length, as expected for
ballistic transport.

The fact that resistance is quantized is well-established experimentally.
See, for example, Fig. 3.3, which shows experimental results. The re-
sistor is a 2D electron gas formed at an interface of AlGaAs and GaAs.
The width of the resistor is controlled electrostatically by reverse-biased
Schottky junctions. The mobility of the electrons is very high (because the
electrons reside in an undoped GaAs layer and because the temperature is
low), so ballistic transport is expected. As the width was electrically varied,
the measured conductance was seen to increase in discrete steps according
to eqn. (3.5). Quantized conductance has been observed in many di↵erent
systems. The experiment shown in Fig. 3.3 was done at low temperature to
achieve near ballistic transport, but modern devices are so short that these
e↵ects are becoming important at room temperature in some systems.

Wide, 2D ballistic resistors: TL = 0 K

When W is many electron half-wavelengths, then the number of channels
is large, and it is no longer easy to count them. In this limit, we have for
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Fig. 3.3 Experiments of van Wees, et al. experimentally demonstrating that conduc-
tance is quantized. Left: sketch of the device structure. Right: measured conductance.
(Data from: B. J. van Wees, et al., Phys. Rev. Lett. 60, 848-851, 1988. Figures from D.
F. Holcomb, “Quantum electrical transport in samples of limited dimensions’,’ Am. J.
Phys., 67, pp. 278-297, 1999. Reprinted with permission from Am. J. Phys. Copyright
1999, American Association of Physics Teachers.)

parabolic energy bands from eqn. (2.31)

M(EF ) = WM2D(EF ) = Wgv

p
2m⇤(EF � Ec)

⇡~ . (3.7)

It is convenient to relate M2D to the sheet carrier density, ns because ns is
often known in experiments. In momentum space, all states with k < kF
are occupied at TL = 0. The 2D area of k-space occupied is ⇡k2F , each state
takes up an area in k-space of (2⇡)2/A, and there is a spin degeneracy of
2, so

ns = gv
⇡k2F
(2⇡)2

⇥ 2 = gv
k2F
2⇡

, (3.8)

where gv is the valley degeneracy. By solving this equation for kF and using
eqn. (2.28), we find

M2D(EF ) =

r
2ns

⇡
. (3.9)

Equation (3.9) relates the number of channels at the Fermi energy to the
sheet carrier density. It is interesting to note that this result does not
assume a particular band structure – only that the band is isotropic. To
relate kF to EF , however, we have to assume a bandstructure. For example,
for parabolic energy bands, the wavevector, kF is found by solving

~2k2F
2m⇤ = (EF � Ec) . (3.10)
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Wide, 2D ballistic resistors: TL > 0 K

At low temperatures, the approximation, eqn. (3.4), works well, but near
room temperature and above, we must usually work out the integral in eqn,
(3.2). Using the definition of the Fermi function, eqn. (2.1), we find

Gball
2D =

2q2

h

Z
WM2D(E)

✓
� @

@E

◆
1

1 + e(E�EF )/kBTL
dE . (3.11)

Integrals of this type appear frequently in semiconductor physics, so let’s
work this one out as an example.

From the form of the Fermi function, we see that

✓
� @

@E

◆
=

✓
+

@

@EF

◆
, (3.12)

which allows us to move the derivative outside the integral in eqn. (3.11)
to obtain

Gball
2D =

2q2

h

Wgv
p
2m⇤

⇡~

✓
@

@EF

◆Z 1

0

p
(E � Ec)

1 + e(E�EF )/kBTL
dE . (3.13)

where we have used eqn. (3.7) for M2D(E). Next, we change variables by
defining

⌘ ⌘ (E � Ec)/kBTL

⌘F ⌘ (EF � Ec)/kBTL

(3.14)

and find

Gball
2D =

2q2

h

Wgv
p
2m⇤kBTL

⇡~

✓
@

@⌘F

◆Z 1

0

p
⌘

1 + e⌘�⌘F
d⌘ . (3.15)

The integral in eqn. (3.15) cannot be done analytically, but integrals of
this type occur so often in semiconductor work that they have been given
a name – Fermi-Dirac integrals. In this case, the integral in eqn. (3.15) is
proportional to

F1/2(⌘F ) ⌘
2p
⇡

Z 1

0

⌘1/2

1 + e⌘�⌘F
d⌘ , (3.16)

which is the Fermi-Dirac integral of order one-half. Finally, one property
of a Fermi-Dirac integral is that when di↵erentiated with respect to its
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argument, the order of a Fermi-Dirac integral is reduced by one. Putting
this all together, we find

Gball
2D =

2q2

h

Wgv
p
2m⇤kBTL

⇡~

✓p
⇡

2

◆
F�1/2(⌘F ) =

2q2

h
hWM2Di , (3.17)

where

hMi = hWM2Di =
✓p

⇡

2

◆
WM2D(kBTL)F�1/2(⌘F ) , (3.18)

where WM2D(kBTL) is WM2D(E�Ec) evaluated at an energy of E�Ec =
kBTL. Comparing eqns. (3.17) and (3.5), we see that the conductance at
finite temperatures has the same form as the TL = 0 K result – we just
replace M(EF ) by hMi as defined in eqn. (3.18). We interpret hMi as the
number of channels in the Fermi window, (�@f0/@E).

When analyzing experiments, it is often easier to determine ns than EF ,
but the two are related, so given ns, we can find EF . For parabolic bands,
the relation is

ns =

Z 1

0
D2D(E)f0(E) dE = gv

m⇤kBTL

⇡~2 F0(⌘F ) = N2DF0(⌘F ) . (3.19)

We have worked out one example assuming a 2D resistor with parabolic
energy bands. Similar integrals with Fermi-Dirac integrals of various orders
appear when working out problems in other dimensions and for other (i.e.
nonparabolic) dispersions. Familiarity with a few properties of Fermi-Dirac
integrals is helpful when working out such integrals.

Fermi-Dirac integrals

The Fermi-Dirac integral of order j is defined as

Fj(⌘F ) ⌘
1

�(j + 1)

Z 1

0

⌘j d⌘

1 + e⌘�⌘F
, (3.20)

where the �-function is defined for integer arguments of zero or greater as

�(n) = (n� 1)! . (3.21)

We also have the following useful relations,
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�(1/2) =
p
⇡

�(p+ 1) = p�(p)
(3.22)

For non-degenerate semiconductors, the Fermi level is several kBTL be-
low the band edge, so ⌘F = (EF �Ec)/kBTL ⌧ 0. Under these conditions,
Fermi-Dirac integrals of any order reduce to exponentials:

Fj(⌘F ) ! e⌘F ⌘F ⌧ 0 . (3.23)

Another useful property that we have already seen involves taking the
derivative of a Fermi-Dirac integral,

dFj(⌘F )

d⌘F
= Fj�1(⌘F ) . (3.24)

These few definitions and rules are all we need for most semiconductor
problems. One warning – don’t confuse the “script” Fermi-Dirac integral
as defined in eqn. (3.20) with the “Roman” Fermi-Dirac integral, Fj(⌘F ),
which does not include the �-function normalization. For a good intro-
duction to Fermi-Dirac Integrals – including approximations and scripts to
compute them, see [2].

Exercise 3.1: Analysis of a silicon MOSFET

Let’s see how we can use the results of this section to analyze the perfor-
mance of modern field-e↵ect transistors. Figure 3.4 shows the measured
I � V characteristics of a 60 nm channel length silicon MOSFET. Let’s
focus on the low drain voltage (near-equilibrium) region and the VG = 1.2
V characteristic (the top line). For this condition, the measured carrier
density and channel resistance (after subtracting out the parasitic series
resistances of the source and drain contacts) are

ns ⇡ 6.7⇥ 1012 cm�2

Rch ⇡ 215 ⌦� µm

µe↵ ⇡ 260 cm2/V � s .

The two questions we ask are: 1) How many conduction channels carry the
current? and 2) How close is the channel resistance to the ballistic limit?
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Before we can answer this question, we need to understand a little bit
about the Si bandstructure. Recall that in bulk Si, there are six equivalent
conduction band minima [1], but quantum confinement lifts the degeneracy
so that the lowest subband is two-fold degenerate (gv = 2) with an e↵ective
mass of m⇤ = mt = 0.19m0 [3]. We can do the calculation three di↵erent
ways. First, we can assume TL = 0 K, which makes the math easy, but the
TL = 0 K assumption is not so good at room temperature. Second, we can
assume Maxwell-Boltzmann (non-degenerate) carrier statistics, which also
results in simple math, but above the threshold voltage, the non-degenerate
assumption is not so good. The third way to do the calculation is without
either assumption, which entails evaluating Fermi-Dirac integrals. In this
simple example, we shall consider just the first approach, which should give
us a good feel for the numbers.

Fig. 3.4 Measured ID � VDS characteristic of an n-channel silicon MOSFET. (Data
from: Changwook Jeong, Dimitri A. Antoniadis and Mark Lundstrom, “On Back-
Scattering and Mobility in Nanoscale Silicon MOSFETs,” IEEE Trans. Electron Dev.,
56, 2762-2769, 2009.)

Assuming TL = 0 K, eqn. (3.9), gives M2D(EF ) ⇡ 290/µm. Consider
a minimum size transistor with W/L = 2. Since L = 60 nm, we find
M2D(EF ) ⇡ 35. A rather small number of channels carry the current in a
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minimum sized MOSFET. To find the corresponding ballistic resistance of
this MOSFET, we use eqn. (3.6) to find Rball

2D ⇡ 45 ⌦-µm, which is about
20% of the channel resistance of this MOSFET.

3.3 2D resistors: di↵usive to ballistic

In the previous section, we assumed ballistic transport, T (E) = 1. In this
section, we will first assume di↵usive transport, T (E) = �(E)/L. Our
general approach works for 1D, 2D, and 3D resistors, but as in the previous
section, we’ll just work out the 2D case here. Our starting point is eqn.
(3.2) in 2D and in the di↵usive limit.

Gdi↵
2D =

✓
2q2

h

Z
�(E)M2D(E)

✓
�@f0
@E

◆
dE

◆
W

L
(1/Ohms) . (3.25)

The ratio, W/L, is consistent with conventional transport theory (e.g. eqn.
(3.1)). In our Landauer picture, the W enters because the number of chan-
nels is proportional to W , and the L comes because in the di↵usive limit,
the transmission is proportional to 1/L. Since the integral in eqn. (3.25) is
trivial for TL = 0 K, we begin there.

Wide, 2D di↵usive resistors: TL = 0 K

Using eqn. (3.4), we find that for TL = 0 K, eqn. (3.25) becomes

Gdi↵
2D =

2q2

h
M2D (EF )� (EF )

W

L
=
�(EF )

L
Gball

2D , (3.26)

so if we know the mean-free-path, it is easy to compute the di↵usive con-
ductance.

We have discussed the ballistic and di↵usive conductances, but it is also
easy to cover the entire ballistic to di↵usive spectrum. By using T (E) =
�(E)/(�(E) + L), we find

G2D =
2q2

h
WM2D (EF )

�(EF )

�(EF ) + L
=

�(EF )

�(EF ) + L
Gball

2D , (3.27)

or in terms of resistance,

R =

✓
1 +

L

�(EF )

◆
Rball . (3.28)
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Equation (3.28) shows that R / L in the di↵usive limit and R is indepen-
dent of L in the ballistic limit.

Wide, 2D di↵usive resistors: TL > 0 K

At finite temperatures, we should work out the integral in eqn. (3.25). By
multiplying and dividing eqn. (3.25) by

hM2Di ⌘
Z

M2D(E)

✓
�@f0
@E

◆
dE ,

we can re-arrange it as,

Gdi↵
2D =

2q2

h
hM2Di hh�ii W

L
=

hh�ii
L

G2D
ball , (3.29)

where hMi was defined in eqn. (3.18), and the average mean-free-path is
defined as

hh�ii ⌘

R
�(E)M2D(E)

⇣
�@f0

@E

⌘
dE

R
M2D(E)

⇣
�@f0

@E

⌘
dE

=
hM�i
hMi . (3.30)

Equation (3.29) has the same form as (3.26). For TL = 0 K, we just replace
hMi withM(EF ) and hh�ii with �(EF ). The single and double brackets are
just to remind us that we are dealing with two di↵erent, specially defined
averages.

To actually evaluate the average mean-free-path, we need to assume
a bandstructure and specify �(E). A simple way to write �(E) for some
common scattering mechanisms is in so-called power-law form [4],

�(E) = �0

✓
E � Ec

kBTL

◆r

, (3.31)

where r is a characteristic exponent describing a particular scattering pro-
cess and �0 is a (typically temperature-dependent) constant. For example,
in 3D, r = 0 for carrier scattering by acoustic phonons, and r = 2 for
ionized impurity scattering.

With only a little straight-forward (and not too tedious) math, we can
work out the integral in eqn. (3.30) to find
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hh�ii = �0 ⇥
✓
� (r + 3/2)

� (3/2)

◆
⇥
✓Fr�1/2(⌘F )

F�1/2(⌘F )

◆
. (3.32)

If r = 0 the mean-free-path is independent of energy and hh�ii = �0.
Finally, we should consider the entire ballistic to di↵usive spectrum. For

an energy dependent mean-free-path, the result is a bit complicated, but
for a constant mean-free-path, the result is much like eqn. (3.28)

R = Rball

✓
1 +

L

�0

◆
. (3.33)

Exercise 3.2: Analysis of a silicon MOSFET (continued)

In the previous example, we estimated the ballistic channel resistance by
assuming TL = 0 K (not because it is a good assumption, just to keep the
math simple) and found Rball ⇡ 90 ⌦-µm. The measured channel resistance
is 215 ⌦� µm, so from eqn. (3.33) we have

215 =

✓
1 +

L

�0

◆
45 ! �0⇡ 16 nm

Our TL = 0 K assumption for analyzing room temperature data results
in a mean-free-path that is only a little larger than the result obtained by
assuming Maxwell Boltzmann statistics. This simple calculation illustrates
the point that modern silicon transistors are in the quasi-ballistic transport
regime - neither fully ballistic nor fully di↵usive. A more careful analysis
would involve Fermi-Dirac integrals and also consider the possibility that
multiple subbands are occupied.

3.4 Discussion

In this lecture we discussed the evaluation of the resistance of a 2D con-
ductor. The techniques and concepts apply to other dimensions as well. In
this section, we discuss a few topics relating to resistors and resistivity.
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A few words about mobility

The conventional description of resistance begins with eqns. (3.1), but
these equations do not apply to ballistic or quasi-ballistic resistors, and it
is not always clear how to evaluate the mobility. Our approach to transport
begins with eqn. (3.2), which applies from the ballistic to di↵usive limits.
There has been no need for us to discuss mobility. Although mobility is a
commonly-used concept, it can often be confusing. For example, eqns. (3.1)
tell us that the conductivity is proportional to the electron density times
the mobility, but the term, � (@f0/@E), in eqn. (3.2) (the Fermi window)
ensures that only electrons near the Fermi level contribute to current flow.
For an n-type semiconductor, this is sometimes all of the carriers in the
conduction band (non-degenerate semiconductors), but sometimes only a
small fraction of them (degenerate semiconductors). Nevertheless, because
the mobility concept is so frequently used, we should discuss it.

The best way to define the mobility is to begin with eqn. (3.2) and
equate it to the conventional expression,

G2D =
2q2

h

Z
T (E)M(E)

✓
�@f0
@E

◆
dE ⌘ nsqµ

W

L
, (3.34)

from which we find the mobility as

µapp ⌘ 1

ns

2q

h

Z
T (E)LM2D(E)

✓
�@f0
@E

◆
dE , (3.35)

which we take as the definition of mobility, not the simple Drude expression,

µ =
q⌧

m⇤ , (3.36)

where ⌧ is the momentum relaxation time. We label the mobility in eqn.
(3.35) an “apparent” mobility because eqn. (3.35) is defined for ballistic
transport as well as di↵usive. For example, setting T (E) = 1, we find the
“ballistic mobility” as

µball =
1

ns

2q

h

Z
LM2D(E)

✓
�@f0
@E

◆
dE . (3.37)

Similarly, setting T (E) = �(E)/L, we find the traditional, di↵usive mobility
as
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µdi↵ =
1

ns

2q

h

Z
�(E)M2D(E)

✓
�@f0
@E

◆
dE . (3.38)

The concept of a ballistic mobility was introduced by Shur [5] and can
be useful in device analysis. It allows us to use traditional expressions in the
ballistic limit simply by replacing the actual mobility with the ballistic mo-
bility. Comparing eqn. (3.37) with (3.38), we see that the ballistic mobility
is the di↵usive mobility with the mean-free-path replaced by the length of
the resistor. Recall that in the contacts, strong scattering maintains equi-
librium. An electron injected into a ballistic channel last scattered in the
first contact, and then scatters next in the second contact. The distance
between scattering events is, therefore, the channel length, so it makes
physical sense that it plays the role of the mean-free-path in the ballistic
mobility.

Increasingly in nanoscale electronics, problems lie between the ballistic
and di↵usive limit. In this case, T (E) = �(E)/(�(E)+L), and we can show
that the apparent mobility is

1

µapp
=

1

µdi↵
+

1

µball
, (3.39)

which looks like a traditional Mathiessen’s Rule for combining mobilities
[4]. Another way to look at this is to use eqn. (3.38) for the di↵usive
mobility but replace the mean-free-path with an apparent mean-free-path,

1

�app
=

1

�
+

1

L
. (3.40)

The apparent mean-free-path is the actual mean-free-path due to scattering
or the length of the channel – whichever is shorter.

Assuming parabolic energy bands, the mobilities for general conditions
can be worked out in terms of Fermi-Dirac integrals. We leave that as an
exercise. Consider the simpler case of TL = 0 K. The electron density in
the conduction band is

ns = gv
m⇤

⇡~2 (EF � Ec) = D2D (EF � Ec) , (3.41)

and we can also show
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M2D =
h

4

⌦
�+x
↵
D2D , (3.42)

where

⌦
�+x
↵
=

2

⇡
�F , (3.43)

with �F being the Fermi velocity.
Using eqns. (3.37), (3.38), (3.41), and (3.42), we find

µdi↵ =
Ddi↵

(EF � Ec) /q

µball =
Dball

(EF � Ec) /q
,

(3.44)

where the di↵usion coe�cients are given by

Ddi↵ =
h�+x i�(EF )

2

Dball =
h�+x iL

2
.

(3.45)

Equations (3.44) look like Einstein relations between the mobility and dif-
fusion coe�cient with (EF � Ec)/q playing the role of kBTL/q since we
have assumed TL = 0 K. Note that in eqn. (3.45), Ddi↵ is what is gen-
erally called the di↵usion coe�cient, and we have also defined a “ballistic
di↵usion coe�cient”!

Exercise 3.3: Analysis of a silicon MOSFET (continued)

Let’s return to our MOSFET example and estimate the ballistic mobility
of this transistor. The measured mobility comes from a long channel MOS-
FET, so it is the traditional, di↵usive mobility. Let’s estimate the ballistic
mobility. We’ll assume TL = 0 K again, to keep the math simple. Un-
der this assumption, the ballistic mobility, eqn. (3.44) can be expressed in
terms of the inversion layer density, ns according to

µball =
2q

h
L
p
2gv/⇡ns . (3.46)
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Inserting numbers, we find, µball ⇡ 1200 cm2/V � s, which is larger than
the di↵usive mobility. According to eqn. (3.39), the apparent mobility of
this MOSFET will be a little lower than the bulk mobilty because of the
ballistic mobility. (The precise numbers here should be taken with caution.
We are assuming TL = 0 K to keep the math simple but the mobility was
measured at 300 K.)

Ways to write the conductivity

According to eqn. (3.26), the 2D di↵usive conductivity (also called the
sheet conductance) at TL = 0 K is

�s =
2q2

h
M2D (EF )� (EF ) . (3.47)

You will see this expression written in several di↵erent ways, so it’s worth
mentioning some of the common forms.

In Lecture 2, we saw that

M2D(E) =
h

4

⌦
�+x
↵
D2D(E)

⌦
�+x
↵
=

2

⇡
� ,

(3.48)

and in Lecture 6 we will learn that

�(E) =
⇡

2
�(E)⌧m(E) , (3.49)

where ⌧m is the momentum relaxation time, the time between electron
scattering events. Using these expressions, we can re-write eqn. (3.47) as

�s = q2D2D (EF )
�2(EF )⌧(EF )

2
, (3.50)

which is a form that you will commonly see. By defining the electron
di↵usion coe�cient as

Dn =
�2(EF )⌧(EF )

2
, (3.51)

we can re-write eqn. (3.50) as

�s = q2D2D (EF )Dn(EF ) , (3.52)
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which is also a common way to write the sheet conductance.
Finally, let’s discuss one more way. Assuming parabolic energy bands,

we have

1

2
m⇤�(EF )

2 = (EF � Ec) . (3.53)

Using this and eqn. (3.41) for ns, we can write eqn. (3.50) as

�s = nsqµn , (3.54)

where the mobility is

µn =
q⌧(EF )

m⇤ . (3.55)

Equation (3.55) is a familiar result, but not a good starting point for anal-
ysis in general. For example, in research, we frequently encounter problems
for which the parabolic band assumption that leads to an e↵ective mass,
m⇤ is not appropriate.

We summarize this discussion by collecting the various ways to write
the 2D conductivity:

�s =
2q2

h
M2D (EF )� (EF )

�s = q2D2D (EF )
�2(EF )⌧(EF )

2
�s = q2D2D (EF )Dn(EF )

�s = nsqµn = nsq

✓
q⌧(EF )

m⇤

◆
.

(3.56)

While these expressions are all equivalent, they provide di↵erent perspec-
tives. According to the second and third forms, what’s important is the
density of states and velocity or di↵usion coe�cient at the Fermi level.
According to the last expression, the conductivity is proportional to the
total carrier density. Of course the term, � (@f0/@E), in the conductivity
expression tells us that the current is carried by electrons near the Fermi
level (i.e. inside the Fermi window), but the position of the Fermi level
can be related to the total carrier density. It is useful to understand these
di↵erent perspectives because sometimes a problem that is di�cult from
one perspective is easy when viewed from a di↵erent perspective.
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Finally, we should extend our discussion to finite temperatures where
eqn. (3.47) becomes

�s =
2q2

h

Z
M2D (E)� (E)

✓
�@f0
@E

◆
dE . (3.57)

It is convenient to define a “di↵erential conductivity” so that this equation
can be written as

�s =

Z
�0
s (E) dE

�0
s =

2q2

h
M2D (E)� (E)

✓
�@f0
@E

◆
.

(3.58)

To find the total conductivity, we add up the contributions from each energy
channel. You will find eqn. (3.58) written in several di↵erent ways, as in
eqn. (3.56).

Where is the power dissipated?

For any resistor, the power dissipated is Pd = V I = V 2/R. The power
input to the electron system from the battery is typically dissipated by
electron-phonon scattering, which transfers the energy to the lattice and
heats it up. For a ballistic resistor, there is no scattering in the channel,
but the power dissipated is still V 2/R. Where is this power dissipated?
Not surprisingly, if the answer isn’t in the channel, then it must be in the
contacts.

We know that current flows in the Fermi window, the energy range where
f1 � f2 is non zero. At TL = 0 K, the current flows between the two Fermi
levels, as illustrated in Fig. 3.5. For finite temperatures and small applied
biases, the current flows in the region where � (@f0/@E) is significant. As
shown in Fig. 3.5, when an electron leaves contact 1, it leaves a hole (an
empty state) in the contact. These electrons enter contact 2 with some
excess energy (we say that they are “hot” electrons ), which they lose by
inelastic scattering in contact 2. The average energy of the electrons that
enter contact 2 is about qVA/2, so about half of the power is dissipated in
contact 2. Current flows near the Fermi level, so charge neutrality in contact
2 is maintained when an electron at the Fermi energy leaves contact 2 and
travels around the external circuit until it enters contact 1. The electron
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Fig. 3.5 Illustration of how power is dissipated in a ballistic resistor.

enters contact 1 at the Fermi energy, and inelastic scattering processes fill
up the hole that was created when the first electron was injected into the
channel. On average, the energy of the hole is about qVA/2, so the other
half of the power is dissipated in contact 1.

We conclude that in a ballistic channel near equilibrium, one-half of the
power is dissipated in each of the two contacts.

Where does the voltage drop?

In a di↵usive resistor, the voltage drops linearly across the length of the
resistor. Where does the voltage drop in a ballistic resistor? Not surpris-
ingly, the answer is at the contacts. For a thorough discussion of this topic,
See Chapter 2 in Datta [6]. Here, we just explain why it is reasonable to
expect the voltage to drop across the two contacts.

Recall that a voltmeter measures di↵erences in the Fermi levels (elec-
trochemical potentials) of the two contacts. For example, in a PN junction,
there is an electrostatic potential di↵erence between the P and N-type re-
gions in equilibrium, but a voltmeter reads zero because the Fermi level is
the same in the two contacts.

Figure 3.6 is a sketch of an energy band diagram for a ballistic resistor
under bias. EF2 = EF1 � qVA, so a voltmeter across the two contacts
will register a voltage of VA, but where does this voltage drop within the
resistor?
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Fig. 3.6 Energy band diagram of a ballistic resistor under bias illustrating how we
associate the internal voltage drop with the change in the electrochemical potential (also
known as the quasi-Fermi level).

Inside contact 1, there is one, well-defined Fermi level, EF1, and inside
contact 2, there is a second, well-defined Fermi level, EF2. Inside the device
however, there are two Fermi levels. Some states are filled by the source.
Since they are in equilibrium with the source, they are filled according to a
Fermi function with the source Fermi level. The other set of states is filled
by the drain according to a Fermi function with the drain Fermi level. If
we compute the average Fermi level, the electrochemical potential, it has
the shape shown by the solid line in Fig. 3.6. We see that one-half of
the electrochemical potential drop occurs at the first contact and the other
half at the second contact. Since a voltmeter responds to changes in the
electrochemical potential, we conclude that the voltage drops equally at
the two contacts. For this reason, the ballistic resistance, 12.9 k⌦/ hMi, is
often called the “quantum contact resistance.”

Resistors in 1D and 3D

Our general expression for conductance, eqn. (3.2), works for the 1D, 2D,
or 3D resistors sketched in Fig. 3.1, as long as we properly count the modes
(channels) for current flow. Consider again the 2D resistor sketched in Fig.
3.1. It is long in the direction of current flow, but finite in the width and
thickness directions. Whenever electrons are confined in a potential well,
their energies are quantized into “particle in a box” states according to
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✏n =
~2⇡2n2

2m⇤a2
, (3.59)

where a is the width of the potential well, and n is an integer. Each of
these “subbands” is occupied according to its location with respect to the
Fermi level and is a channel for current flow. If the thickness of the 2D
sheet is very thin, then the corresponding subbands are widely spaced in
energy, and we can count them. (We have been implicitly assuming that
only the lowest subband is occupied.) If the width, W , of the 2D sheet is
large, then the corresponding subbands are closely spaced in energy, and
many are occupied. In this case, the number of subbands is proportional
to W . To include all subbands, we write

M(E) = WM2D (E) =
NX

n=1

Wgv

p
2m⇤ (E � ✏n)

⇡~ , (3.60)

where the sum is over the subband in the vertical confinement direction.
Now consider the 1D resistor in Fig. 3.1; it is like a very narrow 2D

resistor. If the width and thickness are both small, then all of the subbands
are widely spaced in energy, and we can simple count them,

M(E) = M1D (E) = no. of subbands at energy, E . (3.61)

Finally, if both the width and thickness of the resistor are large, all of
the subbands are closely spaced in energy, and

M(E) = AM3D (E) = gv
m⇤ (E � Ec)

2⇡~2 . (3.62)

For a 1D (nanowire) resistor, we have strong quantum confinement in two
dimensions, and M(E) is given by eqn. (3.61). For a 2D (planar) resistor,
we have strong quantum confinement in one dimension, and M(E) is given
by eqn. (3.60). And for a 3D resistor, there is no quantum confinement and
M(E) is given by eqn. (3.62). (Note that eqns. (3.60) and (3.62) assume
parabolic energy bands.) Having defined M(E), we can evaluate eqn. (3.2)
in any dimension.
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It is convenient to re-write eqn. (3.2) as

G =
2q2

h
hhT ii hMi

hMi =
Z

M(E)

✓
�@f0
@E

◆
dE

hhT ii =

R
T (E)M(E)

⇣
�@f0

@E

⌘
dE

R
M(E)

⇣
�@f0

@E

⌘
dE

. (3.63)

If we assume a constant mean-free-path (just to keep things simple) we can
write the resistance as

G =
2q2

h

�0
�0 + L

hMi . (3.64)

Assuming parabolic energy bands, we can write in 1D:

hM1Di =
X

i

F�1 (⌘Fi) , (3.65)

where

⌘Fi =
EF � ✏i
kBTL

, (3.66)

and the index, i, refers to the various subbands. At TL = 0 K, the 1D
expressions reduce to

G1D =
2q2

h

�0
�0 + L

⇥ no. of subbands at energy, EF . (3.67)

For Maxwell-Boltzmann statistics, we find

G1D = nlqµapp
1

L
, (3.68)

where

µapp =
Dn

(kBTL/q)

Dn = �T�app/2

�T =
p
(2kBTL) /⇡m⇤

1

�app
=

1

�0
+

1

L
.

(3.69)
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In 2D, we find

hMi = W hM2Di =
p
⇡

2
WM2D (kBTL)

X

i

F�1/2 (⌘Fi) , (3.70)

where

M2D (kBTL) = gv

p
2m⇤kBTL

⇡~ . (3.71)

At TL = 0 K, eqn. (3.65) simplifies to

G2D =
2q2

h

�0
�0 + L

WM2D (EF ) . (3.72)

For Maxwell-Boltzmann statistics, we find

G2D = nsqµapp
W

L
. (3.73)

Finally, in 3D, the expressions become:

hMi = A hM3Di = AM3D (kBTL)F0 (⌘F ) , (3.74)

where

M3D (kBTL) = gv
m⇤kBTL

2⇡~2 (3.75)

and

⌘F =
EF � Ec

kBTL
. (3.76)

At TL = 0 K, the 3D expressions reduce to

G3D =
2q2

h

�0
�0 + L

AM3D (EF ) . (3.77)

For Maxwell-Boltzmann statistics, we find

G3D = nqµapp
A

L
. (3.78)
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Exercise 3.4: A 1D example

Let’s end this chapter with a simple example. Carbon nanotubes are almost
ideal 1D conductors. Fig. 3.7 is the measured IV characteristic of a metallic
carbon nanotube. For low voltages, the current is linear, and we can read o↵
the conductance as 22 µS. For this material, the TL = 0 K approximation
is good even at moderate temperatures, so we can use eqn. (3.67). There
is a valley degeneracy of two for the carbon nanotube, and assuming that
one subband is occupied, we find the ballistic resistance to be GB = 154
µS. From eqn. (3.67), we can estimate the mean-free-path to be �0 = 167
nm, which is much less than the 1 µm length of the carbon nanotube, so
transport in this carbon nanotube is di↵usive.

Fig. 3.7 Measured IV characteristic of a metallic carbon nanotube. Essentially identical
measurements at TL = 4, 100, and 200 K are shown. (Zhen Yao, Charles L. Kane, and
Cees Dekker, “High-Field Electrical Transport in Single-Wall Carbon Nanotubes,” Phys.
Rev. Lett., 84, 2941-2944, 2000. Reprinted with permission from Phys. Rev. Lett.
Copyright 2000, American Physical Society.)

3.5 Summary

Our goal in this lecture has been to learn how to use eqn. (3.2), which
applies quite generally when the temperature is uniform. We learned that:



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

Resistance: Ballistic to Di↵usive 59

(1) Conductors display a finite resistance, even in the absence of scattering
in the resistor. The ballistic resistance sets a lower limit to resistance
no matter how short the resistor is. This ballistic limit is becoming
important in practical, room temperature devices.

(2) The ballistic (quantum contact) resistance is quantized, and the quan-
tum of resistance is h/2q2.

(3) Transport from the ballistic to di↵usive limit is easily treated by using
the transmission.

(4) Resistors in 1D, 2D, or 3D can all be treated with a common formalism.

For the most part, we assumed parabolic energy bands with an e↵ective
mass, m⇤, when working out results. It’s important to realize, however,
that the assumption of parabolic energy bands is not necessary. For an
example of working with a much di↵erent bandstructure, see Lecture 10,
where we develop similar expressions for graphene, a material with linear,
not parabolic energy bands.

Finally, the key point to remember is that when you encounter a new
material or nanostructure and need to know its resistance, the place to
begin is at eqn. (3.2) not at eqn. (3.1).
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4.6 Discussion
4.7 Summary
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4.1 Introduction

Thermoelectric (TE) devices convert heat into electricity or electric power
into cooling (or heating) power. In this lecture, our focus is on the physics
of thermoelectricity; only heuristic mathematical arguments are used. In
Lecture 5, we present a more formal, mathematical derivation.

In Lecture 2 we saw that the electrical current in the bulk is

Jnx = �n
d (Fn/q)

dx
(A/m2) , (4.1)

which can also be written as

d (Fn/q)

dx
= ⇢nJnx . (4.2)

Recall that when the carrier density is uniform, d(Fn/q)/ dx = Ex, where Ex
is the electric field. In this lecture, we will assume bulk, di↵usive transport
in 3D, but the same considerations apply to 1D and 2D as well. Similar

61
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equations also apply in the ballistic and quasi-ballistic regimes, as will be
discussed in Lecture 5. The question we are concerned with in this lecture is:
How do these equations change in the presence of a temperature gradient?
We will see that the answer can be written in two ways:

Jnx = �n
d (Fn/q)

dx
� Sn�n

dTL

dx
d (Fn/q)

dx
= ⇢nJnx + Sn

dTL

dx
,

(4.3)

where Sn is the Seebeck coe�cient (also called the thermopower) in V/K.
Thermoelectricity involves the flow of charge and heat, so in addition

to the equation for the charge current, we need an equation for the heat
current too. Since heat flows down a temperature gradient, we expect an
equation of the form,

JQx = �dTL

dx
W/m2 . (4.4)

How does eqn. (4.4) change in the presence of an electric current? The
answer can also be written in two ways:

JQx = TLSn�n
d (Fn/q)

dx
� 0

dTL

dx

JQx = ⇡nJnx � n
dTL

dx
.

(4.5)

In eqns. (4.5)

⇡n = TLSn (4.6)

is the Peltier co�cient and

n = 0 � S2
n�nTL (4.7)

is the electronic thermal conductivity for zero current flow. Similarly, 0 is
the electronic thermal conductivity when there is no change in the quasi-
Fermi level (short circuit conditions). It is important to understand that
both electrons and the lattice (phonons) carry heat. These equations refer
only to the portion of the heat carried by the electrons.

Our goal in this lecture is to understand the physical origin of the See-
beck and Peltier coe�cients and how they are related to the properties of
the semiconductor. The approach used here is similar to that of Datta [1].
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4.2 Electric current flow: Seebeck e↵ect

Let’s discuss the Seebeck e↵ect first. To be specific, consider the n-type
semiconductor sketched in Fig. 4.1.

Fig. 4.1 Sketch of an n-type semiconductor slab with its two contacts open-circuited
and with contact 2 hotter than contact 1.

When a temperature di↵erence exists, we expect that the electrons should
di↵use from the hot end to the cold end, but a positive voltage must develop
to stop the flow. The open-circuit voltage is the Seebeck voltage. Similarly,
if the semiconductor were p-type, a negative open-circuit voltage would be
measured.

We can also think about the Seebeck e↵ects in terms of Fermi levels. Fig.
4.2 shows a sketch of the Fermi function at two di↵erent temperatures. The
width of the transition region is a few kBTL; the higher the temperature, the
wider the transition region. Recall from Lecture 2 that the current depends
on (f1 � f2). If we are dealing with a lightly-doped, n-type semiconductor,
then the states carrying the current are above the Fermi level where f2 > f1
in Fig. 4.2. To stop the current, a positive voltage must develop on contact
2 to lower its Fermi level and make f1 = f2. Alternatively, if we are dealing
with a lightly doped, p-type semiconductor, then the states carying the
current lie below the Fermi level where f1 > f2. To stop the current, a
negative voltage must develop on contact 2 to raise its Fermi level and
make f1 = f2.

As this discussion shows, the origin of the Seebeck voltage is easy to
appreciate. The sign of the Seebeck voltage is positive (hot side voltage -
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Fig. 4.2 Sketch of equilibrium Fermi functions vs. energy for two di↵erent temperatures.

cold side voltage) for n-type conduction and negative for p-type conduction.
This fact can be used to determine the type of a semiconductor. Next, we
turn to the question of understanding what controls the magnitude of the
Seebeck voltage.

Figure 4.3a is a sketch of an energy band diagram for an n-type semi-
conductor in equilibrium where EF1 = EF2 and TL1 = TL2. For any state,
(E, x), in the device, the probability that it is occupied from contact 1,
f1, is the same as the probability that it is occupied from contact 2, f2,
so f1 = f2 and no current flows. (Strictly speaking, the notion that states
inside the device are occupied according to the Fermi levels of the two con-
tacts only applies to very short devices, but we can view the contacts as
“conceptual contacts” inside a very long device, as was illustrated in Fig.
2.6.)

Figure 4.3b shows the resistor with a positive bias on contact 2. Assume
first that TL2 = TL1. Now for any state in the device, (E, x), f1 > f2,
so electrons flow from left to right producing a current in the negative x-
direction. Alternatively, we could have seen this by noting that the positive
voltage on contact 2 attracts electrons, causing them to flow from left to
right and producing the current in the negative x-direction.

Finally, consider Fig. 4.3b when the voltage and temperature of contact
2 are both larger than the corresponding values on contact 1. The fact that
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contact 2 is hotter than contact 1 should cause electrons to flow from contact
2 to contact one, but the fact that the voltage at contact 2 is higher than
contact 1 causes electrons to flow from contact 1 to contact 2. Under open
circuit conditions, these two e↵ects cancel, and the current is zero.

Fig. 4.3 Energy band diagrams for an n-type semiconductor for two di↵erent conditions:
a) equilibrium, and b) V2 > V1. In the second case, TL2 may be the same as or di↵erent
than TL1.

Next, consider a short section of the resistor sketched in Fig. 4.1. As-
sume that contact 2 is hotter than contact 1 and that the voltage on contact
2 is such that the current is zero (the energy band diagram is like Fig. 4.3b).
Now consider an energy state located at position x = 0 and at the average
energy at which the current flows, Ec(0) + �n. (The precise value of �n

depends on bandstructure and scattering physics, but for non-degenerate
conditions, it is typically ⇡ 2kBTL.) No current flows if this state has
an equal probability of being occupied by the right and left contacts (i.e.,
f1 = f2). The first probability is just the Fermi function of contact 1.
For a short section of the resistor, the second probability is just the Fermi
function of the second contact. (Here again we assume that contact 2 is a
fictitious, internal contact as discussed in Chapter 2 Sec. 6.) Open circuit
occurs when

f1 [Ec(0) +�n] = f2 [Ec(0) +�n] . (4.8)
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Making use of the definition of the Fermi function, eqn. (4.8) becomes

1

1 + e(Ec+�n�EF1)/kBTL1
=

1

1 + e(Ec+�n�EF1+q�V )/kBTL2
, (4.9)

which can be solved to find

�V = �Sn�TL , (4.10)

where �TL = TL1 � TL2 and

Sn = �Ec(0) +�n � EF1

qTL1
=

EJ � EF1

(�q)TL1
. (4.11)

In eqn. (4.11), EJ = Ec(0)+�n is the average energy at which the current
flows. The Seebeck coe�cient is simply related to the di↵erence between
the average energy at which current flows and the Fermi level. Equations
(4.10) and (4.11) apply to each section, dx of the resistor and simply add
to the resistive voltage drop due to current flow another contribution due
to the temperature di↵erence, so eqn. (4.3) becomes

d (Fn/q)

dx
= ⇢nJnx + Sn

dTL

dx

Sn(TL) =

✓
kB
�q

◆✓
Ec � EF

kBTL
+ �n

◆
,

(4.12)

where �n = �n/kBTL. Under open-circuit conditions, eqn. (4.12) can be
solved for

�V = �
Z TL2

TL1

Sn(TL) dTL , (4.13)

which should be compared to eqn. (4.10) for the di↵erential element. While
we still don’t know how to compute �n, we do now understand where eqn.
(4.3) comes from.

Exercise 4.1: Seebeck coe�cient of Ge

Figure 4.4 is a plot of the measured Seebeck coe�cient for Ge at room
temperature as a function of the separation between the Fermi level and
the band edge. For this exercise:
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(1) Show that the measured results are consistent with eqn. (4.12) and
that they imply that �n is small and constant for a non-degenerate
semiconductor.

(2) Show that �n increases when EF moves above the bottom of the con-
duction band.

(3) Discuss how to write eqns. (4.12) for a p-type semiconductor.

According to eqn. (4.12), |Sn| should drop linearly as EF increases, as
long as �n is constant. This appears to describe the results for EF << Ec.
According to eqn. (4.12), |Sn| = 86µV/K ⇥(�⌘F + �n), where ⌘F = (EF �
Ec)/kBTL. At ⌘F = �10, Fig. 4.4. shows that |Sn| ⇡ 1000 µV/K, which
implies that �n ⇡ 2. We will see in Lecture 5 that this is a reasonable value
for a non-degenerate semiconductor.

Fig. 4.4 Measured Seebeck coe�cient for n- and p-type Ge at TL = 300 K. The line
is a calculation using methods in Lecture 5 assuming parabolic energy bands and a
constant mean-free-path for backscattering. (Data taken from T.H. Geballe and G.W.
Hull, “Seebeck E↵ect in Germanium,” Physical Review, 94, 1134, 1954.)

If �n were always constant, then Sn should change sign when EF >
Ec + 2kBTL. The fact that this does not happen tells us that �n must
increase as EF moves into the conduction band. At ⌘F = 4, Fig. 4.4.
shows that |Sn| ⇡50 µV/K. Using eqn. (4.12), we find that �n ⇡ 4.6,
which is more than twice its value under non-degenerate conditions. As was
illustrated in Fig. 4.3, �n = (EJ �Ec)/kBTL tells us how far from the band
edge the average current flows. For a strongly degenerate semiconductor,
EJ ! EF , so �n ! ⌘F and Sn ! 0 for EF >> Ec.

Finally, let’s consider eqn. (4.12) for a p-type semiconductor. The
magnitude of the Seebeck coe�cient is large when the Fermi level is far
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below (above) the band edge, and the sign is negative (positive) for electrons
(holes). The form of the current equation in eqn. (4.3) does not change,
but Seebeck coe�cient in eqn. (4.12) is written as:

d (Fp/q)

dx
= ⇢pJpx + Sp

dTL

dx

Sp(TL) =

✓
kB
+q

◆✓
EF � Ev

kBTL
+ �p

◆
,

(4.14)

where �p = (Ev � EJ)/kBTL is a positive number that tells us how far
below the valence band edge the average current flows. In general, both
electrons and holes contribute to the total Seebeck coe�cient. This becomes
important at high temperatures or for low bandgaps. We will discuss how
to include both contributions to S in Lecture 5.

Finally, we mention a subtle point that will be discussed in Lecture 5. A
careful look at eqns. (4.12) and (4.14) shows that they are identical – except
for the subscripts “n” or “p.” The same expression describes the Seebeck
coe�cient due to electrons in either the conduction or valence band. It is
sometimes useful to think in terms of holes and to re-write the expression
as in eqn. (4.14) to make the change in sign explicit, but to compute S, we
need only one expression.

4.3 Heat current flow: Peltier e↵ect

Figure 4.5 illustrates Peltier cooling and heating. The sample is isothermal
with an electric current forced in contact 2. Electrons flow with an average
(small) “drift velocity” from left to right. Since electrons scatter from
phonons (lattice vibrations) in the resistor, they acquire a random (thermal)
velocity (much larger than the small drift velocity). The thermal velocity
is a measure of the electron temperature (which under near-equilibrium
conditions is the same as the temperature of the lattice, TL). As electrons
flow from left to right, they carry their random kinetic energy (heat) with
them. We see, therefore, that an electron current is accompanied by a heat
current.

To evaluate the heat current, consider the energy band diagram in Fig.
4.6a. The metal contacts are strongly degenerate, so the �(@f0/@E) term
in the conductance is nearly a �-function at the Fermi energy. In the metal
contacts, the current flows very close to the Fermi level. In the lightly
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Fig. 4.5 Illustration of the Peltier e↵ect. The existence of an electric current causes
heat to be absorbed at one contact and emitted at the other. If the direction of the
current is reversed, then the contact that absorbs heat and the one that emits heat are
interchanged.

doped semiconductor, the current flows a little above the bottom of the
conduction band, at E = Ec + �n. The average energy at which current
flows increases across the metal-semiconductor junction. Where does the
energy come from? The answer is that electrons absorb thermal energy
from the lattice, which is why heat is absorbed at contact 1. Just the
opposite occurs at contact 2 where heat is emitted. Note that heat is also
generated throughout the resistor because of the I2R Joule heating. The
Peltier heating is proportional to I and the Joule heating to I2.

Figure 4.6b shows the case for a heavily doped semiconductor. In a
degenerate semiconductor, the current also flows near the Fermi level. In
this case, there is little or no change in the average energy at which current
flows, so there is little Peltier cooling or heating at the contacts of a heavily
doped semiconductor.

Another way to think about Peltier cooling is illustrated in Fig. 4.7,
which shows the region near contact 1. Electrons with an energy greater
than the barrier height, �Bn, are thermionically emitted from the metal into
the semiconductor. This process depletes the high energy electrons in the
Fermi distribution, producing a non-equilibrium distribution of electrons in
energy. The missing high energy electrons are replaced by electron-phonon
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Fig. 4.6 Illustration of heat absorption and emission in the presence of a current flow
- the Peltier e↵ect. a) a lightly doped semiconductor, and b) a heavily doped semicon-
ductor.

scattering. Energy is absorbed from the lattice to move lower energy elec-
trons up to replace the electrons that were thermionically emitted into the
semiconductor. This process is much like the evaporation of a liquid, with
the electrons in the metal contact playing the role of the liquid.

It is now easy to calculate the heat current. The electron flux in the
+x-direction is Jnx/(�q). (Since Jnx < 0 in this case, the heat flux is in the
+x-direction. As electrons move from contact 1 to the semiconductor, each
one must, on average, absorb a thermal energy of Q = Ec(0) +�n � EF1.
Accordingly, the heat flux is

JQ1 = [Ec(0) +�n � EF1]⇥ Jnx/(�q) = ⇡nJnx , (4.15)

where the Peltier coe�cient is

⇡n =
[Ec(0) +�n � EF1]

�q
. (4.16)

Note that ⇡n < 0 for the n-type semiconductor being considered here. By
comparing eqn. (4.15) with (4.11), we see that
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Fig. 4.7 Illustration of heat absorption at contact 1. Electrons in the metal with high
enough energy escape into the semiconductor. To replace the electrons lost, new electrons
flow in (near the Fermi energy) from the contact. To replace the lost energy of the
electron gas, electrons absorb thermal energy from the lattice to restore the equilibrium
Fermi-Dirc distribution.

⇡n = TL1Sn ; (4.17)

there is an intimate connection between the Seebeck and Peltier coe�-
cients. This relation, eqn. (4.17) is known as the Kelvin relation. Similar
expressions apply at contact 2, with TL1 replaced by TL2.

We have discussed the first term in eqn. (4.5), but not the electronic
thermal conductivity, n. An expression for n will be derived in Lecture 5.
It seems reasonable, however to expect that the electrical conductivity, �n,
and the thermal conductivity due to electrons, n, will be related because
electrons carry the electrical current and the heat current. Indeed, from
the equations to be developed in Lecture 5, we will see that

n
�n

= LTL , (4.18)

where L is the Lorenz number. Equation (4.18) is known as theWiedemann-
Franz Law [2]. It is not as fundamental as the Kelvin relation because it
depends on details of the bandstructure and scattering.
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As noted by Mahan and Bartkowiak [G.D. Mahan and M. Bartkowiak,
“Wiedemann-Franz law at boundaries,” Appl. Phys. Lett., 74, 953 (1999)],
the Wiedemann-Franz “Law” is a “rule of thumb.” Since electrons carry
both charge and heat, we should expect a relation between �n and n.
For a typical semiconductor with parabolic energy bands and a constant
mean-free-path, we find

L ⇡ 2⇥ (kB/q)
2 (non� degenerate)

L ⇡ ⇡2

3
⇥ (kB/q)

2 (degenerate) .
(4.19)

The term “Wiedemann-Franz Law” commonly refers to eqn. (4.18) with
the specific values of Lorenz numbers as given by eqn. (4.19). But we can
regard eqn. (4.18) as a generalized Wiedemann-Franz Law with a value
of L that depends on details of the bandstructure and scattering physics.
Lower dimension conductors, for example, can have values of L that are
much di↵erent from those in eqns. (4.19). A general expression for L will
be given in Lecture 5, eqn. (5.53).

Finally, we see that the thermoelectric transport parameters in eqn.
(4.5) are

JQx = ⇡nJnx � n
dTL

dx
⇡n = TLSn

n = TL�nL .

(4.20)

We have an expression for ⇡n = TLSn but will have to wait for Lecture 5
to develop an expression for n.

4.4 Coupled flows

We have seen in the previous two sections that the basic equations of ther-
moelectricity are

d (Fn/q)

dx
= ⇢nJnx + Sn

dTL

dx

JQx = ⇡nJnx � n
dTL

dx
,

(4.21)
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where the four thermoelectric transport parameters are: 1) the electrical re-
sistivity, ⇢n = 1/�n, 2) the Seebeck coe�cient, Sn, 3) the Peltier coe�cient,
⇡n, and 4) the electronic heat conductivity, n.

We discussed the electrical conductivity in Lecture 3. For a 3D, di↵usive
sample, it is given by

�n =

Z
�0
n (E) dE =

2q2

h
hM3Di hh�ii

�0
n (E) =

2q2

h
M3D (E)� (E)

✓
�@f0
@E

◆
.

(4.22)

Recall that M3D(E) is the number of channels for conduction at energy, E,
per unit area of the resistor cross-section. The energy-dependent mean-free-
path for backscattering is �(E), and the units of the di↵erential conductivity
are 1/(⌦-m-J).

We saw in Sec. 4.2 that the Seebeck coe�cient is given by

Sn(TL) =

✓
kB
�q

◆✓
Ec � EF

kBTL
+ �n

◆
, (4.23)

where the parameter, �n = (EJ �Ec)/kBTL, is the average energy at which
current flows with respect to the bottom of the conduction band in units
of kBTL. Since �0

n (E) tells how the current is distributed in energy, we see
that

�n =
1

kBTL

✓R
(E � Ec)�0

n (E) dER
�0
n (E) dE

◆
. (4.24)

We also saw in Sec. 4.3 that the Peltier coe�cient is simply related to the
Seebeck coe�cient by the Kelvin relation,

⇡n (TL) = TLSn (TL) . (4.25)

Equations (4.21) are a specific example of so-called “coupled flows.” In
this case, we see that a temperature gradient produces an electrical current,
and an electrical current produces a flow of heat. The cross-coupling terms,
Sn and ⇡n are fundamentally related. The Kelvin relation is a specific
example of theOnsager relations, which relate the coupling terms in coupled
flow equations [3].

Finally, we write the electronic heat conductivity as
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n = TL�n L . (4.26)

An expression for the Lorenz number, L, will be given in Lecture 5, but
for parabolic bands, it is useful to remember that L ⇡ 2(kB/q)2 under
non-degenerate conditions and L ⇡ (⇡2/3)(kB/q)2 for strongly degenerate
conditions. We should also keep in mind that heat is transported by lattice
vibrations (phonons) and that our equations only describe the part of the
heat flow due to electrons. In semiconductors, phonons carry most of the
heat while in metals it is the electrons that carry most of the heat.

Exercise 4.2: Thermoelectric coe�cients of Ge

To get a feel for the magnitude of the various parameters in eqns. (4.21),
let’s evaluate them for lightly doped, n-type Ge at room temperature. We
are given the following information:

ND = 1015 cm�3

TL = 300 K
µn = 3200 cm2/V � s.

Recall that the dopants in Ge are shallow and fully ionized at room
temperature in lightly-doped Ge, so the equilibrium carrier density is
n0 ⇡ ND = 1015 [4]. Recall also that for a non-degenerate semiconduc-
tor, there is a simple relation between the carrier density and the Fermi
level [4]

n0 = Nce
(EF�Ec)/kBTL , (4.27)

where the “e↵ective density of states” for Ge is Nc = 1.09 ⇥ 1019 cm�3 at
room temperature [4]. Now let’s evaluate the four transport parameters.

The first parameter is the resistivity, which is one over the conductivity.
Equation (4.22) tells us how to evaluate the conductivity, but since we are
given the mobility, we should write the conductivity in the alternative form,
�n = n0qµn. It is then an easy matter to find ⇢n ⇡ 2 ⌦-cm.

The next parameter is the Seebeck coe�cient, which according to eqn.
(4.23) depends on the location of the Fermi level. We are given the carrier
density, so from eqn. (4.27) we find (Ec � EF ) /kBTL = ln (Nc/n0) ⇡ 9.3.
Assuming that �n = 2, we find Sn ⇡ �970µV/K.
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The third parameter is the Peltier coe�ent, which is simply obtained
from the Kelvin relation, eqn. (4.25) as ⇡n = �0.3 W/A.

Finally, to determine the electronic thermal conductivity, we use eqn.
(4.26). Since we are dealing with a lightly doped, 3D semiconductor with
nearly parabolic energy bands, we can assume L ⇡ 2(kB/q)2 and find n ⇡
2.2⇥ 10�4 W/m-K.

The four thermoelectric transport parameters for this example are:

⇢n ⇡ 2 ⌦-cm
Sn ⇡ �970 µV/K
⇡n ⇡ �0.3 W/A
n ⇡ 2.2⇥ 10�4 W/m-K.

This example was rather simple, but it’s worth thinking about what
would change if: 1) the temperature were lowered to 77 K or 2) the tem-
perature remains 300 K, but the doping is increased to 1020 cm3. We should
also keep in mind that the lattice conducts heat as well. The lattice ther-
mal conductivity for Ge at 300 K is 58 W/m-K – five orders of magnitude
larger than the electronic component that we have calculated here. In heav-
ily doped semiconductors with low lattice thermal conductivity, however,
the electronic component of the thermal conductivity can be a substantial
fraction of the total.

4.5 Thermoelectric Devices

The Seebeck e↵ect was discovered in 1821 by the German physicist, Thomas
Johann Seebeck and the Peltier e↵ect by the French physicist, Jean Charles
Athanase Peltier in 1834. During the 1950’s and 60’s, e�cient thermoelec-
tric materials were discovered and devices developed (notably at the Io↵e
Institute in Russia [5]) - resulting in e�ciencies suitable for several ap-
plications. For the next 30 years, progress was slow, but thermoelectric
technology was developed for several, special purpose applications, such as
power generation for deep space missions, precision temperature control of
electronic devices, and picnic coolers for beverages. Researchers are cur-
rently exploring several ideas that make use of nanotechnology to enhance
performance [6]. How successful this research will be remains to be seen,
but progress is occurring, and each increase in performance expands the
market for thermoelectric technology. A thorough discussion of thermo-
electric technology would require another volume of lecture notes, but the
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basic concepts are easy to appreciate and will be discussed in this section.
Shown in Fig. 4.8 is a sketch of a simple thermoelectric cooler. Note

that the n-type and p-type legs are connected in series electrically with the
two ends shorted at the top and fed by a current source at the bottom. The
operation is easy to understand in terms of the flow of electron and holes.
The current flows up the n-type leg and down the p-type leg, so electrons
and holes both flow from top to bottom. As the carriers flow away from the
top plate, they carry heat with them. The carriers absorb heat at the two
metal-semiconductor junctions, and the top plate cools. If the direction
of the current is reversed, the hot and the cold plates are interchanged.
Some key questions are: 1) What determines the maximum temperature
di↵erence that can be produced? 2) How much heat can be pumped from
the top plate? and 3) What determined the e�ciency (or COP - coe�cient
of performance) of this Peltier cooler?

Fig. 4.8 Schematic illustration of how a thermoelectric cooler operates.

Shown in Fig. 4.9 is a sketch of a simple thermoelectric power generator.
Note that it is the same as the cooling device sketched in Fig. 4.8. In this
case, however, we apply a heat source to the top plate and maintain a
cooler temperature at the bottom plates. Holes flow away from the heat
source, down the p-type leg, out the lead and through an external load
(the light bulb in this illustration), and the current flows back in the lead
at the left and up the n-type leg. The current flowing up the n-type leg
completes the circuit and represents electrons flowing down the n-type leg
away from the heat source. For the power generator, the key question is:
What determines the e�ciency with which the heat flux is converted into
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electrical power? Before we do a simple analysis of device operation, we
note that the two legs of the device are connected electrically in series but
thermally in parallel. Practical devices consist of many of these n- and
p-type pairs, or thermoelectric couples. The series electrical connection
increases the voltage, which makes it easier to drive a large current. The
fact that they are thermally in parallel increases the heat pumped or power
generated.

Fig. 4.9 Schematic illustration of how a thermeoelectric power generator operates. Us-
ing this device, heat is converted into electrical power.

Figure 4.10 is a sketch of a simple, one-leg TE device that we will use
as an illustration of how to relate TE parameters to device performance.
The device operates as a Peltier cooler. To analyze this device, we can set
up a balance equation for the heat flux, Qc extracted from the cool side.
In words, Qc is the heat flux pumped by the Peltier e↵ect minus the heat
flux that back di↵uses from the hot side and minus the Joule heating, I2R.
We assume that one-half of the Joule heat flows down to the cold junction
and one-half up. (The Joule heating term was not included in the basic
equations of thermoelectricity, eqns. (4.21), because they describe near-
equilibrium transport, and the Joule heating is quadratic in the current or
voltage). The corresponding balance equation is

Ic = AQc = ⇡nI � 
A

L
�T � I2Rn

2
W , (4.28)

where
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Rn = ⇢
L

A
(4.29)

is the resistance of the n-type leg and�T = TH�TC . Equation (4.28) shows
that Joule heating reduces the magnitude of the heat pumped. To find the
maximum heat that can be pumped, we solve dQc/dI = 0 to find Imax

c ,
which can be inserted in eqn. (4.28) to find the corresponding maximum
heat that can be pumped at the cold junction, Qmax

c . To determine the
maximum temperature di↵erence that can be supported, we set Qmax

c = 0
and find

�Tmax = TH � TC =
1

2
ZT 2

C , (4.30)

where

Z =
S2
n�n


(4.31)

is the so-called thermoelectric figure of merit, an important quantity. The
maximum temperature di↵erence occurs when the current is set to Imax

c

and Qmax
c = 0. Under these conditions, the back flow of heat and Joule

heating exactly cancel the Peltier heat pumped at the cold junction.

Fig. 4.10 One leg TE device used for model calculations for a Peltier cooler.
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The next question is what determines the cooling e�ciency or coe�cient
of performance (COP)? The e�ciency of the Peltier heat pump is the ratio
of the heat pumped to the input electrical power,

⌘ =
Qc

Pin
. (4.32)

We can calculate the e�ciency in two di↵erent ways. We could determine
the maximum e�ciency by evaluating d⌘/dI = 0 for the current at the
maximum e�ciency. Inserting that current in eqn. (4.32) would give the
maximum e�ciency. Alternatively, we could use the current, Imax

c , that
gives the maximum heat pumped, insert it in eqn. (4.32) to find the COP
at under maximum cooling power conditions. In either case, the answer
can be written as [7]

⌘ = COP =
Qc

Pin
= fP (TH , TC , Z) . (4.33)

The important point is that the e�ciency of the Peltier cooler is given by
a function, fP , of the hot side temperature, cold side temperature, and the
thermoelectric figure of merit. Both the maximum temperature di↵erence
possible and the COP of the Peltier cooler depend on the thermoelectric
parameters in the combination as given by eqn. (4.31). Qualitatively, it is
easy to see why. Higher conductivities lower the Joule heating losses, higher
Seebeck coe�cients increase the Peltier heat pumped, and lower thermal
conductivities reduce the back flow of heat from the hot side to the cold
side.

A similar calculation can be done for the thermoelectric power generator
sketched in Fig. 4.9. Again, we would set up a heat flow balance equation
but this time at the hot side junction. The heat flux input (which we are
trying to convert into electricity) is equal to the Peltier heat pumped at the
hot side, plus the heat that di↵uses from the hot to cold junction, minus
one-half of the Joule heating. The conversion e�ciency is simply the ratio
of the output electrical power to the input heat current,

⌘ =
Pout

AQin
=

I2RL

AQin
, (4.34)

where RL is the resistance of the load. The current can be related to
the temperature drop from the hot to cold sides. To find the maximum
e�ciency, we solve d⌘/dRL = 0 to find the optimum load resistance, insert
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it in eqn. (4.34). As for the Peltier cooler, we find that the power conversion
e�ciency is determined by the thermoelectric figure of merit, Z.

The most important point of this short discussion is the fact that the
e�ciency of a thermoelectric device, whether operated as a refrigerator or
as a power generator, is determined by the thermoelectric figure of merit,
Z, which depends on the properties of the thermoelectric material. In prac-
tice, contact and interface resistance (both electrical and thermal) reduce
the performance of actual devices, but the material parameter, Z, plays a
central role in thermoelectric technology.

4.6 Discussion

Before we conclude this lecture, there are three more things to discuss. The
first is the thermoelectric figure of merit (FOM), given its importance in
determining device performance. The second is how to think about TE
devices in terms of electron flow alone, not electrons and holes as sketched
in Figs. 4.8 and 4.9. This is important because our general model for
transport developed in Lecture 2, the conductivity derived in Lecture 3,
and the thermoelectric parameters developed in this lecture and in the
next one are all expressed in terms of electrons. The expressions apply to
both n-type and p-type materials, but they refer to electrons flowing in the
conduction or valence bands respectively. Finally, we briefly discuss the
measurement of Seebeck coe�cients.

The figure of merit is commonly written as ZT , where

ZT =
S2
n�nTL

n + L
(4.35)

is a dimensionless number. A good thermeoelectic has a FOM of about
one. For widespread applications in electronic cooling or power generation
from waste heat, a FOM of ⇡ 3 is desired. This is the grand challenge of
thermoelectric research. Let’s consider two questions: 1) What material
properties determine ZT? and 2) Given a material, how do we optimize
ZT?

According to eqn (4.23), the Seebeck coe�cient mainly depends on the
di↵erence between the band edge and the Fermi level. Details of bandstruc-
ture and scattering a↵ect the parameter, �n, but the di↵erences are rather
small. According to eqn. (4.22), the conductivity depends on the e↵ective
number of channels for conduction, hMi, and the average mean free path
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for backscattering, hh�ii. To get a large hMi, we need the Fermi level to be
high, preferably in the band, and a large M(E). For a long mean-free-path,
scattering should be weak (high mobility). The denominator of the FOM is
the thermal conductivity. Typically, L � n. In Lecture 9 we will discuss
the lattice thermal conductivity.

Figure 4.11 is a sketch of Sn and �n vs. the position of the Fermi level.
As the Fermi level moves towards and then into the conduction band, |Sn|
decreases, but at the same time, �n increases because there are more and
more channels to conduct. The product of the two is the power factor,
PF = S2

n�n, which is maximized when EF is near the band edge. The
precise location depends on details of bandstructure and scattering, but in
practice, TE device designers seek to maximize performance by doping the
material to place EF near the band edge.

Fig. 4.11 Sketch of the Seebeck coe�cient vs. Fermi level (left axis), conductivity vs.
Fermi level (right axis), and power factor, PF (dashed line).

Figure 4.12 shows the thermoelectric cooler in terms of electron flow.
Electrons flow from the top metal, into the n-type leg, and down to the
bottom left contact. Electrons flow from the bottom right contact into the
p-type leg and up to the top metal contact. The energy band diagrams
show how to think about Peltier cooling in terms of electrons only. For
example, at the upper left, we see electrons flowing from the metal, and
absorbing heat in order to move into the conduction band of the n-type
semiconductor. On the upper right, we see electrons moving up in the
valence band of the p-type leg absorbing energy to occupy an empty state
in the top metal. At the bottom left, we see that heat is emitted when
electrons move from the conduction band of the n-type leg to the metal.
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As shown on the lower right, electrons that drop down in energy from the
metal to fill an empty state in the valence band of the p-type semiconductor,
also emit heat. For either an n-type or p-type semiconductor, we can view
conduction in terms of electrons or holes, which ever is more convenient.

Fig. 4.12 Illustration of Peltier cooling operation in terms of electron flow alone, rather
than electrons and holes.

Finally, let’s discuss how one would measure the Seebeck coe�cient.
Figure 4.13 is a simple illustration. Two contacts are made to the sample,
and a heater on one side introduces a temperature gradient. To deter-
mine the temperature di↵erence across the sample, we need to measure the
temperature at two contacts. In the illustration, this is done with two ther-
mocouples (which also operate on the Seebeck e↵ect). (In practice, some
care is needed to accurately measure the temperature gradient.) A high
impedance voltmeter is attached to measure the open-circuit voltage.

The Seebeck coe�cient of the sample is

Ss =
��Vs

�T
, (4.36)

but the voltmeter does not measure only the voltage drop across the sample.
The leads of the voltmeter are attached to the contacts. For the lead at
the right, one end is at contact 2 and, therefore, at temperature, TL2 while
the other end is at the voltmeter. If the temperature of the voltmeter is
TL1, then there is a temperature di↵erence and therefore a Seebeck voltage
across this lead with a value of
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Sl =
��Vl

�T
. (4.37)

Note that this voltage opposes the sample Seebeck voltage. Kircho↵’s Volt-
age Law tells us that

Vmeas = �Vs ��Vl = � (Ss � Sl)�T , (4.38)

so the measured voltage gives the di↵erence between the Seebeck coe�cient
of the sample and that of the lead. The leads are typically gold or copper
and have a low Seebeck coe�cient, but when measuring small Seebeck
coe�cients, the lead correction can be important. It is also interesting to
think about how eqn. (4.15) would change if we take the Peltier coe�cient
of the metal contacts into account.

Fig. 4.13 Illustration of how the Seebeck coe�cient is measured.
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4.7 Summary

Our goal in this lecture has been to understand how temperature gradients
a↵ect electrical currents and how electrical currents a↵ect the flow of heat.
In Lecture 3, we focused on eqn. (3.2), which applies quite generally when
the temperature is uniform. In this lecture, we used heuristic arguments to
develop the basic general equations of thermoelectricity, eqns. (4.21). We
have assumed a 3D conductor and di↵usive transport, but in Lecture 5 we
will see how to formally derive similar equations in 1D, 2D, or 3D and from
ballistic to di↵usive conditions.

In summary, in this lecture, we have:

(1) Discussed the physics of thermoelectricity – the Seebeck and Peltier
e↵ects.

(2) Developed the basic equations that describe thermoelectricity.
(3) Discussed how the four thermoelectric parameters depend on the prop-

erties of the material.
(4) Introduced thermoelectric devices and the thermoelectric figure of

merit, ZT , which controls their performance.

Having discussed the physics, we turn in the next lecture to a formal,
mathematical treatment of thermoelectricity.
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Lecture 5

Thermoelectric E↵ects: Mathematics

5.1 Introduction
5.2 Driving forces for current flow
5.3 Charge current
5.4 Heat current
5.5 Discussion
5.6 Summary
5.7 References

5.1 Introduction

In Lecture 4, we discussed the physics of thermoelectricity using heuristic
mathematical arguments to develop the basic equations. Our discussion as-
sumed a 3D conductor and di↵usive transport. You might wonder how to
describe thermoelectricity in 1D or 2D and under ballistic or quasi-ballistic
conditions. To answer these questions, we need a formal, mathematical
description of thermoelectricity. We present a derivation of the basic equa-
tions of thermoelectricity in this lecture.

In Lecture 2 we saw that the electrical current for our generic device is

I = �Ix =
2q

h

Z
T (E)M(E) (f1 � f2) dE . (5.1)

Anything that causes a di↵erence between f1 and f2 causes current to flow.
(The minus sign in this expression reminds us that the current was defined
to be positive when it flows into contact 2, so positive current flows in the
�x-direction.) Di↵erences in the Fermi levels of the two contacts (caused by
an applied voltage across the device) and di↵erences in the temperatures of

87
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the two contacts can both cause f1 to be di↵erent from f2. The two driving
forces for current flow are di↵erences in the Fermi levels and temperatures
of the two contacts.

Electrons are particles that carry both charge and heat. The charge
current is given by eqn. (5.1). To get the heat current, we note that
electrons in the contact flow at an energy, E ⇡ EF . To enter an energy
channel, E, in the device, electrons must absorb (if E > EF ) or emit (if
E < EF ) a thermal energy of E � EF . We conclude that for the heat
current term, we should replace the q in eqn. (5.1) with (E � EF ) and
move it inside the integral. The resulting heat current is

IQ =
2

h

Z
(E � EF )T (E)M(E) (f1 � f2) dE . (5.2)

Thermoelectricity involves near-equilibrium transport where f1 ⇡ f2 ⇡ f0.
In the next section, we develop a Taylor series expansion of (f1 � f2) for
small di↵erences in voltage and temperature.

5.2 Driving forces for current flow

Figure 5.1a is a sketch of the Fermi function for two di↵erent locations
of the Fermi level. When �V = V2 � V1 > 0, we see that f1 > f2 for
all energies, so the total current is positive. The sign of the current does
not depend on whether the semiconductor is n-type or p-type. We saw in
Lecture 2 that for small di↵erences in the two Fermi levels, we can expand
(f1 � f2) in a Taylor series. Keeping only the first term, we found

(f1 � f2) ⇡
✓
�@f0
@E

◆
q�V . (5.3)

The term, (�@f0/@E) is called the window function; it gives the range of
energies that contribute to current flow.

Figure 5.1b is a sketch of the Fermi function for the case in which
the two Fermi levels are identical, but the two temperatures are di↵erent,
�TL = TL2 � TL1 > 0. We see that f1 > f2 for energies below EF , and
f1 < f2 for energies above EF . Current flows, but the sign of the current
depends on whether the channels are located above EF (n-type) or below
(p-type). For near-equilibrium transport, we can expand (f1 � f2) as

(f1 � f2) ⇡ f1 �
✓
f1 +

@f1
@TL

�T

◆
= � @f0

@TL
�T . (5.4)
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Fig. 5.1 Sketch of the Fermi functions of the two contacts when: (a) the two voltages
are di↵erent but the temperatures are the same and (b) the two voltages are identical
but the temperatures are di↵erent.

Di↵erentiating the Fermi function, we find

(f1 � f2) ⇡ �
✓
�@f0
@E

◆
(E � EF )

TL
�T . (5.5)

In general, there can be di↵erences in both the Fermi levels and the
temperatures of the two contacts. The total di↵erence in f1 and f2 is the
sum of eqns. (5.3) and (5.5):

(f1 � f2) ⇡
✓
�@f0
@E

◆
q�V �

✓
�@f0
@E

◆
(E � EF )

TL
�T . (5.6)

The two driving forces for current flow are related to di↵erences in Fermi
level (or voltage) and di↵erences in temperature, and for small di↵erences,
they simply add.

5.3 Charge current

Deriving a general, near-equilibrium current equation is now straight-
forward. The total current is the sum of the contributions from each energy
channel,
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I =

Z
I 0 (E) dE , (5.7)

where the di↵erential current is

I 0 (E) =
2q

h
T (E)M (E) (f1 � f2) . (5.8)

Using eqn. (5.6) in eqn. (5.8) we obtain

I 0 (E) = G0 (E)�V + S0
T (E)�T , (5.9)

where

G0 (E) =
2q2

h
T (E)M (E)

✓
�@f0
@E

◆
(5.10)

is the di↵erential conductance and

S0
T (E) = �2q2

h
T (E)M (E)

✓
E � EF

qTL

◆✓
�@f0
@E

◆

= �
✓
kB
q

◆✓
E � EF

kBTL

◆
G0 (E) ,

(5.11)

is related to the Soret coe�cient for electro-thermal di↵usion. Note that
S0
T (E) is negative for channels above EF and positive for channels below

EF .
To find the total charge current, we integrate eqn. (5.9) over the energy

channels to find

I = G�V + ST�T , (5.12)

where

G =

Z
G0(E) dE , (5.13)

and

ST =

Z
S0
T (E) dE (5.14)

with the di↵erential conductance being given by eqn. (5.10) and the dif-
ferential Soret coe�cient by eqn. (5.11). These equations are valid in 1D,
2D, or 3D and from the ballistic to di↵usive limits.
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Exercise: Current equation for bulk transport

In Lecture 2, we saw that the current equation that describes near-
equilibrium transport in a bulk material with a uniform temperature is

Jnx = �n
d (Fn/q)

dx
Jnx = �nEx .

(5.15)

The second form of this equation applies when the carrier density is uniform,
and there are no di↵usion coe�cients. How does this equation change in
the presence of a temperature gradient?

We begin with eqn. (5.12) and recall that in eqn. (5.12) a positive
current flows in the �x direction. Dividing by �A to find the current
density in the +x direction, we find

Jnx = �G

A
�V � ST

A
�T . (5.16)

If we multiply and divide by the length of the resistor, this becomes

Jnx = �G
L

A

�V

L
� ST

L

A

�T

L
. (5.17)

In the di↵usive limit, G = �nA/L and ST = sTA/L. We also have
dFn/dx ⇡ �q�V/L and dTL/dx ⇡ �T/L, so eqn. (5.17) becomes

Jnx = �n
d(Fn/q)

dx
� sT

dTL

dx
, (5.18)

which is the proper current equation in the bulk when there are gradients
in both the electrochemical potential and the temperature.

Please note the notation in the above equations. The subscript“n” sug-
gests that we are describing an n-type conductor. In that case, �n is positive
and sT is negative. But our starting point, eqn. (5.1), describes electron
flow in either the conduction or valence bands. For a p-type semiconductor,
the current flow is by electrons in the valence band. The subscripts would
change to “p”; �p would be positive, but in this case, sT would also be
positive. We’ll discuss more about n- and p-type conduction in Sec. 5.5.
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5.4 Heat current

Figure 5.2 is an illustration of heat flow in our generic device. Heat is
absorbed at contact 1 and emitted at contact 2. Following eqn. (5.2), we
write the heat fluxes at contacts 1 and 2 according to

IQ1 =
2

h

Z
(E � EF1)T (E)M(E) (f1 � f2) dE

IQ2 =
2

h

Z
(E � EF2)T (E)M(E) (f1 � f2) dE .

(5.19)

Fig. 5.2 Schematic illustration of heat absorption and emission in the generic device.

Assuming near-equilibrium conditions and using eqn. (5.6), we find

I 0Q(E) = �TLS
0
T (E)�V �K 0

0(E)�T , (5.20)

where we have suppressed the label for the contact numbers and

K 0
0(E) =

(E � EF1)
2

q2TL
G0(E) . (5.21)

To find the total heat current, we integrate over all of the energy channels
and find

IQ = �TLST�V �K0�T , (5.22)



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

Thermoelectric E↵ects: Mathematics 93

where

K0 = TL

✓
kB
q

◆2 Z ✓E � EF1

kBTL

◆2

G0(E) dE (5.23)

is the electronic heat conductance under short circuit (�V = 0) conditions.

5.5 Discussion

Beginning with the general equations, we have derived the charge and heat
current equations for near-equilibrium transport as

I = G�V + ST�T

IQ = �TLST�V �K0�T ,
(5.24)

which shows that di↵erences in voltage and temperature cause both charge
and heat currents to flow. The units of I are Amperes and IQ Watts. The
conductance, G, is in Siemans (1/Ohms), ST in Amperes/Kelvin, and K0 is
Watts/Kelvin. The general expressions for the three transport parameters
are

G0 (E) =
2q2

h
T (E)M (E)

✓
�@f0
@E

◆

G =

Z
G0(E) dE

ST = �
✓
kB
q

◆Z ✓
E � EF

kBTL

◆
G0(E) dE

K0 = TL

✓
kB
q

◆2 Z ✓E � EF

kBTL

◆2

G0(E) dE .

(5.25)

(Recall, again, that K0 describes only the part of heat conduction due
to electrons. In semiconductors, the larger contribution comes from the
lattice.) Equations (5.25) are valid in 1D, 2D, or 3D and for ballistic to
di↵usive transport. For 3D, di↵usive transport, the transport equations
become

Jnx = �n
d (Fn/q)

dx
� sT

dTL

dx

JQx = TLsT
d (Fn/q)

dx
� 0

dTL

dx
.

(5.26)
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These equations have the same form in 1D and 2D, but the units of the
various terms di↵er. The equations are often written with d(Fn/q)/dx
replaced by Ex, which is the electric field. This replacement is valid when
the carrier density is uniform, and di↵usion currents are absent. In eqns.
(5.26), Jnx is in A/m2 and JQx is in (W/m2). The conductivity, �n, has
units of 1/(⌦�m), sT has units of A/(m-K), and 0 has units of W/(m-K).
The thermoelectric transport parameters for 3D, di↵usive transport are

�0
n (E) =

2q2

h
M3D (E)� (E)

✓
�@f0
@E

◆

�n =

Z
�0
n(E) dE

sT = �
✓
kB
q

◆Z ✓
E � EF

kBTL

◆
�0
n(E) dE

0 = TL

✓
kB
q

◆2 Z ✓E � EF

kBTL

◆2

�0
n(E) dE .

(5.27)

Recall that M3D(E) = M(E)/A.

Inverted form of the transport equations

Equations (5.24) and (5.26) are in the form that results naturally from our
generic model for current flow, eqns. (5.1) and (5.2). They correspond ex-
perimentally to a situation in which voltage and temperature di↵erences are
applied and the charge and heat currents that flow are measured. (Voltage
and temperature are the independent quantities and the currents are the
dependent quantities.) In this form of the equations, the contributions from
each energy channel add. For experiments, however, it is often convenient
to re-write these equations so that the charge current and temperature dif-
ferences are the independent quantities. Accordingly, eqns. (5.24) become

�V = RI � S�T

IQ = �⇧I �Kn�T ,
(5.28)

where
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S =
ST

G
⇧ = TLS

Kn = K0 �⇧SG .

(5.29)

Note that in this form of the equations, the contributions from each energy
channel do not add (i.e. R 6=

R
R(E)dE).

For 3D, di↵usive transport, the transport equations in the inverted form
become

d (Fn/q)

dx
= ⇢nJnx + Sn

dTL

dx

JQx = TLSnJnx � n
dTL

dx
,

(5.30)

which should be compared to eqns. (5.26). The transport parameters in
eqns. (5.30) are

⇢n = 1/�n

Sn = sT /�n

n = 0 � S2
n�nTL ,

(5.31)

which correspond to those in eqns. (5.27) for the transport eqns., (5.26).
Again, one frequently sees eqn. (5.30) written with d(Fn/q)/dx replaced
by Ex.

Exercise 5.1: Transport parameters in 1D

As an example of how to apply the general relations developed in this
lecture, let’s work out the transport coe�cients for a specific case. Consider
a 1D conductor in the ballistic limit with one subband occupied, and let’s
evaluate the transport parameters in eqns. (5.24) or (5.28). In this case,
T (E) = 1 and M(E) = gv, where gv is the valley degeneracy. We assume
that only one subband is occupied, but depending on the bandstructure,
there may be more than one degenerate valley. For example, in a carbon
nanotube, gv = 2 [1]. Note that in 1D, the valley degeneracy is the only
information about bandstructure that we need.
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To evaluate the conductance (or resistance), we begin with the di↵er-
ential conductance, eqn. (5.10), and find

G0 (E) =
2q2

h
gv

✓
�@f0
@E

◆
, (5.32)

so the conductance becomes

G =
1

R
=

2q2

h
gv

Z 1

Ec

✓
�@f0
@E

◆
dE =

2q2

h
hMi . (5.33)

The integral is the number of channels for conduction, which for fully de-
generate conditions (TL = 0 K) is hMi = gv. In general, however, only a
fraction of the channel are occupied. The integral is

hMi = gv

Z 1

Ec

✓
�@f0
@E

◆
dE = gv

@

@EF

Z 1

Ec

f0 dE , (5.34)

where we have used (�@f0/@E) = (+@f0/@EF ), which comes from the
form of the Fermi function.

To find hMi, we must evaluate

hMi = gv
@

@EF

Z 1

Ec

dE

1 + e(E�EF )/kBTL
, (5.35)

which can be done by defining the variables, ⌘ = (E � Ec)/kBTL and
⌘F = (EF � Ec)/kBTL so that eqn. (5.35) becomes

hMi = gv
@

@⌘F

Z 1

0

d⌘

1 + e⌘�⌘F
. (5.36)

The integral can be recognized as the Fermi-Dirac integral of order 0. Using
the rule for di↵erentiating Fermi-Dirc integrals, eqn. (3.24), we finally
obtain

hMi = gv F�1 (⌘F )

G =
2q2

h
hMi = 2q2

h
qv F�1 (⌘F ) .

(5.37)

Before we compute the other parameters, let’s examine the result. For
a non-degenerate material, ⌘F ⌧ 0 and F�1(⌘F ) ! e⌘F . For a strongly
degenerate material, ⌘F � 0. The Fermi-Dirac integral, F�1(⌘F ) is an
analytical function [2],
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F�1(⌘F ) =
@F0

@⌘F
=
@ [ln (1 + e⌘F )]

@⌘F
=

e⌘F

1 + e⌘F
. (5.38)

For ⌘F � 0, we see that F�1(⌘F ) ! 1 and G = (2q2/h) gv, as expected.
Having computed G and R = 1/G for the 1D ballistic conductor, we

now turn to the Soret and Seebeck coe�cients. From eqn. (5.25) we find

ST = �
✓
kB
q

◆Z 1

Ec

✓
E � EF

kBTL

◆
2q2

h
gv

✓
�@f0
@E

◆�
dE . (5.39)

Let’s multiply and divide this by G as given by eqn. (5.33). Doing so, we
find

ST = �
✓
kB
q

◆ R1
Ec

⇣
E�EF
kBTL

⌘⇣
�@f0

@E

⌘
dE

R1
Ec

⇣
�@f0

@E

⌘
dE

G , (5.40)

so ST is proportional to G, and we only need to evaluate the two integrals.
We have seen already that the denominator is F�1(⌘F ), so we only need to
evaluate the numerator.

Working on the numerator of eqn. (5.40), we find

num =

Z 1

Ec

✓
E � EF

kBTL

◆✓
�@f0
@E

◆
dE

=

Z 1

Ec

✓
E � Ec + Ec � EF

kBTL

◆✓
�@f0
@E

◆
dE

=

Z 1

Ec

✓
E � Ec

kBTL

◆✓
+
@f0
@EF

◆
dE � ⌘F

Z 1

Ec

✓
+
@f0
@EF

◆
dE .

(5.41)

Now proceeding as before, we move @/@EF outside of the integrals and
change variables to ⌘ = (E � Ec)/kBTL and ⌘F = (EF � Ec)/kBTL and
find

num =
@

@⌘F

Z 1

0

⌘ d⌘

1 + e⌘�⌘F
� ⌘F

@

@⌘F

Z 1

0

d⌘

1 + e⌘�⌘F
. (5.42)

We recognize the first integral as F1(⌘F ), and the di↵erentiation gives us
F0(⌘F ). We recognize the second integral as F0(⌘F ) and the di↵erentiation
gives us F�1(⌘F ), so the numerator of eqn. (5.40) becomes
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num = �
✓
kB
q

◆
[F0(⌘F )� ⌘FF�1(⌘F )] , (5.43)

and ST becomes

ST = �
✓
kB
q

◆✓
�⌘F +

F0(⌘F )

F�1(⌘F )

◆
G . (5.44)

The Seebeck coe�cient, S = ST /G, is

S = �
✓
kB
q

◆✓
�⌘F +

F0(⌘F )

F�1(⌘F )

◆
, (5.45)

which, recalling the definition of ⌘F = (EF �Ec)/kBTL, can be written as

Sn = �
✓
kB
q

◆✓
Ec � EF

kBTL
+ �n

◆

�n =
F0(⌘F )

F�1(⌘F )
.

(5.46)

Before proceeding to the evaluation of electronic heat conductance, let’s
examine the Seebeck coe�cient. First, we see that from eqn. (5.46) that Sn

has the expected form of eqn. (4.23). Second, in the non-degenerate limit,
the Fermi-Dirac integrals become exponentials, and �n ! 1, or �n becomes
kBTL. For a non-degenerate, 1D ballistic conductor, the current flows on
average, at an energy, kBTL, above the bottom of the band. Finally, for
strongly degenerate conductors, ⌘F � 0 and from the expression for F0

and F�1 (see eqn. (5.38)), we see that F0 / F�1 ! ⌘F . For strongly
degenerate conditions, �n ! ⌘F = (EF �Ec)/kBTL, and eqn. (5.46) shows
that Sn ! 0. For strong carrier degeneracy, �n ! (EF � Ec), which is
much greater than the kBTL value under non-degenerate conditions.

We have computed G and R = 1/G as well as ST , Sn, and ⇧ = TLSn

for the 1D ballistic conductor. We now turn to the electronic heat conduc-
tances, K0 and Kn. From eqn. (5.25), after dividing and multiplying by
the conductance, we find

K0 = TL

✓
kB
q

◆2

2

64

R1
Ec

⇣
E�EF
kBTL

⌘2 ⇣
�@f0

@E

⌘
dE

R1
Ec

⇣
�@f0

@E

⌘
dE

3

75G . (5.47)
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We see that the electronic thermal conductance is proportional to the elec-
trical conductance, which is just a statement of the Wiedemann-Franz
Law, which we will discuss next. Again, we recognize the denominator
as F�1(⌘F ), so we only need to evaluate the numerator. Working on the
numerator of eqn. (5.47), we find

num =

Z 1

Ec

✓
E � EF

kBTL

◆2✓
�@f0
@E

◆
dE

=

Z 1

Ec


(E � Ec) + (Ec � EF )

kBTL

�2✓
�@f0
@E

◆
dE

=

Z 1

Ec

✓
E � Ec

kBTL

◆2✓
+
@f0
@EF

◆
dE � 2⌘F

Z 1

Ec

✓
E � Ec

kBTL

◆✓
+
@f0
@EF

◆
dE

+ ⌘2F

Z 1

Ec

✓
+
@f0
@EF

◆
dE .

(5.48)

The last term in eqn. (5.48) can be recognized as ⌘2FF�1, and the second
term is �2⌘FF0. Finally, the first term is 2F1. Putting this all together,
we find

K0 = TL

✓
kB
q

◆2 
2
F1(⌘F )

F�1(⌘F )
� 2⌘F

F0(⌘F )

F�1(⌘F )
+ ⌘2F

�
G . (5.49)

Equation (5.49) gives the electronic heat conductance under short circuit
conditions. To find the open circuit electronic heat conductance, Kn, we
use the definition, eqn. (5.29) and the result for Sn, eqn. (5.45), to find

Kn = TL

✓
kB
q

◆2
"
2
F1(⌘F )

F�1(⌘F )
�
✓

F0(⌘F )

F�1(⌘F )

◆2
#
G . (5.50)

The point of this exercise has been to illustrate how the general expres-
sions we have developed are evaluated in specific cases. The procedure is
straight-forward, but it can get tedious. Depending on the application, it
may be preferable to just numerically integrate the expressions.

For additional practice, consider di↵usive transport in this 1D conductor
(T (E) = �(E)/L) with power law scattering (�(E) = �0[(E�Ec)/kBTL]r).
Your final expressions will contain the characteristic exponent, r, which, as
we will discuss in Lecture 6, is typically between 0 and 2. In particular, de-
rive an expression for the parameter, �n in terms of r and explain physically
why �n increases as r increases.
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Wiedemann-Franz Law and Lorenz Number

In Lecture 4, we asserted that there should be a relation between the elec-
trical and thermal conductivities because electrons carry both the electrical
and thermal currents. We can now make this relation explicit. First, let’s
define the conductivity-weighted average of a quantity as

(•) ⌘
R
(•)�0

n(E)dER
�0
n(E)dE

. (5.51)

Using this definition, we can express the transport coe�cients, eqns. (5.27)
and (5.31) as

sT = �
✓
kB
q

◆✓
E � EF

kBTL

◆
�n

Sn = sT /�n = �
✓
kB
q

◆✓
E � EF

kBTL

◆
= �

✓
kB
q

◆
EJ � EF

kBTL

0 = TL

✓
kB
q

◆2✓E � EF

kBTL

◆2

�n

n = TL

✓
kB
q

◆2
"✓

E � EF

kBTL

◆2

�
✓
E � EF

kBTL

◆ 2#
�n .

(5.52)

Equations (5.52) show that the Seebeck coe�cient is related to the average
energy of current transport, EJ , and that both thermal conductivities, 0
and n are proportional to the electrical conductivity, �n. From these
expressions, we find

n
TL�n

= L =

✓
kB
q

◆2
"✓

E � EF

kBTL

◆2

�
✓
E � EF

kBTL

◆ 2#
, (5.53)

which is just the Wiedemann-Franz Law with L being the Lorenz number.
The factor in brackets depends on the shape of the band, the degree of
degeneracy, and the type of scattering. For a parabolic energy band and
energy independent scattering, this factor is 2 for non-degenerate conditions
and ⇡2/3 for degenerate conditions.

P-type semiconductors and bipolar conduction

Consider a 3D semiconductor with parabolic energy bands. For the con-
duction band,



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

Thermoelectric E↵ects: Mathematics 101

M c
3D(E) = gv

m⇤
n

2⇡~2 (E � Ec) E � Ec (5.54)

and for the valence band

Mv
3D(E) = gv

m⇤
p

2⇡~2 (Ev � E) E  Ev . (5.55)

Figure 5.3 is a sketch of M(E) for this simple bandstructure.

Fig. 5.3 Sketch of M(E) vs. E for a 3D, parabolic band semiconductor.

The conductivity consists of two parts. For the conduction band,

�n =
2q2

h

Z 1

Ec

M c
3D (E)�n (E)

✓
�@f0
@E

◆
dE (5.56)

and for the valence band

�p =
2q2

h

Z Ev

�1
Mv

3D (E)�p (E)

✓
�@f0
@E

◆
dE . (5.57)

We have not worried about integrating to the top of the conduction band
or from the bottom of the valence band but have taken the limits as ±1
because the Fermi function ensures that the integrand falls exponentially
to zero away from the band edge. The important point is that in both
cases we integrate the same expression (with the appropriate M3D and �)
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over the relevant band. Electrons carry the current in either case, so our
general expression is the same for the conduction and valence bands. There
is no need to change signs for the valence band or to replace f0(E) with
1� f0(E).

To compute the Seebeck coe�cient for electrons in the conduction band,
we have from eqn. (5.27)

�0
n (E) =

2q2

h
M c

3D (E � Ec)�n (E)

✓
�@f0
@E

◆

�n =

Z 1
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�0
n(E) dE

sT = �
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kB
q

◆Z 1
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✓
E � EF

kBTL

◆
�0
n(E) dE

Sn = sT /�n = �
✓
kB
q

◆ R1
Ec

⇣
E�EF
kBTL

⌘
�0
n(E) dE

�n
.

(5.58)

Similarly, for the Seebeck coe�cient for electrons in the valence band is

�0
p (E) =

2q2

h
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3D (Ev � E)�p (E)

✓
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@E

◆

�p =

Z Ev
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�0
p(E) dE

sT = �
✓
kB
q

◆Z Ev

�1

✓
E � EF

kBTL
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Sp = sT /�p = �
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q

◆ R Ev

�1

⇣
E�EF
kBTL

⌘
�0
p(E) dE

�p
.

(5.59)

Note that the sign of Sp will be positive.
Finally, we ask the question: What happens if both the conduction

and valence bands contribute to conduction? This can occur for a small
bandgap or at high temperatures. In this case, we simply integrate over all
the channels and find

�0 (E) =
2q2

h
M3D (E)� (E)

✓
�@f0
@E

◆

M3D(E) = Mv
3D(E) +M c

3D(E)

�tot =

Z 1

�1
�0(E) dE = �n + �p ,

(5.60)
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but what about the Seebeck coe�cient? To evaluate S when two bands
contribute, remember that in the first form of the transport coe�cients,
the contributions from each energy channel add in parallel, so the total
Soret coe�cient is

sT = �
✓
kB
q

◆Z 1

�1

✓
E � EF

kBTL

◆
�0(E) dE = Sn�n + Sp�p . (5.61)

The Seebeck coe�cient is S = sT /�, so

Stot =
Sn�n + Sp�p
�n + �p

. (5.62)

Since Sn and Sp have opposite signs, we find that for high temperatures,
the total S drops, and the performance of a TE device falls.

Exercise 5.2: Evaluation of the 3D, Di↵usive Transport Co-
e�cients

We conclude this discussion by working out expressions for the transport
coe�cients for the 3D, bulk transport equations, eqns. (5.30). The first
parameter is the resistivity, ⇢n = 1/�n. According to eqn. (5.27)

�n =
2q2

h

Z 1

Ec

M c
3D(E)�n(E)

✓
�@f0
@E

◆
dE , (5.63)

which we can rewrite as
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(5.64)
Now we make the following two definitions:

hM c
3Di ⌘
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Ec

M c
3D(E)

✓
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◆
dE (5.65)

for the average number of channels near the Fermi level, and

hh�nii ⌘
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hM c

3D(E)i , (5.66)



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

104 Near-equilibrium Transport: Fundamentals and Applications

which allows us to write the conductivity as

�n =
2q2

h
hM c

3Di hh�nii . (5.67)

To evaluate the conductivity, we just need to evaluate the average number
of conduction channels and the average mean-free-path.

Assuming parabolic energy bands, M3D(E) is given by eqn. (5.54), and
eqn. (5.65) becomes

hM c
3Di =

Z 1

Ec

gv
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✓
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◆
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+
@f0
@⌘F
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d⌘

= M c
3D(kBTL)F0(⌘F ) .

(5.68)

The quantity, M c
3D(kBTL) is eqn. (5.54) evaluated at an energy of E�Ec =

kBTL.
Having evaluated hM c

3Di, we now turn to hh�ii. Often, we can write the
energy dependent mean-free-path as

�n(E) = �0[(E � Ec)/kBTL]
r , (5.69)

where r is a characteristic exponent that depends on the specific scattering
mechanism. We will see in Lecture 6 that this power law scattering is
reasonable for some common scattering mechanisms.

Using this expression for �(E), we find that the numerator of eqn. (5.66)
is

num =
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= M c
3D(kBTL)�0 �(r + 2)Fr(⌘F ) .

(5.70)

Since the denominator of eqn. (5.66) is just hM3Di, we find

hh�nii = �0 �(r + 2)
Fr(⌘F )

F0(⌘F )
, (5.71)
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and the conductivity is

�n =
2q2

h
hM c

3Di hh�nii

=
2q2

h
M c

3D (kBTL)F0 (⌘F )


�0 �(r + 2)

Fr(⌘F )

F0(⌘F )

�
.

(5.72)

Having computed the conductivity (and resistivity) in eqns. (5.30), let’s
compute the Seebeck coe�cient, Sn, next. From eqns. (5.27), we see that

Sn =

✓
�kB

q

◆✓
Ec � EF

kBTL
+ �n

◆
, (5.73)

where

�n =

R ⇣
E�Ec
kBTL

⌘
�0
n(E)dE

R
�0
n(E)dE

. (5.74)

It is now be straightforward to evaluate this integral and find

�n = (r + 2)
Fr+1(⌘F )

Fr(⌘F )
. (5.75)

Consider the nondegenerate case where ⌘F ⌧ 0 and both Fermi-Dirac in-
tegrals become e⌘F . In this case, �n = (r + 2). For r = 0, �n = 2, and we
see that the average energy of current flow is 2kBTL above Ec. For r > 0,
the mean-free-path increases with energy, which causes the current to flow
at a higher average energy with a corresponding increase in Sn. For r = 2,
which is characteristic of ionized impurity scattering, �n = 4, and we see
that the average energy of current flow is 4kBTL above Ec.

The final transport coe�cient is the electronic thermal conductivity. We
leave it as an exercise to show from eqns. (5.27) and (5.31) that

L =
n

TL�n

=

✓
kB
q

◆2
"
(r + 2)(r + 3)

Fr+2(⌘F )

Fr(⌘F )
�
✓
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Fr(⌘F )

◆2
#
.

(5.76)

This result should be compared to eqn. (5.53), the general result that does
not assume parabolic energy bands or power law scattering. Note that
in the non-degenerate limit for r = 0, the term in the square brackets is
just 2, as asserted earlier. In the degenerate limit, we need to expand the
Fermi-Dirac integrals to show that the factor is ⇡2/3.
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Seebeck coe�cient in the degenerate limit: Mott Formula

Equations (5.73) - (5.75) give the Seebeck coe�cient for parabolic bands
with an arbitrary level of carrier degeneracy. For the non-degenerate limit,
the Fermi-Dirac intrgrals become exponentials, and eqn. (5.73) simplifies
to

Sn =

✓
�kB

q

◆
[(r + 2)� ⌘F ] . (5.77)

We can also simplify eqn. (5.73) for strong carrier degeneracy as follows.
In the strongly degenerate limit, the Fermi-Dirac integral of order r

approaches (see eqn. (3) in [2]):

Fr(⌘F ) !
⌘r+1
F

�(r + 2)
+
⌘r�1
F

�(r)
⇣(2) + ... , (5.78)

where �(•) is the Gamma function defined in eqn. (3.22), and ⇣(2) = ⇡2/6
is the Riemann Zeta function. This expansion can be used in eqn. (5.73),

Sn =

✓
�kB

q

◆✓
(r + 2)

Fr+1(⌘F )

Fr(⌘F )
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◆
, (5.79)

to find

Sn =

✓
�kB

q

◆✓
2⇣(2)(r + 1)⌘F
⌘2F + ⇣(2)(r + 1)r

◆
, (5.80)

which can be simplified for strong degeneracy (⌘F � 0) to

Sn =

✓
�kB

q

◆✓
2⇣(2)(r + 1)

⌘F

◆
. (5.81)

We see from eqn. (5.77) that for non-degenerate semiconductors, |Sn| /
�⌘F and from eqn. (5.81) that for degenerate semiconductors, |Sn| / 1/⌘F .

Finally, recall that

�0(E) / �(E)M3D(E) / (E � Ec)
r+1 , (5.82)

from which we obtain

1

�0(E)

d�0(E)

dE
|E=EF =

(r + 1)

EF � Ec
. (5.83)
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By making use of eqn. (5.83) in eqn. (5.81), we finally obtain the well-
known Mott relation

Sn = �⇡
2k2BTL

3q

✓
@ ln�0(E)

@E

◆

E=EF

. (5.84)

The Mott relation is widely-used to describe the Seebeck coe�cient in
degenerate semiconductors. Note that our starting point for the derivation
was eqn. (5.79), which assumes parabolic energy bands and power law
scattering, but the same final result can be obtained more generally with
the use of the well-known Sommerfeld expansion [2].

5.6 Summary

Our goal in this lecture has been to formally derive the results presented
in Lecture 4. In doing so, we have developed general expressions that
are valid in 1D, 2D, and 3D for abitrary bandstructures and scattering
mechanisms and from the ballistic to di↵usive limits. We showed how
to evaluate these general expressions for two specific cases, 1D ballistic
transport and 2D di↵usive transport. We also discussed how to treat p-
type semiconductors, bipolar conduction, and the Wiedemann-Franz Law,
but so far, we have described scattering processes phenomenologically -
asserting that T (E) = �(E)/(�(E) + L) and describing �(E) in power law
form. In the next lecture, we discuss scattering in more detail.

5.7 References

Carbon nanotubes can often be treated as ideal, 1D conductors. For an in-
troduction to carbon nanotubes, see:

[1] Mark Lundstrom and Jing Guo, Nanoscale Transistors: Physics, Mod-
eling, and Simulation, Springer, New York, 2006.

The essentials of Fermi-Dirac integrals are discussed by Kim, who also
discusses the widely-used Sommerfeld expansion, which is used to evaluate
transport integrals under strongly degenerate conditions.
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Ed., https://www.nanohub.org/resources/5475.
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An Introduction to Scattering

6.1 Introduction
6.2 Physics of carrier scattering
6.3 Transmission and mean-free-path
6.4 Mean-free-path and scattering
6.5 Discussion
6.6 Summary
6.7 References

6.1 Introduction

We have seen in previous lectures that the mean-free-path for backscatter-
ing, �, plays a key role in near-equilibrium transport. We have asserted
that

T (E) =
�(E)

�(E) + L
. (6.1)

Where does this expression come from?
We expect that the mean-free-path is the “average” distance that a car-

rier scatters. In the Landauer approach, the mean-free-path has a specific
meaning; it is the length at which the transmission drops to one-half. We
shall see that this “mean-free-path for backscattering” is proportional to
the actual mean-free-path, ⇤,

� (E) / ⇤(E) = �(E) ⌧(E) . (6.2)

The material’s bandstructure determines �(E), and the scattering processes
(and bandstructure) determine the scattering time. Although we will not
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go into the detailed calculations, we aim to understand how bandstructure
and scattering physics determine �. We will also discuss how to estimate
the average mean-free-path from conductivity or mobility measurements.
We begin with a discussion of what controls the scattering time, ⌧(E).

6.2 Physics of carrier scattering

Figure 6.1 is a sketch that illustrates some key concepts. An ensemble of
carriers is injected into a semiconductor at time, t = 0 with energy, E.
The initial momenta are aligned along one direction. Some time later, at
t = ⌧(E), carriers have, on average, experienced a scattering event. De-
pending on the nature of the scattering event, a carrier’s momentum (i.e.
the direction of the arrow) may change, and the energy (represented by the
length of the arrow) may also increase or decrease. If the scattering mecha-
nism is anisotropic and tends to deflect a carrier by a small angle, then one
scattering event will not be enough to eliminate the initial, directed momen-
tum. If we wait longer, however, at time t = ⌧m(E) � ⌧(E), the momentum
will have been randomized. If, however, the dominant scattering mecha-
nism is elastic, then the initial energy of the injected carriers will not have
relaxed. Waiting even longer to time t = ⌧E(E) � ⌧m(E), ⌧(E), we find
that the initial excess energy has relaxed. Figure 6.1 illustrates the three
characteristic times for scattering: 1) the time between scattering events,
⌧(E), 2) the momentum relaxation time, ⌧m(E), 3) the energy relaxation
time, ⌧E(E). In general, ⌧m(E) � ⌧(E) and ⌧E(E) � ⌧(E), ⌧m(E).

Since we are interested in the flow of charge and heat currents, we are
most interested in the momentum relaxation time and how it depends on
the physics of scattering.

The fundamental quantity in a scattering calculation is the transition
rate, S(~p ! ~p 0), from an initial state, ~p, to one specific final state, ~p 0.

The total scattering rate, the probability per unit time of scattering,
is just one over the average time between collisions and is obtained by
summing over all of the possible final states, ~p 0 that carriers may scatter
to. The result is

1

⌧(~p)
=
X

~p 0

S(~p ! ~p 0) . (6.3)

Similarly, to get the momentum relaxation time, we weight by the fractional
change in momentum for each scattering event. Assuming that the initial
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Fig. 6.1 Sketch illustrating the characteristic times for carrier scattering. An ensemble
of carriers with momentum directed along one axis is injected at t = 0. Carriers have, on
average, experienced one collision at t = ⌧(E). The momentum of the initial ensemble
has been relaxed to zero at t = ⌧m(E), and the energy has relaxed to its equilibrium
value at t = ⌧E(E). (After Lundstrom, [1]).

momentum is directed along the z-axis, we find

1

⌧m(~p)
=
X

~p 0

S(~p ! ~p 0)
�pz
pz

. (6.4)

Anisotropic scattering tends to deflect carriers by small angles, which pro-
duces a small fractional change in the incident momentum, reducing the
momentum relaxation rate and increasing the momentum relaxation time.
The energy relaxation rate would be given by a similar expression, but
with the fractional change in momentum replaced by the fractional change
in energy.

Since we can calculate the momentum relaxation time from the transi-
tion rate, we just need to understand how the transition rate is calculated.
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For an introduction to these types of calculations, see [1]. Here we will
just summarize how the calculation goes. Figure 6.2 is an illustration of
a scattering event. An incident electron with crystal momentum, ~p = ~~k,
described by a Bloch wavefunction,  i(~r), enters a region over which the po-
tential is perturbed by a scattering potential, US(~r, t), which may be static
(as for charged impurity scattering) or time dependent (as for scattering
from phonons (lattice vibrations)). After interacting with the scattering po-
tential, the electron emerges with a final momentum, ~p 0, and Bloch state,
 f (~r). We need to calculate S(~p ! ~p 0), the probability per second that the
electron in the initial state, ~p, makes a transition to a specific final state,
~p 0.

Fig. 6.2 Illustration of a scattering event. An initial electron in state, ~p, with wave-
function,  i, interacts with a scattering potential, US(~r, t) and emerges in the state, ~p 0,
described by the wavefunction,  f .

The most common way to calculate transition rates for carrier scattering
in semiconductors is by first order perturbation theory – Fermi’s Golden
Rule (FGR) of quantum mechanics.

The prescription is

S(~p ! ~p 0) =
2⇡

~ |Hp0,p|2 � (E0 � E ��E) , (6.5)

where the matrix element is

|Hp0,p|2 =

Z +1

�1
 ⇤
f (~r)US(~r) i(~r) d~r . (6.6)

Note the order of the subscripts in the matrix element, final state first, then
initial state. Section 1.7 of Ref [1] gives a derivation of Fermi’s Golden Rule
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and discusses the approximation involved [1]. The matrix element in eqn.
(6.5) couples the strength of the scattering potential to the deflection of a
carrier. The �-function is a statement of energy conservation. For a static
scattering potential, such as charged impurity scattering, �E = 0, and
there is no energy relaxation. For a scattering potential that is vibrating
at a frequency of !, such as a lattice vibration, �E = ±~! depending on
whether a phonon is absorbed or emitted.

Scattering rate calculations proceed as follows. First, the scattering po-
tential must be identified, i.e. US(~r, t) must be identified for the specific
scattering process in question. Then the transition rate can be evaluated
from FGR as given by eqn. (6.5). Next, the characteristic times are eval-
uated according to eqns. (6.3) and (6.4). Later on, we will see how the
mean-free-path for backscattering can be obtained from the momentum re-
laxation time. To see how such calculations are done, refer to Chapter 2
in [1]. Without doing the actual calculations, however, it is useful to get a
general feel for the results.

Some simple scattering potentials (e.g. short range scattering that can
be described by a �-function scattering potential, and acoustic and optical
phonon scattering in nonpolar materials) simply deflect with equal prob-
ability the incident carriers to final states that conserve energy. In such
cases, we expect that the scattering rate will be proportional to the density
of final states. For elastic scattering, we have 1/⌧(E) / D(E), for scat-
tering by phonon absorption, 1/⌧(E) / D(E + ~!), and for scattering by
phonon emission, 1/⌧(E) / D(E � ~!). Since the density of states gener-
ally increases with energy, we expect the scattering time to decrease with
increasing energy of the incident carrier.

For scattering from charged impurities or from phonons in polar mate-
rials, it is di↵erent. As illustrated in Fig. 6.3, randomly located charges
introduce fluctuations into the bottom of the conduction band, Ec(~r), which
can scatter carriers. High energy carriers, however, do not feel this fluc-
tuating potential as much as low energy carriers, so for charged impurity
(and polar phonon) scattering, we expect that 1/⌧(E) will decrease (the
scattering time, ⌧(E) will increase) as the carrier energy increases. For
nonpolar phonon scattering the scattering time decreases with energy, but
for charged impurity and polar phonon scattering, it increases with energy.

For some common scattering mechanisms, the scattering time can be
written as (or approximately as)
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Fig. 6.3 Illustration of charged impurity scattering. High energy carriers feel the per-
turbed potential less than low energy carriers and are, therefore, scattered less.

⌧ (E) = ⌧0

✓
E � Ec

kBTL

◆s

, (6.7)

where s is a characteristic exponent that describes the specific scattering
mechanism. Equation (6.7) is known as power law scattering and is com-
monly used to find analytical solutions to problems. For acoustic phonon
scattering in 3D with parabolic bands, s = �1/2, and for ionized impurity
scattering, s = +3/2 [1].

Our goal in this lecture is to understand how scattering a↵ects the
mean-free-path and transmission. We expect that the mean-free-path will
be proportional to the product of velocity and scattering time. We now have
a general understanding of what determines the scattering time. Before we
relate the mean-free-path to scattering time, let’s first relate the mean-free-
path to the transmission.

6.3 Transmission and mean-free-path

To relate the mean-free-path to transmission, consider the simple problem
sketched in Fig. 6.4. We assume a slab with a uniform mean-free-path,
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�. No electric field is present, so Ec(x) is constant. A flux of electrons,
I+(x = 0), is injected from the left. Some fraction, T , emerges from the
right, I+(x = L) = TI+(x = 0). The rest of the injected flux, I�(x =
0) = RI+(x = 0), is backscattered and emerges from the left. If none of
the injected flux recombines within the slab, then T +R = 1. The contact
at the right is an absorbing contact – flux can emerge from the slab, but
no flux is injected from the right contact. The net current, therefore, is
I = (1 � R)I+(0) = TI+(0). Within the slab, we have both positive
and negative-directed fluxes, and we seek first to describe their spatial
dependence.

Fig. 6.4 A model calculation for transmission. A flux is injected at the left of a slab
having a mean-free-path for backscattering of �, and we seek to compute the flux that
emerges from the right.

We now define 1/� to be the probability per unit length that a positive
flux is converted into a negative flux (or vice versa). This is why we call
� the mean-free-path for backscattering. Within the slab, some of the
injected positive flux is converted to a negative flux by backscattering. A
negatively-directed flux builds up within the slab, and some of the negative
flux backscatters and increases the positively-directed flux. Accordingly,
the mathematical description for the positively-directed flux within the slab
is

dI+(x)

dx
= �I+(x)

�
+

I�(x)

�
. (6.8)

Assuming that there is no recombination or generation within slab, we also
see that I = I+(x) � I�(x) is a constant, which can be used to re-write
eqn. (6.8) as
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dI+(x)

dx
= � I

�
. (6.9)

Equation (6.9) shows that the positively-directed flux decays linearly within
the slab.

Now eqn. (6.9) can be integrated from x = 0 to some point within the
slab to find

I+(x) = I+(0)� I
x

�
, (6.10)

which can be used to find the flux emerging from the right as

I+(L) = I+(0)� I
L

�

= I+(0)�
�
I+(L)� I�(L)

�L
�

= I+(0)� I+(L)
L

�
.

(6.11)

In the last line, we made use of the fact that no flux is injected from the
right side of the slab, I�(L) = 0. Finally, we can solve eqn. (6.11) for

I+(L) =
�

�+ L
I+(0) = TI+(0) . (6.12)

If we repeat the calculation for the opposite case where we inject a
flux, I�(L) from the right, we find that the flux emerging from the left
is I�(0) = T 0I�(L). Since we have assumed a uniform slab, T 0 = T . A
slab under bias is not uniform, but near equilibrium, we can assume that
T 0 ⇡ T . Finally, if we resolve the incident flux in energy, and assume that
energy channels are nearly independent, then we arrive at our final result,

T (E) =
�(E)

�(E) + L
. (6.13)

Although this is a simple calculation with several simplifying approxima-
tions, the author’s experience is that it typically works very well in practice.
Our derivation has also taught us that the interpretation of the mean-free-
path is that its inverse is the probability per unit length that a positive flux
is converted into a negative flux. That is why we call it a mean-free-path
for backscattering.
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6.4 Mean-free-path and scattering

We are now ready to relate the mean-free-path for backscattering to the
scattering time. The distinction between mean-free-path and mean-free-
path for backscattering is easiest to see in 1D. Consider Fig. 6.5 which
shows a 1D scattering event. An incident electron undergoes a scattering
event. If the scattering is isotropic, there are two possibilities, the electron
can forward scatter or back scatter. Only backscattering is relevant for
the mean-free-path for backscattering, so the time between backscattering
events is 2⌧m. We conclude that the mean-free-path for backscattering is
twice the mean-free-path for scattering,

�(E) = 2⇤ = 2�(E)⌧m(E) . (6.14)

Fig. 6.5 Illustration of forward and backscattering in 1D.

It is a little harder to see the relation of the two mean-free-paths in 2D
and 3D, but it can be shown that the proper definition of the mean-free-
path for backscattering is [2]

�(E) = 2

⌦
�2x⌧m

↵

h|�x|i
, (6.15)

where the brackets denote an average over angle at the energy, E. Working
this expression out for isotropic bands, we find
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� (E) = 2� (E) ⌧m (E) 1D

� (E) =
⇡

2
� (E) ⌧m (E) 2D

� (E) =
4

3
� (E) ⌧m (E) 3D .

(6.16)

In Lecture 7, we will see where these factors come from.
Finally, it is frequently useful to write the mean-free-path in power law

form as

� (E) = �0

✓
E � Ec

kBTL

◆r

, (6.17)

where r is a characteristic exponent. We used a similar expression to de-
scribe the scattering time in eqn. (6.7) with a characteristic exponent, s.
For parabolic energy bands, �(E) / E1/2, so r = s + 1/2. Consequently,
r = 0 for acoustic phonon scattering, and r = 2 for ionized impurity scat-
tering.

6.5 Discussion

In this lecture, we have discussed transmission, the mean-free-path for
backscattering, and how the mean-free-path is related to the physics of
scattering. In practice, one often analyzes data to estimate the average
mean-free-path. The average mean-free-path, hh�ii, is also related to the
measured di↵usion coe�cient and mobility. We discuss these topics in this
section. Only the 2D case is considered, but similar considerations apply
in other dimensions.

Estimating average mfp from measurements

For a 2D, di↵usive conductor,

G2D = �S
W

L
, (6.18)

where the sheet conductance is given by

�S =
2q2

h

Z
M2D(E)�(E)

✓
�@f0
@E

◆
dE . (6.19)
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Assuming that we have measured �S , how can we estimate hh�ii?
Equation (6.19) can be expressed as

�S =
2q2

h
hM2Di hh�ii , (6.20)

where hM2Di is given by eqn. (3.18) and hh�ii by eqn. (3.30). Having
measured �S , we seek to determine hh�ii from

hh�ii = �S
(2q2/h) hM2Di . (6.21)

According to eqn. (3.18),

hM2Di =
✓p

⇡

2

◆
M2D(kBTL)F�1/2(⌘F ) , (6.22)

but we do not know the location of the Fermi level, or ⌘F . Just measuring
the conductivity is not enough, we must also measure the sheet carrier
density,

ns =

✓
gv

m⇤kBTL

⇡~2

◆
F0(⌘F ) = N2DF0(⌘F ) . (6.23)

From the measured sheet carrier density, we can deduce ⌘F and insert
the result in eqn. (6.22) to find hh�ii from eqn. (6.21). For a non-degenerate
semiconductor, the Fermi-Dirac integrals reduce to exponentials, and we
can get an explicit expression for hh�ii in terms of the measured sheet
conductance and sheet carrier density,

hh�ii = 2 (kBTL/q)

q�T

✓
�S
nS

◆
, (6.24)

where �T is the unidirectional thermal velocity as given by eqn. (3.69). If
we can measure the sheet conductance and the sheet carrier density, then
we can experimentally determine the average mean-free-path for backscat-
tering. Frequently, however, the experimental results are given in terms of
the measured di↵usion coe�cient or mobility, so we should relate hh�ii to
those quantities.
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Relating the mfp to the di↵usion coe�cient

Consider again our model problem for computing the transmission, as
sketched in Fig. 6.4. We may think of this as a di↵usion problem - a
flux of carriers is injected at the left and collected at the right. What
is the di↵usion coe�cient for this problem, and how does it relate to the
mean-free-path?

Recall that a flux in the x direction is the product of the density of
particles and their average velocity in the direction of transport. At x = 0,
the number of electrons moving in the +x direction is n+(0) = I+(0)/ h�+x i,
where h�+x i is the average velocity of electrons moving in the +x direction.
Similarly, n�(0) = I�(0)/ h�+x i, where we have assumed near-equilibrium
conditions for which h�+x i ⇡ h��x i. The total carrier density is just the sum
of the two, or

n(0) =
(1 +R) I+(0)⌦

�+x
↵

=
(2� T ) I+(0)⌦

�+x
↵ .

(6.25)

At the right end of the slab, we have n+(L) = I+(L)/ h�+x i,and n�(L) =
0, because no electrons are injected from the right contact. The total carrier
density at x = L is

n(L) =
I+(L)⌦
�+x
↵ =

TI+(0)⌦
�+x
↵ , (6.26)

which is less than n(0). From eqns. (6.25) and (6.26), we find

n(0)� n(L) =
I+(0)⌦
�+x
↵ 2(1� T ) . (6.27)

Using the fact that the total current is I = TI+(0), we can solve eqn. (6.27)
to find the current as

I =
h�+x i
2

TL

1� T
⇥

n(0)� n(L)

L

�
= �h�+x i�

2
⇥ dn(x)

dx
. (6.28)

Finally, we define the di↵usion coe�cient, Dn, and recognize the result
as the well-known Fick’s Law of di↵usion:
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I = �Dn
dn

dx

Dn =
h�+x i�

2
.

(6.29)

Our final result is the familiar Fick’s Law of di↵usion, but it is actually
a surprising result. It is often said that Fick’s Law only holds for di↵usion
across regions that are many mean-free-paths long, but we made no such
restriction in our derivation. William Shockley pointed in 1962 that Fick’s
Law is not restricted to long regions [3]; it can be used to described bal-
listic and quasi-ballistic “di↵usion;” we just need to be careful about the
boundary conditions.

More generally, we can view our derivation as being for electrons in
an energy channel, E. To get the total current, we would integrate over
the energy channels, and that would relate the overall di↵usion coe�cient
to the energy-averaged mean-free-path. As a simpler example, consider a
non-degenerate semiconductor with an energy independent mean-free-path,
�0. The average x-directed velocity is �T =

p
2kBTL/⇡m⇤, so eqn. (6.29)

becomes

Dn =
�T�0
2

, (6.30)

which provides a simple means to extract the mean-free-path from the
measured di↵usion coe�cient. More general expressions, considering Fermi-
Dirac statistics and energy-dependent scattering can be derived.

Relating the mfp to the mobility

The measured mobility is often reported, and it can also be used to es-
timate the average mean-free-path. Equation (6.19) gives the 2D sheet
conductance, which can also be written as nS q µn. Equating these two
expressions, we find

µn ⌘
2q
h

R
M2D(E)�(E)

⇣
�@f0

@E

⌘
dE

nS
, (6.31)

which we take as the definition of mobility. (An equivalent formula is known
as the Kubo-Greenwood formula.) We can write eqn. (6.31) as
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µn =
1

nS

2q

h
hh�ii hM2Di , (6.32)

where hM2Di is given by eqn. (6.22). Proceeding as before, we can solve
eqn. (6.32) for hh�ii and find

hh�ii = 2 (kBTL/q)µn

�T
⇥ F0(⌘F )

F�1/2(⌘F )
. (6.33)

Given a measured mobility and carrier density (needed to find ⌘F ), the
average mean-free-path can be estimated. Under nondegenerate conditions,
the last factor is one and we find

hh�ii = 2 (kBTL/q)µn

�T
, (6.34)

so for a non-degenerate semiconductor, it is easy to determine hh�ii.
Solving eqn. (6.34) for the mobility of a non-degenerate semiconductor,

we find

µn =
�T hh�ii

2
⇥ 1

(kBTL/q)
. (6.35)

Now by defining the di↵usion coe�cient as

Dn =
�T hh�ii

2
. (6.36)

we see that

Dn

µn
=

kBTL

q
, (6.37)

which is just a statement of the Einstein relation for non-degenerate con-
ditions.

Average mean-free-path for power law scattering

According to eqns. (3.30) and (3.31), in 2D, the average mean-free-path
for power law scattering is given by
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hh�ii = �0

R ⇣
E�Ec
kBTL

⌘r
M2D(E)

⇣
�@f0

@E

⌘
dE

R
M2D(E)

⇣
�@f0

@E

⌘
dE

, (6.38)

where M2D(E) is given by eqn. (3.18). This integral is readily worked out
to find

hh�ii = �0
�(r + 3/2)

�(3/2)
⇥

Fr�1/2(⌘F )

F�1/2(⌘F )
. (6.39)

For a nondegenerate semiconductor, the last factor is one.

Exercise 6.1: Mobility for a constant scattering time

As a quick example of using this result, consider the mobility for a non-
degenerate semiconductor with a constant scattering time, ⌧0. From eqn.
(6.35), we have

µn =
�T hh�ii

2

1

(kBTL/q)
=
�T�0

⇣
�(r+3/2)
�(3/2)

⌘

2

1

(kBTL/q)
. (6.40)

From eqn. (6.16), we find

�(E) =
⇡

2
�(E) ⌧0 =

"
⇡

2

r
2kBTL

m⇤

#
⌧0

✓
E � Ec

kBTL

◆1/2

, (6.41)

from which, we see that r = 1/2 and �0 = ⇡
p
2kBTL/m⇤ ⌧0/2. Using these

results in eqn. (6.40), we find

µn =
q ⌧0
m⇤ , (6.42)

which is the expected result.

Exercise 6.2: Estimating the mean-free-path for a MOSFET

In Exercise 3.1 we considered a nanoscale MOSFET, and in Exercise 3.2, we
estimated the average mean-free-path of about 40 nm. This analysis made
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use of measured channel resistance at 300 K and used a TL = 0 K expression
to simplify the analysis. Let’s see if we can do a better job of estimating
the room temperature hh�ii from the reported room temperature mobility
of 260 cm2/V � s at a carrier density of nS = 6.7⇥ 1012 per cm2.

Let’s first do the calculation with Maxwell-Boltzmann (non-degenerate)
carrier statistics. Using the Einstein relation, we find the di↵usion coe�-
cient as

Dn =
kBTL

q
µn = 6.7 cm2/s . (6.43)

Now we can use eqn. (6.36) to determine hh�ii. To evaluate �T , we need
the e↵ective mass. For electrons in the inversion layer of (100) Si, when
only one conduction band subband is occupied, the e↵ective mass is the
transverse mass, m⇤ = 0.19m0 [4] from which we find �T = 1.2⇥ 107 cm/s.
Using this value in eqn. (6.36), we find

hh�iiMB ⇡ 11 nm . (6.44)

Now let’s redo the calculation with Fermi-Dirac statistics. From eqn.
(6.33) we find

hh�ii = hh�iiMB ⇥ F0(⌘F )

F�1/2(⌘F )
. (6.45)

To find ⌘F , recall that the sheet carrier density is given by

nS = N2DF0(⌘F ) =

✓
gv

m⇤kBTL

⇡~2

◆
F0(⌘F ) . (6.46)

For electrons in the first subband of our (100) oriented Si inversion layer,
gv = 2, so we find N2D = 4.1 ⇥ 1011/cm2. Recall that the Fermi-Dirac
integral of order 0 is analytical, F0(⌘F ) = ln (1 + e⌘F ), so we can solve for
⌘F and find

⌘F = ln(enS/N2D � 1) = 1.42 . (6.47)

Finally, we find that

hh�ii = 11nm⇥ F0(1.42)

F�1/2(1.42)
⇡ 15 nm , (6.48)

which is our best estimate of hh�ii for this transistor in the on-state. Note
that the channel length of the transistor was 60 nm, which is neither long
nor short compared to the mean-free-path. This transistor operates in the
quasi-ballistic regime.
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6.6 Summary

Our goal in this lecture has been to discuss how transmission is related to
the mean-free-path for backscattering and how the mean-free-path is related
to carrier scattering. We also discussed how the average mean-free-path can
be estimated from measurements of the conductivity (or mobility) and the
carrier density. The discussion has been restricted to 2D and parabolic
energy bands, but similar considerations apply to other dimensions and
bandstructures.

This lecture completes our discussion of the Landauer theory of low field
transport. In the next lecture, we discuss an older and still more common
approach.
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[1] Mark Lundstrom, Fundamentals of Carrier Transport 2nd Ed., Cam-
bridge Univ. Press, Cambridge, UK, 2000.
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Lecture 7

Boltzmann Transport Equation

7.1 Introduction
7.2 The BTE
7.3 Solving the steady-state BTE
7.4 Transport coe�cients
7.5 Magnetic fields
7.6 Discussion
7.7 Summary
7.8 References

7.1 Introduction

In this lecture we discuss a di↵erent approach to carrier transport, the
Boltzmann Transport Equation (BTE). For some problems, the BTE is the
better choice and for some, the Landauer approach is preferred. Of course,
when we solve the same problem, we get the same answers. This lecture
is an introduction to the BTE and its relation to the Landauer approach.
As an application of the BTE, we discuss how magnetic fields a↵ect carrier
transport.

Our goal is to find the distribution function, f(~r,~k, t), the probability
that a state at position, ~r, with wavevector, ~k (or crystal momentum, ~p =
~~k) is occupied at time, t. The answer in equilibrium is the Fermi function,
f0(E); we seek the solution out of equilibrium. Our use of the wavevector, ~k,
suggests that we are considering transport in crystalline materials in which
the periodic crystal potential leads to Bloch wave solutions. The general
model for transport developed in Lecture 2 did not make this assumption,
but throughout these lectures we have considered transport in crystalline

127
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solids, so this assumption will not be a limitation for us.
Our goals are to:

(1) Find an equation for f(~r,~k, t) out of equilibrium.
(2) Learn how to solve the resulting equation (the BTE) under near-

equilibrium conditions.
(3) Relate the results to those obtained from the Landauer approach in the

di↵usive limit.
(4) Add a magnetic field and see how transport changes.

This lecture is a short introduction to the BTE. For a fuller account, see
Ashcroft and Mermin, Chapter 13 [1], Ziman [2], or Lundstrom, Chapters
3 and 4 [3].

7.2 The Boltzmann Transport Equation

Electrons in crystals with a slowly varying applied potential can be treated
as semi-classical quasi-particles. The equation of motion is like Newton’s
Law,

d~p

dt
=

d(~~k)
dt

= ~Fe , (7.1)

where ~~k is the crystal momentum, and ~Fe is the force on the electron,

~Fe = �rEc � q~� ⇥ ~B = �q~E � q~� ⇥ ~B . (7.2)

To find ~k(t) for the electron, we solve

~~k(t) = ~~k(0) +
Z t

0

~Fe [~r(t
0), t0] dt0 . (7.3)

In addition to tracking electrons in momentum (or ~k) space, we must
also track their position. Knowing ~k(t), we determine the electron’s velocity
from its bandstructure according to

~�g(t) =
1

~rkE
h
~k(t)

i
. (7.4)

To find ~r(t) for the electron, we solve
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~r(t) = ~r(0) +

Z t

0
~�g(t

0) dt0 . (7.5)

Equations (7.3) and (7.5) are the semi-classical equations of motion for
electrons in a crystalline solid. In the semiclassical approach, we assume
that the potential, Ec(~r), varies slowly, so that there are no quantum me-
chanical reflections or tunneling, and we treat electrons as particles. We
specify the electron’s position and momentum simultaneously and assume
that the quantum mechanical uncertainty, �r�p � ~/2, is small.

The equations of motion describe an electron’s position vs. time in
position-momentum or phase space. Figure 7.1 is a sketch of an electron
trajectory, T [x(t), px(t)], in a two-dimensional phase space. Also shown is
a particular state whose occupation probability we wish to determine. The
probability that this state is occupied at time, t, is f(x, px, t). Since elec-
trons simply move along the trajectory, T [x(t), px(t)], the probability that
this state is occupied at time, t, is the probability that the corresponding
upstream state was occupied at t = t� dt, so

f(x, px, t) = f(x� �xdt, px � Fedt, t� dt) , (7.6)

which is simply a statement that the total derivative along the trajectory
is zero,

df

dt
= 0 . (7.7)

If we use the chain rule to expand eqn. (7.7), we find

df

dt
=
@f

@t
+
@f

@x

@x

@t
+

@f

@px

@px
@t

= 0 , (7.8)

which can be written as

@f

@t
+
@f

@x
�x +

@f

@px
Fx = 0 . (7.9)

In 3D position and 3D momentum phase space, eqn. (7.9) becomes

@f

@t
+ ~� ⇧rrf + ~Fe ⇧rpf = 0 , (7.10)

where ~Fe is given by eqn. (7.2) and



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

130 Near-equilibrium Transport: Fundamentals and Applications

Fig. 7.1 Sketch of an electron trajectory in two-dimentional, x � px, phase space. We
wish to determine the probability that the state indicated by the filled circle is occupied
at time, t. This probability is the probability that the corresponding upstream state
indicated by the open circle was occupied at time, t� dt.

rrf =
@f

@x
x̂+

@f

@y
ŷ +

@f

@z
ẑ (7.11a)

rpf =
@f

@px
p̂x +

@f

@py
p̂y +

@f

@pz
p̂z . (7.11b)

Equation (7.10) is the collisionless Boltzmann Transport Equation; it
describes ballistic transport (when there is no scattering) or equilibrium
(when each scattering event is cancelled by its inverse according to the
principle of detailed balance). Figure 7.2 illustrates the situation when
carriers scatter. In-scattering from other states increases f(~r,~k, t) and out-
scattering to other states decreases f(~r,~k, t). In the semi-classical approach
to carrier transport, we assume that scattering is the result of short range
forces and compute the scattering rates using Fermi’s Golden Rule as dis-
cussed in Sec. 6.2. Scattering processes happen quickly, so we assume that
the electron’s position does not change during a scattering event. Scattering
simply changes the momentum of the electron. In the absence of scattering,
df/dt = 0, but when scattering occurs, we write df/dt|coll = Ĉf , where Ĉ is
the collision operator. In the presence of scattering, the BTE, eqn. (7.10),
becomes

@f

@t
+ ~� ⇧rrf + ~Fe ⇧rpf = Ĉf . (7.12)
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Fig. 7.2 Illustration of how in-scattering and out-scattering a↵ect the occupation prob-
ability of a state in phase space.

The treatment of carrier scattering can get complicated (see [3] for an
introduction), so a simple approximation is frequently used. In the Relax-
ation Time Approximation (RTA), we write the collision operator as

Ĉf = �
✓
f(~p)� f0(~p)

⌧m

◆
= ��f(~p)

⌧m
, (7.13)

where �f is the deviation of f from its equilibrium value, and ⌧m is a
characteristic time that turns out to be the momentum relaxation time [3].

To get a feel for the RTA, consider a spatially homogeneous material in
the absence of an electric or magnetic field. The second and third terms in
eqn. (7.12) are zero, so using the RTA, eqn. (7.12) becomes

@f

@t
=
@(�f)

@t
= � �f

⌧m
, (7.14)

where we used @f0/@t = 0. Equation (7.14) has the solution,

�f(t) = �f(0)e�t/⌧m . (7.15)

According to eqn. (7.15), perturbations from equilibrium decay away ex-
ponentially with a characteristic time, ⌧m. Scattering acts to restore equi-
librium. The RTA is a reasonable approach to near-equilibrium transport,
but this approximation to the collision integral can only be justified near
equilibrium and even then only for specific types of scattering (i.e. scat-
tering that is either elastic, isotropic, or both) [3]. A proper treatment
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of scattering significantly complicates solving the BTE [3]. Although the
RTA is not generally applicable, it is widely used to obtain analytical an-
swers and generally produces sensible results. We will adopt the RTA for
the remainder of this lecture, but one should remember that it can fail,
sometimes in important ways (for an example, see [4]).

7.3 Solving the steady-state BTE

As an example of solving the BTE, let’s consider a simple example. We
assume steady-state with no magnetic field. Assuming the Relaxation Time
Approximation for the collision integral, the steady-state BTE is

~� ⇧rrf � q~E ⇧rpf = � �f

⌧m
. (7.16)

The solution consists of a large part, f0(~r, ~p, t), and a small deviation from
equilibrium, �f(~r, ~p, t), so it is reasonable to assume

rrf ⇡ rrf0

rpf ⇡ rpf0 .
(7.17)

With this assumption, we can solve eqn. (7.16) and find

�f = �⌧m
n
~� ⇧rrf0 � q~E ⇧rpf0

o
. (7.18)

To evaluate the RHS, let’s write the Fermi function as

f0(~p) =
1

1 + e⇥
(7.19a)

⇥ =

�
E(~r, ~p)� Fn(~r)

�

kBTL
=

�
Ec(~r) + E(~p)� Fn(~r)

�

kBTL
. (7.19b)

(We have replaced the Fermi level, EF , in the Fermi function with Fn(~r),
the quasi-Fermi level or electrochemical potential.) Now we can use the
chain rule to write

rrf0 =
@f0
@⇥

rr⇥ (7.20a)

rpf0 =
@f0
@⇥

rp⇥ , (7.20b)
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where

@f0
@⇥

= kBTL
@f0
@E

. (7.21)

Using eqns. (7.20) and (7.21) in eqn. (7.18) we find

�f = ⌧m kBTL

✓
�@f0
@E

◆n
~� ⇧rr⇥� q~E ⇧rp⇥

o
. (7.22)

Finally, using eqns. (7.20) and (7.19b) to evaluate rr⇥ = rr(Ec �
Fn)/kBTL and rp⇥ = ~�/kBTL and recognizing that �rrEc = �q~E , we
can write the steady-state, near-equilibrium solution to the BTE as

�f = ⌧m

✓
�@f0
@E

◆n
~� ⇧ ~F

o

~F = �rrFn(~r) + TL

h
Ec(~r) + E(~k)� Fn(~r)

i
rr

✓
1

TL

◆
.

(7.23)

The quantity, ~F , is called the generalized force or the electrothermal
field ; it produces deviations from equilibrium. The generalized force con-
sists of two terms, the gradient of the electrochemical potential, Fn, and the
gradient of the (inverse) temperature. Recall that in Lecture 4 we saw that
(f1� f2) produces current and that di↵erences in Fermi level and tempera-
ture lead to a nonzero (f1� f2). In the Landauer approach, there is a clear
physical understanding of the generalized force that leads to current flow
while in the BTE approach, we find the same result from the mathematical
solution.

Equations (7.23) gives the desired solution to the steady-state, near-
equilibrium BTE. Now we can evaluate the transport coe�cients.

7.4 Transport coe�cients

Having solved the BTE, we can now determine various quantities of interest.
For example, the 2D, sheet carrier density is

nS(~r) =
1

A

X

~k

h
f0(~r,~k) + �f(~r,~k)

i
=

1

A

X

~k

f0(~r,~k) , (7.24)
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where the last expression follows from the fact that �f is odd in momentum,
so it integrates to zero. To find the current density in 2D, we evaluate

~Jn(~r) =
1

A

X

~k

(�q) �(~k) �f(~k) . (7.25)

Note that in this case, only the small component, �f , matters because the
product, ~�f0 is odd in ~k and integrates to zero, while ~� �f is even and gives
a finite contribution to the integral.
To find the kinetic energy current, we evaluate

~JW (~r) =
1

A

X

~k

E(~k) �(~k) �f , (7.26)

and for the heat current,

~JQ(~r) =
1

A

X

~k

(E � Fn) �(~k) �f , (7.27)

where E = Ec(~r) + E(~k) is the total carrier energy. The heat current
carried per electron, (E � Fn) is usually established from thermodynamic
arguments, but recall from our discussion in Lecture 4 that it is simply the
energy that must be absorbed by an electron flowing at the Fermi energy
in the contact so that it can enter an energy channel, E, in the device.

If we evaluate the electric and heat currents using the solution, eqn.
(7.23), we will get two terms for each of the two currents because the gen-
eralized force contains two terms – one for gradients in the electrochemical
potential and a second for gradients in the temperature. The resulting four
terms are the four thermoelectric transport coe�cients. Let’s work out one
of these four transport coe�cients, the sheet conductance, �S .

We begin by evaluating the 2D charge current using eqn. (7.25) with
the solution, eqn. (7.23) to find

~Jn(~r) =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
~�
h
~� ⇧ ~F

i

=
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
(~�~�) ⇧ ~F .

(7.28)

The quantity, (~�~�) is a tensor. The BTE makes it relatively easy to treat
anisotropic transport for which the transport coe�cients become tensors.
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To keep things simple, however, let’s evaluate the x-directed current as-
suming that Fn varies only in the x-direction and that the temperature is
uniform. We find

Jnx(~r) =

8
<

:
1

A

X

~k

q �2x ⌧m

✓
�@f0
@E

◆9=

;
dFn

dx
, (7.29)

which we can write as

Jnx = �S
d (Fn/q)

dx
, (7.30)

where

�S =
1

A

X

~k

q2 �2x ⌧m

✓
�@f0
@E

◆
. (7.31)

To evaluate �S , we must evaluate the sum over k-states. This requires a
short discussion.

In any finite size material there is a finite number of states. In a small
nanostructure, we simply count the states to perform the sum in eqn.
(7.31). For larger samples, the states are closely spaced, so we can con-
vert the sum to an integral if we are careful about counting states. The
prescription for converting sums to integrals is

X

~k

(•) !
Z

(•)Nk d~k , (7.32)

where Nk is the density of states in k-space. We evaluate Nk by applying
periodic boundary conditions to the sample, which leads to a set of discrete
states uniformly spaced in k-space. See Lundstrom [3, 5] for the derivation.
The result is

1D : Nk d~k = 2⇥
✓

L

2⇡

◆
dk =

L

⇡
dk

2D : Nk d~k = 2⇥
✓

A

4⇡2

◆
dkxdky =

A

2⇡2
dkxdky

3D : Nk d~k = 2⇥
✓

⌦

8⇡3

◆
dkxdkydkz =

⌦

4⇡3
dkxdkydkz .

(7.33)
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Note that Nk is independent of bandstructure and that the factor of two
accounts for spin degeneracy. With this prescription, we can proceed.

To evaluate eqn. (7.31), we use the 2D prescription, eqns. (7.33),

�S =
1

A

X

~k

q2 �2x ⌧m

✓
�@f0
@E

◆

=
1

A
gv

A

2⇡2

Z 1

0

Z 2⇡

0
q2�2x⌧m

✓
�@f0
@E

◆
d✓kdk ,

(7.34)

where we have included a valley degeneracy factor, gv. Using �x = � cos ✓,
the integral over angle can be performed to find

�S =
gvq2

2⇡

Z 1

0
�2⌧m(k)

✓
�@f0
@E

◆
kdk . (7.35)

By assuming parabolic energy bands, we find kdk = (m⇤/~2)dE and �2 =
2(E �Ec)/m⇤. If we keep things simple by assuming that ⌧m(E) = ⌧0 (i.e.
a constant scattering time), eqn. (7.35) becomes

�S =
gvq2⌧0
⇡~2

Z 1

0
(E � Ec)

✓
�@f0
@E

◆
dE , (7.36)

which is an integral that we know how to evaluate. The result is

�S =
gvq2⌧0kBTL

⇡~2 F0(⌘F ) , (7.37)

where F0(⌘F ) is the Fermi-Dirac integral of order zero as defined by eqn.
(3.20). The final result may not look familiar, but recall that the sheet
carrier density is

nS = N2DF0(⌘F ) =

✓
gvm⇤kBTL

⇡~2

◆
F0(⌘F ) , (7.38)

which can be used to write eqn. (7.37) as

�S = nsq
⇣q ⌧0
m⇤

⌘
= ns q µn . (7.39)

Equation (7.39) is a familiar result, but how does it compare to the
Landauer approach? To answer this question, let’t go back to eqn. (7.35)
and change the variable of integration to energy:
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�S =
q2

2⇡

Z 1

0
�2⌧m(E)

✓
�@f0
@E

◆✓
gvm⇤

~2

◆
dE . (7.40)

By recognizing the 2D density-of-states (D2D(E) = gvm⇤/⇡~2) and re-
arranging eqn. (7.40) a bit, we get

�S =
q2

2

Z 1

0
(� ⌧m) �D2D(E)

✓
�@f0
@E

◆
dE . (7.41)

Now let’s rearrange this expression by inserting factors of ⇡/2 and h/4 and
then undoing them with factors of 2/⇡ and 4/h. We find

�S =
4

h

q2

2

Z 1

0

⇣⇡
2
� ⌧m

⌘✓ 2

⇡
�

◆
h

4
D2D(E)

�✓
�@f0
@E

◆
dE . (7.42)

The first term in parentheses can be recognized as the mean-free-path for
backscattering, �(E), (recall eqn. (6.16)). The second term in parentheses
is the average velocity at energy, E, in the x-direction, h�+x i. Recall from
eqn. (2.25) that the number of conduction channels at energy, E, is h/4
times the average velocity in the transport direction times the density-of-
states at E, so the term in brackets is M2D(E). We conclude that eqn.
(7.42) is

�S =
2q2

h

Z 1

0
�(E)M2D(E)

✓
�@f0
@E

◆
dE . (7.43)

The result of solving the Boltzmann Transport Equation in the di↵usive
limit is exactly the same result obtained from the Landauer approach in
the di↵usive limit, eqn. (3.57). Similarly, it is easy to show that the BTE
gives the same answers as the Landauer approach for the Seebeck coe�cient
and the electronic heat conductivity. (For a more formal and complete
discussion of the relation between the BTE and the Landauer approach,
see Jeong et al. [6].)

In this section, we learned how to solve the BTE and saw the final result
is the same as that obtained from the Landauer approach in the di↵usive
limit. The advantage of the Landauer approach is its clear connection to the
underlying physics. Another advantage is that treating ballistic or quasi-
ballistic transport is no more di�cult than treating di↵usive transport. The
BTE, on the other hand, treats anisotropic transport naturally and, as we
will discuss next, it is easy to include B-fields in the BTE. It is also useful
in treating far from equilibrium transport [3].
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Exercise 7.1: Average scattering time, hh⌧mii, for power law
scattering in 2D

A simple way to describe energy dependent scattering is by assuming a
power law form for ⌧m(E),

⌧m = ⌧0

✓
E � Ec

kBTL

◆s

, (7.44)

where s is a characteristic exponent. Now if we return to eqn. (7.36),
the conductivity in 2D, but retain the energy dependence of the scattering
time, we have

�S =
gvq2

⇡~2

Z 1

0
⌧m(E)(E � Ec)

✓
�@f0
@E

◆
dE . (7.45)

Dividing and multiplying by the sheet carrier density, we find

�S = q2

� gv
⇡~2

� R1
0 ⌧m(E)(E � Ec)

⇣
�@f0

@E

⌘
dE

R1
0

� gvm⇤

⇡~2

�
f0(E)dE

nS , (7.46)

which can be written as

�S = nS q
q hh⌧mii

m⇤ , (7.47)

where

hh⌧mii ⌘

R1
0 ⌧m(E)(E � Ec)

⇣
�@f0

@E

⌘
dE

R1
0 f0(E)dE

. (7.48)

Assuming power law scattering, eqn. (7.48) becomes

hh⌧mii = ⌧0

R1
0

⇣
E�Ec
kBTL

⌘s
(E � Ec)

⇣
�@f0

@E

⌘
dE

R1
0 f0(E)dE

. (7.49)

The denominator can be integrated to find kBTLF0(⌘F ). Similarly, the
numerator can be integrated to find kBTL�(s + 2)Fs(⌘F ). The result is
that eqn. (7.49) becomes

hh⌧mii = ⌧0
�(s+ 2)Fs(⌘F )

F0(⌘F )
. (7.50)
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(For 1D and 3D transport, similar, but not identical expressions can be
derived.) For a nondegenerate semiconductor, the Fermi-Dirac integrals
become exponentials, and we find

hh⌧mii = ⌧0 �(s+ 2) . (7.51)

Acoustic phonon scattering goes as the density of final states, which is
independent of energy in 2D, so s = 0. For charged impurity scattering,
s ⇡ 1. The result is that in 2D hh⌧mii is one to two times ⌧0 for common
scattering mechanisms.

7.5 Magnetic fields

When a magnetic field is applied, the carrier transport coe�cients change.
The use of B-fields in Hall E↵ect measurements (which will be discussed
in Lecture 8) is a common way to characterize the properties of materials.
It is straight-forward (though a little tedious mathematically) to solve the
BTE with a magnetic field. In this section we will do so for a common
experimental condition – the measurement of the conductivity of a 2D
sample (in the x� y) plane with a B-field applied normal to the sample in
the z-direction.

We begin with the steady-state BTE in the relaxation time approxima-
tion, eqn. (7.16), but assume spatial uniformity to keep things simple, and
add a B-field to find

�q~E ⇧rpf � q
⇣
~� ⇥ ~B

⌘
·rpf = � �f

⌧m
. (7.52)

We may be tempted to assume (as in eqn. (7.17)),

rpf ⇡ rpf0 , (7.53)

but there is a problem. This assumption is fine for the first term on the
LHS, but it does not work for the second term. The reason is

rpf0 =
@f0
@E

rpE =
@f0
@E

~� , (7.54)

which, when inserted in the second term on the LHS of eqn. (7.52), gives
~�⇥ ~B ·~� = 0. Instead, to find a solution with a B-field, we must write eqn.
(7.52) as
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�q~E ⇧rpf0 � q
⇣
~� ⇥ ~B

⌘
·rp(�f) = � �f

⌧m
, (7.55)

which is more di�cult to solve because �f appears on both sides.
Equation (7.55) can be solved by assuming a form for the solution and

solving for the parameter in the assumed form. Let’s assume a solution of
the form, eqn. (7.23), but with the generalized force, ~F , replaced by an
unknown vector, ~G, which we must determine. Our assumed solution is

�f = ⌧m(E)

✓
�@f0
@E

◆n
~� ⇧ ~G

o
, (7.56)

where ~G is independent of ~p. When we insert this assumed solution in
eqn. (7.55), we need to evaluate rp(�f). Note from eqn. (7.56), that the
assumed solution has a product ⌧m(E)(�@f0/@E) out front, but when we
take the gradient of a function of energy, the result will be proportional to
~� as in eqn. (7.54), so it will contribute nothing. The result is that we need
only to take the gradient of the final term, and we find

rp(�f) = ⌧m

✓
�@f0
@E

◆ ~G

m⇤ , (7.57)

where we have assumed parabolic energy bands (rp~� = 1/m⇤). Now in-
serting eqns. (7.54), (7.56), and (7.57) in our BTE, eqn. (7.55), we find

q~E · ~� � q ⌧m
m⇤

⇣
~� ⇥ ~B · ~G

⌘
+ ~� · ~G = 0 . (7.58)

Using the properties of a vector triple product, we can write (~� ⇥ ~B · ~G) =
(~� · ~B ⇥ ~G) and then re-express eqn. (7.58) as

~� ·
h
�q~E +

q ⌧m
m⇤

⇣
~B ⇥ ~G

⌘
� ~G

i
= 0 . (7.59)

Since eqn. (7.59) must hold for any ~�, the term in brackets must be zero,
so

~G = �q~E +
q ⌧m
m⇤

⇣
~B ⇥ ~G

⌘
. (7.60)

Equation (7.60) is a vector equation for ~G; we can solve it by making use
of the result,
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~c = ~a+~b⇥ ~c

~c =
~a+ (~b⇥ a) + (~a ·~b)~b

1 + b2
.

(7.61)

Using this result in eqn. (7.60), we find

~G =
�q~E � (q2⌧m/m⇤)

⇣
~B ⇥ ~E

⌘
� q(q⌧m/m⇤)2

⇣
~E · ~B

⌘
~B

1 + (!c⌧m)2
(7.62)

where

!c =
qB

m⇤ (7.63)

is the cyclotron resonance frequency. In the presence of a magnetic field,
electrons orbit at a frequency of !c. The plane of the orbit is normal to the
direction of the B-field.

Examining eqn. (7.62), we see that the first term in the numerator will
give a contribution to the conductivity like eqn. (7.39). We shall see that
the second term gives rise to the Hall e↵ect. The third term is proportional
to B2 and gives a magnetoresistance. The denominator is also quadratic in
B and give another contribution to the magnetoresistance.

Now let’s consider a simple case, but one that is a common experimental
condition - the measurement of the conductivity of a 2D sample (in the x�y)
plane with a B-field applied normal to the sample in the z-direction (as in
Fig. 7.3). Since the electric field lies in the x� y plane, and the B-field is
normal to the plane, the last term in eqn. (7.62) is zero. We also assume
that the B-field is small, which corresponds to

!c⌧m ⌧ 1 . (7.64)

When the B-field is low, electrons scatter many times before completing
an orbit. (Low magnetic fields are a common experimental condition, but
interesting things happen under high B-fields, as we will discuss in Lecture
8.) With the assumption of a small B-field, eqn. (7.62) becomes

~G = �q~E � (q2⌧m/m⇤)
⇣
~B ⇥ ~E

⌘
. (7.65)

Since we assume that ~E lies in the x � y plane and that B is in the z-
direction, then ~G lies in the x� y plane and has the components



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

142 Near-equilibrium Transport: Fundamentals and Applications

Gx = �qEx + (q2⌧m/m⇤)BzEy
Gy = �qEy � (q2⌧m/m⇤)BzEx .

(7.66)

We have solved the BTE in the presence of a magnetic field. The solu-
tion is eqn. (7.56) with the vector, ~G, given by eqn. (7.62) or by eqn. (7.65)
for our assumption of a planar sample with a small, B-field normal to the
plane. The analogous solution in the absence of a B-field was eqn. (7.23).
We have assumed that there are no spatial gradients in carrier density or
temperature. To include concentration and temperature gradients, simply
replace �q~E by the generalized force, ~F .

The next step is to see how the transport coe�cients change in the
presence of a magnetic field, so we need to insert our new solution in eqns.
(7.25) and (7.27) and see how the charge and heat currents change. To
keep the discussion simple, let’s just examine the conductivity.

We begin with eqn. (7.28) with ~F replaced with ~G

~Jn(~r) =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
~�
h
~� ⇧ ~G

i
. (7.67)

The two components of the current become

Jnx =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
�x [�xGx + �yGy]

Jny =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
�y [�xGx + �yGy] .

(7.68)

Note that for Jnx, the second term in the brackets will bring in a sum
(integral) over ~k of �x�y = �2 cos ✓ sin ✓, which, when integrated from 0 to
2⇡ will give zero. Similarly, for Jny, the first term in the brackets will bring
in a term, �y�x, which will integrate to zero. Consequently, eqns. (7.68)
becomes

Jnx =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
�2xGx

Jny =
(�q)

A

X

~k

⌧m

✓
�@f0
@E

◆
�2yGy .

(7.69)
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In equilibrium, we have �2x + �2y = �2 and when averaged over angle, �2x =
�2y, so we can replace �2x with �2/2. For parabolic energy bands, m⇤�2/2 =
(E�Ec), so the final result is that �2x and �2y in eqn. (7.69) can be replaced
with (E � Ec)/m⇤ to find

Jnx =
(�q)

A

X

~k

(E � Ec) ⌧m(E)

m⇤

✓
�@f0
@E

◆
Gx

Jny =
(�q)

A

X

~k

(E � Ec) ⌧m(E)

m⇤

✓
�@f0
@E

◆
Gy .

(7.70)

Finally making use of eqns. (7.66), we find

Jnx =
1

A

X

~k

(E � Ec) ⌧m(E)

m⇤

✓
�@f0
@E

◆�
q2Ex � (q3⌧m/m⇤)BzEy

 

Jny =
1

A

X

~k

(E � Ec) ⌧m(E)

m⇤

✓
�@f0
@E

◆�
q2Ey + (q3⌧m/m⇤)BzEx

 
.

(7.71)

To evaluate the current densities, we divide the RHS of these equations by

nS =
1

A

X

~k

f0(E) (7.72)

and multiply by the same factor to obtain

Jnx = �SEx � �SµHBzEy
Jny = �SµHBzEx + �SEy ,

(7.73)

where

�S = nS q µn , (7.74)

and

µn =
q hh⌧mii

m⇤ (7.75)

with
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hh⌧mii ⌘

P
~k

(E � Ec) ⌧m(E)
⇣
�@f0

@E

⌘

P
~k

f0(E)
, (7.76)

which is the same as eqn. (7.48). The Hall mobility in eqn. (7.73) is defined
as

µH ⌘ µnrH , (7.77)

where the Hall factor is

rH ⌘
⌦⌦
⌧2m
↵↵

hh⌧mii2
, (7.78)

with

⌦⌦
⌧2m
↵↵

⌘

P
~k

(E � Ec) ⌧2m(E)
⇣
�@f0

@E

⌘

P
~k

f0(E)
. (7.79)

Equations (7.73) are desired current equations for a planar sample in
the presence of a small B-field normal to the plane. In the absence of the
B-field, an x-directed electric field produces only an x-directed current, but
in the presence of a normal B-field, it also produces a y-directed current.
Similarly, a y-directed electric field produces currents in both x and y di-
rections. In short, the conductivity becomes a tensor. We could follow a
similar procedure and work out the corresponding results for the Seebeck
coe�cient and electronic thermal conductivity, and we would find that they
become tensors too [7].

Exercise 7.2: Hall factor for power law scattering in 2D

The Hall factor plays an important role in Hall E↵ect measurements. For
power law scattering, a simple expression for rH can be easily derived. To
evaluate eqn. (7.79), note that

⌧2m = ⌧20

✓
E � Ec

kBTL

◆s�2
= ⌧20

✓
E � Ec

kBTL

◆2s

, (7.80)
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so when we evaluate eqn. (7.79), the result will be just like eqn. (7.51)
with s replaced by 2s,

⌦⌦
⌧2m
↵↵

= ⌧20 �(2s+ 2) , (7.81)

where we have assumed a nondegenerate semiconductor.
Having evaluated

⌦⌦
⌧2m
↵↵
, we can evaluate the Hall factor from eqn.

(7.78),

rH ⌘
⌦⌦
⌧2m
↵↵

hh⌧mii2
=

�(2s+ 2)

�(s+ 2)2
. (7.82)

As s varies from 0 to 1 (acoustic phonon to charged impurity scattering
in 2D), rH varies from 1 to 1.5. In Hall e↵ect measurements, the precise
scattering mechanisms may not be known, so it is common to assume that
rH = 1. It is important to remember, however, that this can introduce
some uncertainty into the final result.

7.6 Discussion

Equations (7.73) describe an important experimental condition - the mea-
surement of transport in a 2D sample in the presence of a normal mag-
netic field. You will encounter these equations frequently, since they are
widely-used, so we briefly discuss some alternate ways of writing the same
equations.

In matrix notation, we can write eqns. (7.73) as

✓
Jnx
Jny

◆
=


�S ��SµHBz

+�SµHBz �S

�✓
Ex
Ey

◆
(7.83)

Alternatively, we can write eqns. (7.73) in vector notation as

~Jn = �S ~E � �SµH
~E ⇥ ~B . (7.84)

The physical significance of these terms is illustrated in Fig. 7.3. If we
attempt to force a current in the x-direction, it will lead to an electric field
in the x-direction, and the resulting average velocity of electrons will be in
the �x direction. The Lorenz force, �q~� ⇥ ~B, will deflect electrons in the
-y-direction leading to a y-component of ~Jn. If the sample is open-circuited
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in the y-direction, then electrons will pile up on one side, and a deficit of
electrons will produce a positive charge on the other side of the sample.
The resulting Ey will produce a force in the +y-direction that cancels the
Lorenz force in the �y-direction. The resulting voltage in the direction
transverse to the direction of current flow and B-field is the Hall voltage,
which we will discuss in Lecture 8.

Fig. 7.3 Illustration of a planar sample showing how forcing a current in the x-direction
in the presence of a z-directed B-field leads to a deflection of electrons in the -y direction.

Equation (7.83) is written in matrix notation. In indicial notation it is
written as

Jni =
X

j

�ij (Bz) Ej , (7.85)

where the indices, i and j, run over the three coordinate axes, x, y, z or 1,
2, 3. The conductivity matrix, or tensor, �ij , is a 2 ⇥ 2 matrix, or second
rank tensor, defined by eqn. (7.83). Equation (7.85) can also be written in
the summation convention as

Jni = �ij (Bz) Ej , (7.86)

in which for a repeated index (in this case, j), it is assumed that a summa-
tion over the range of the index should be performed.

Equation (7.84) is written in vector notation. We can also write it in
indicial notation as

Jni = �SEi � �SµH✏ijkBkEj , (7.87)
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where we have introduced the alternating unit tensor, which is +1 when
the indices are in cyclic order (e.g. x, y, z), �1 when they are in anti-cyclic
order (e.g. y, x, z) and zero otherwise (e.g. x, x, z or y, y, z). In Lecture 8,
we will discuss the use of these equations in Hall e↵ect measurements.

7.7 Summary

This lecture has been an introduction to the Boltzmann Transport Equa-
tion, which is widely-used to describe low-field transport. For di↵usive
transport in the absence of a magnetic field, the BTE and Landauer ap-
proaches give the same answers. The advantage of the Landauer approach
is its physical transparency and the fact that ballistic and quasi-ballistic
transport are as easy to handle as di↵usive transport. Also note that the
basic Landauer transport model does not assume a periodic crystal, so it
can, in principle, be applied to amorphous and polycrystalline materials
too. The ease with which anisotropic transport and B-fields can be treated
are advantages of the BTE approach. The BTE is also useful for treating
far from equilibrium transport, a topic not discussed in these lectures. One
should be familiar with both approaches, so that the approach best suited
to the problem at hand can be used.
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Near-equilibrium Transport:

Measurements

8.1 Introduction
8.2 Resistivity / conductivity measurements
8.3 Hall e↵ect measurements
8.4 The van der Pauw method
8.5 Temperature-dependent measurements
8.6 Discussion
8.7 Summary
8.8 References

8.1 Introduction

Lectures 1-7 have been about the theory of near-equilibrium transport.
This lecture is about measuring near-equilibrium transport. These kinds
of measurements are widely-used to characterize electronic materials and
devices, and the theory we have developed in previous lectures is employed
to relate those measurements to the underlying material properties and
transport physics. To get accurate results that measure the quantity of
interest, electrical characterization must be done carefully. Results can
be clouded by several e↵ects, such as contact resistance and uncontrolled
thermoelectric e↵ects. Measurements in the absence of a magnetic field are
often combined with measurements in the presence of a magnetic field to
gain additional information. This lecture is an introduction to some basic
measurement considerations.

Since we have four parameters in our coupled current equations, the
resistivity (or conductivity), the Seebeck (or Soret) coe�cient, the Peltier
coe�cient, and the electronic heat conductivity, we should measure all four.

149
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Because of the Kelvin relation, however, there is no need to measure the
Seebeck and Peltier coe�cients separately. The measurement of the See-
beck coe�cient (thermopower) is a specialized topic that we will not discuss.
Those interested can refer to [1]. The electronic heat conductivity is also
di�cult to measure, so its value is usually estimated from the Wiedemann-
Franz Law. In this lecture, we concentrate on measuring the resistivity
(conductivity).

We shall primarily be concerned with di↵usive transport for which we
can write the current equation as

Jnx = �n
d(Fn/q)

dx
. (8.1)

The subscript, n, indicates that we are thinking of an n-type material, but
similar considerations apply to p-type materials. The di↵erences, when
they occur, will be noted. If we assume that the carrier density is uniform,
then d(Fn/q)/dx = Ex, and

Jnx = �nEx (8.2a)

Ex = ⇢nJnx . (8.2b)

We generally measure conductivity or resistivity because for di↵usive sam-
ples, these parameters depend on the material, not on the dimensions of
the resistor. Equations (8.1) and (8.2) also apply to p-type material; we
simply replace the subscript, n, with p.

Equations (8.1) and (8.2) apply in 1D, 2D, or 3D (we have assumed for
simplicity that the spatial variation is only in the x-direction). The units of
the current density and resistivity (conductivity) depend on dimensionality,
as shown below.

1D : Ex V/m Jnx A ⇢n ⌦/m

2D : Ex V/m Jnx A/m ⇢n ⌦

3D : Ex V/m Jnx A/m2 ⇢n ⌦�m

(8.3)

In 2D, the resistivity is often called the sheet resistance, ⇢S , and is fre-
quently quoted in units of ⌦/⇤ – “Ohms per square” because it is the
resistance of a square resistor.

Consider the planar resistor shown in Fig. 8.1. The current that flows
if a voltage is applied across the two ends is
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I = GV =

✓
�n

A

L

◆
V =

✓
�n

Wt

L

◆
V , (8.4)

which, using �S = (nt)qµn = nsqµn, becomes

G = �S

✓
W

L

◆
, (8.5)

where �S = 1/⇢S is the sheet conductance, and nS is the sheet carrier
density per cm2. In 3D, G = �nA/L and in 1D, G = �n/L.

Fig. 8.1 Sketch of a planar resistor with length, L, width, W , and cross-sectional area,
A = Wt, where t is the thickness of the resistor. If t is large compared to the de Broglie
wavelength of electrons, then the electrons in the resistor are three dimensional, but if t is
small compared to the de Broglie wavelength, then electrons are quantum mechanically
confined in one dimension.

How we compute the sheet conductance depends on whether the elec-
trons are 3D or 2D particles, and that depends on the thickness, t. If t
is large enough so that quantum confinement is weak, then we treat the
electrons as 3D particles and find the sheet conductance from

�S =
2q2

h

Z
tM3D(E)�(E)

✓
�@f0
@E

◆
. (8.6)

This is the assumption that we made in getting from eqn. (8.4) to eqn.
(8.5), i.e. that nS = nt, where n is the 3D concentration per cm3. If, on
the other hand, t is small so that quantum confinement is strong, then we
must treat electrons as 2D particles and �S becomes

�S =
2q2

h

Z
M2D(E)�(E)

✓
�@f0
@E

◆
. (8.7)
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Recall that M3D = M/A is the number of channels per cross sectional
area in 3D, and M2D = M/W is the number per width transverse to the
direction of current flow in 2D. If the sample is quasi-ballistic, then the
mean-free-path, �(E), should be replaced by the apparent mean free path
as defined in eqn. (3.40).

Note from eqns. (8.6) or (8.7) that the conductivity depends on the
location of the Fermi level, which depends on the carrier density. The
conductivity, therefore, is a function of the carrier density, �S(nS), so one
often measures conductivity vs. carrier density. Having done so, we can
then extract the mobility from �S ⌘ nSq µn. Finally, we should note that
eqns. (8.6) and (8.7) apply to either n- or p-type materials.

8.2 Resistivity / conductivity measurements

Consider the “simple” problem of measuring the resistivity of a material.
A planar resistor made with a material of resistivity, ⇢S , is shown in Fig.
8.2. The resistance of the material (i.e. the “channel” of the resistor) is
RCH = ⇢SL/W , but how do we measure RCH? If we inject a current in
contact 2 and extract it from contact 1 and measure the voltage, V21, we
find

R =
V21

I
= RCH + 2RC , (8.8)

where RC is the resistance of the metal-semiconductor contact. The mea-
sured resistance includes the contact resistance, so we must either find a way
to measure the contact resistance or to do the measurement in a way that
removes the e↵ect of the contact resistance. Consider the first approach
first.

Figure 8.3 is a sketch of a transmission line structure, which consists of
a planar resistor with contacts spaced at di↵erent distances [2]. If we plot
the resistance, Rji = Vji/I versus spacing of the two adjacent contacts, Sji,
we obtain a straight line,

Rji =
Vji

I
= 2RC + ⇢S

Sji

W
, (8.9)

as shown in Fig. 8.3. From the slope of the line, we determine ⇢S and from
the y-intercept, RC . Quite a lot can also be learned about the contacts,
such as the specific contact resistivity in ⌦�m2 and the so-called “trans-
fer length,” the distance which the current penetrates under the metal [2].
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Fig. 8.2 Sketch of a planar resistor with two metal contacts.

Transmission line measurements allow us to characterize both the semicon-
ductor material and the contacts.

Fig. 8.3 Sketch of a transmission line structure with a series of di↵erently spaced metal
contacts. Also shown is a plot of the resistance between adjacent contacts vs. the spacing
between contacts.

Another way to eliminate the contact resistance is to use a four-probe
measurement, as shown in Fig. 8.4. In this structure, contacts 0 and 5 are
called the current probes, and contacts 1 and 2 (or 3 and 4) are called the
voltage probes. A current, I, is injected between contacts 0 and 5 and a
voltage, V21 is measured between the voltage probes. If a high impedance
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voltmeter is used, then no current flows in the voltage probes, so there is
no voltage drop across the contact resistances. We conclude that

R =
V21

I
= ⇢S

L

W
, (8.10)

so we measure only the resistance of the material directly with no contri-
bution from the contacts.

Fig. 8.4 Sketch of a geomotry used to perform four-probe measurements of resistivity.
This is a top view of a structure made of a thin film of material on a substrate. The
structure is called a Hall bar geometry because, as discussed in the next section, it is
also used to perform Hall e↵ect measurements.

Using either of the two approaches, the transmission line structure or the
four probe geometry, the resistivity of the material can be measured. For
more information about these and related techniques, see [3, 4]. The next
step is to measure the carrier density.

8.3 Hall e↵ect measurements

Consider again the Hall bar geometry of Fig. 8.4. If we inject a current
in the +x direction, apply a B-field in the +z direction, and measure the
resulting voltage in the +y direction (i.e. between contacts 1 and 3 or 2
and 4), then the resulting Hall voltage is positive for an n-type sample and
negative for a p-type sample. This is the Hall e↵ect, discovered in 1879 by
Edwin Hall and discussed in Chapter 7. It is commonly used to measure
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the carrier concentration (or, more accurately, a quantity proportional to
the carrier concentration) [3, 4].

Figure 8.5 illustrates the essential physics of the Hall e↵ect for an n-
type sample. Since current flows in the +x direction, there is an average
velocity in the �x direction determined from Ix = WnSq h�xi. The Lorentz
force, ~Fe = �q~� ⇥ ~B, produces an average force on electrons in the �y
direction. The result is that electrons pile up on the bottom of the sample,
and the deficit electrons on the top surface leads to a corresponding positive
charge. The resulting electric field in the �y direction balances the force
due to the B-field, so that there is no net velocity in the y-direction. The
corresponding voltage in the y-direction, VH = �WEy, is the Hall voltage.

Fig. 8.5 Illustration of the essential physics of the Hall e↵ect.

Hall e↵ect analysis begins with eqn. (7.84)

~Jn = �n~E � (�nµnrH) ~E ⇥ ~B , (8.11)

which can be written as

Jnx = �nEx � (�nµnrH) EyBz

Jny = �nEy + (�nµnrH) ExBz .
(8.12)

Solving these equations for the electric field, we find

Ex = ⇢nJnx + (⇢nµnrHBz) Jny

Ey = ⇢nJny � (⇢nµnrHBz) Jnx .
(8.13)
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The experimental conditions ensure that Jny = 0, so we can solve the
second equation for Ey to find

Ey = �rHBzJnx
qnS

, (8.14)

which can be written as

RH ⌘ Ey
JnxBz

=
rH

(�q)nS
=

1

(�q)nH
, (8.15)

where RH is known as the Hall coe�cient, and

nH ⌘ nS

rH
(8.16)

is the Hall concentration. Recall from eqn. (7.78) that

rH ⌘
⌦⌦
⌧2m
↵↵

hh⌧mii2
, (8.17)

is the Hall factor, a number on the order of unity that depends on the
precise energy dependence of the scattering mechanisms.

Finally, expressing the Hall coe�cient in terms of the experimentally
measured voltage, VH = �WEy and injected current, I = WJnx, we have

RH =
�VH

IBz
=

1

(�q)nH
. (8.18)

To summarize, in a Hall e↵ect measurement, we apply a z-directed B-
field, inject an x-directed current, and measure the resulting voltage in
the y-direction, the Hall voltage, which is positive for n-type samples and
negative for p-type samples. The measured Hall coe�cient, RH , is directly
related to the Hall concentration, nH , according to eqn. (8.16) (for p-type
samples, replace (�q) with (+q)). The Hall concentration is the “carrier
density” usually quoted in Hall e↵ect measurements. It is related to the
actual concentration, nS = rHnH , by the Hall factor, as given by eqn.
(8.17).
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Exercise 8.1: Hall e↵ect analysis

To see how things work in practice, let’s consider a simple example, a Hall
bar measurements with the following conditions:

I = 1µA
Bz = 2000 Gauss or 0.2 Tesla
L = 100µm
W = 50µm
V21 = 0.54 mV (Bz = 0)
V24 = 0.13 mV (Bz = 0.2 T)

From this information, we can obtain the resistivity, the sheet carrier den-
sity (or, rather, the Hall sheet carrier density), and the mobility (actually
the Hall mobility).

Consider the resistivity first. The measurement in the absence of a
B-field gives

Rxx =
V21(Bz = 0)

I
= 540⌦ . (8.19)

Since this resistance is simply related to the sheet resistance by Rxx =
⇢SL/W , we find

⇢S = 270 ⌦/⇤ . (8.20)

(As discussed for eqn. (8.3), recall that ⇤ is not a real unit of measurement.
The sheet resistance is commonly written as “Ohms per square” because
the resistance of a square, L = W , resistor is just ⇢S .)

Consider next the concentration. The measured Hall voltage, V24, is
positive, so this is an n-type sample. From eqn. (8.18), we find the Hall
coe�cient to be

RH =
�V24

IBz
= �650

m2

C
, (8.21)

which, from eqn. (8.18) gives

nH = rHnS = 9.6⇥ 1015 m�2 = 9.6⇥ 1011 cm�2 . (8.22)

Finally, having the measured resistivity and Hall carrier density, we can
determine the Hall mobility. We begin with
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�n =
1

⇢S
⌘ nSqµn = nHqµH , (8.23)

where µH = rHµn as given in eqn. (7.77). Putting numbers in eqn. (8.23),
we find

µH = 24, 100 cm2/V � s . (8.24)

One could, in principle, try to estimate the Hall factor, rH , and thereby
determine the actual carrier density and mobility, but this introduces ad-
ditional assumptions and uncertainties, so it is common practice to simply
quote the Hall concentration and Hall mobility and hope that they are close
to the actual concentration and mobility.

8.4 The van der Pauw method

The van der Pauw method provides resistivity and Hall e↵ect measurements
on arbitrarily shaped, planar samples without the use of the Hall bar geom-
etry [3, 4, 5]. The basic approach is summarized in Fig. 8.6. The sample
to be measured lies in the x� y plane. It can be arbitrarily shaped, but it
must be homogeneous, conduction must be isotropic, and there can be no
holes in the sample. The four contacts are assumed to be small and placed
along the perimeter of the sample. To perform a resistivity measurement
(Fig. 8.6a), we force a current through two adjacent contacts, say M and
N, and measure the voltage between the other two, say O and P. The re-
sulting “resistance,” RMN,OP = VPO/I is related to the sheet resistance of
the sample. To perform a Hall e↵ect measurement (Fig. 8.6b), we apply a
z-directed B-field, then force a current between two non-adjacent contacts,
say M and O, and measure the voltage between the other two, say N and P.
The resulting resistance, RMO,NP = VPN/I, is related to the Hall voltage.

Since the Hall e↵ect is easier to analyze in this geometry, we begin there
and start with equations (8.13)

Ex = ⇢SJnx + (⇢SµnrHBz) Jny

Ey = ⇢SJny � (⇢SµnrHBz) Jnx .
(8.25)

The voltage between contact P and N is minus the integral of the electric
field along a path that connects the two contacts,
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Fig. 8.6 Illustration of the van der Pauw method. (A) Resistivity measurements and
(B) Hall e↵ect measurements.

VPN (Bz) = �
Z P

N

~E • d~l = �
Z P

N
(Exdx+ Eydy) . (8.26)

If we define the Hall voltage as

VH ⌘ 1

2

�
VPN (+Bz)� VPN (�Bz)

�
, (8.27)

and use eqns. (8.25) in eqn. (8.26), we find

VH = ⇢SµHBz

Z yP

yN

Jnx dy �
Z xP

xN

Jny dx

�
. (8.28)

All of the current injected into contact M must exit contact O, so it must
all cross an imaginary line between contacts P and N. Current conservation
requires that

I =

Z P

N

~Jn • n̂ dl , (8.29)

where n̂ is a unit vector normal to the path that connects P and N and is
given by

n̂ dl = d~l ⇥ ẑ = dy x̂� dx ŷ . (8.30)

Using eqn. (8.30) in eqn. (8.29), we find

I =

Z yP

yN

Jnx dy �
Z xP

xN

Jny dx , (8.31)
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which can be inserted in eqn. (8.28) to find

VH ⌘ 1

2

�
VPN (+Bz)� VPN (�Bz)

�
= ⇢SµHBzI , (8.32)

so Hall e↵ect measurements are readily performed in this geometry.
Consider next how to measure the resistivity in the van der Pauw ap-

proach. Fig. 8.7 compares the actual structure (A) with simpler structure
(B), an infinite half plane with the four contacts along the lower edge (B).
The half plane geometry is much easier to analyze, and van der Pauw
showed by a conformal transformation, that the results for geometry (B)
are identical to those of geometry (A) providing the material is uniform,
isotropic, and contains no holes [5].

Fig. 8.7 Comparison of the van der Pauw geometry for resistivity measurements (A)
with the corresponding measurements on a semi-infinite half plane (B). The results for
geometry (B) are identical to those of geometry (A) under some fairly non-restrictive
conditions identified by van der Pauw [5].

Consider what happens when we inject a current in contact M of the
half-plane. It spreads out radially from the contact, and the 2D current
density in A/m is

Jnr =
I

⇡r

Er =
I⇢S
⇡r

,
(8.33)
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where r is a vector from the contact to the point in question. By integrating
eqn. (8.33) from a reference location, r0, to an arbitrary position, r, we
find the potential due to current injected at contact M as

V (r)� V (r0) = �I⇢S
⇡

ln

✓
r

r0

◆
. (8.34)

Using this result, we find

V (P ) = �I⇢S
⇡

ln

✓
a+ b+ c

r0

◆

V (O) = �I⇢S
⇡

ln

✓
a+ b

r0

◆

VPO = V (P )� V (O) = �I⇢S
⇡

ln

✓
a+ b+ c

a+ b

◆
(8.35)

Similarly, there is a contribution with the opposite sign due to the current
leaving through contact, N,

V 0
PO = +

I⇢S
⇡

ln

✓
b+ c

b

◆
(8.36)

The total voltage measured between contacts O and P is the sum of the
two contributions. When this voltage is divided by the injected current, we
get a resistance

RMN,OP =
VPO + V 0

PO

I
=
⇢S
⇡

ln

✓
(a+ b)(b+ c)

b(a+ b+ c)

◆
, (8.37)

which clearly depends on knowing the location of the contacts. Note the
order of the subscripts. For RMN,OP , the current enters contact M, leaves
contact N, and the voltage is measured between contacts O and P with P
being the positive terminal. We could also inject the current in contact N,
take it out from contact O, and measure the voltage between contact P and
M. The resulting resistance would be

RNO,PM =
⇢S
⇡

ln

✓
(a+ b)(b+ c)

ac

◆
, (8.38)

which also depends on the location of the contacts. Finally, eqns. (8.37)
and (8.38) can be combined to obtain
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exp

✓
� ⇡

⇢S
RMN,OP

◆
+ exp

✓
� ⇡

⇢S
RNO,PM

◆
= 1 , (8.39)

which does not depend on the location of the contacts. Although we derived
this result for the infinite half plane in Fig. 8.7b, van der Pauw showed that
it also applies to samples like the one in Fig. 8.7a.

The procedure for measuring resistivity can be summarized as follows.
The van der Pauw method can be summarized as follows. First, perform
a resistivity measurement (Fig. 8.6a) by forcing a current through two
adjacent contacts, M and N, and then measuring the voltage between the
other two contacts, O and P. The result isRMN,OP = VPO/I. Then perform
a similar measurement by forcing a current through contacts N and O and
measuring the voltage between contacts P and M. The result is a second
resistance, RNO,PM = VPO/I. Using these two measured resistances, solve
eqn. (8.39) for the sheet resistance, ⇢S . Note that the sample does not
need to have a special shape, and the contacts do not need to be equally
spaced. If the sample is a square, however, then a = b = c and RMN,OP =
RNO,PM = V/I, so eqn. (8.39) simplifies to:

⇢S =
⇡

ln 2

V

I
, (8.40)

and there is no need for iteration.
The second part of the van der Pauw measurement is a measurement

of the Hall voltage. To perform a Hall e↵ect measurement (Fig. 8.6b),
apply a z-directed B-field, then force a current between two non-adjacent
contacts, M and O, and measure the voltage between the other two, say N
and P. Reverse the direction of the B-field and measure the same voltage
again. The average of the two measurements is the Hall voltage, as given
by eqn. (8.32). From the measured Hall voltage, the Hall coe�cient, Hall
concentration, and Hall mobility can all be determined.

The Hall bar and van der Pauw geometries provide two di↵erent ways
to perform the same analysis. It is possible to produce acceptable van
der Pauw samples without photolothography and etching, which is its key
advantage. If photolithography and etching are available, then either a Hall
bar or square van der Pauw sample can be made. The square van der Pauw
sample permits a simplified analysis according to eqn. (8.40)
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8.5 Temperature-dependent measurements

It is common practice to perform resistivity and Hall e↵ect measurements
as a function of temperature, because doing so sheds light on the scattering
physics. The results are often presented in the form of mobility vs. tem-
perature plots, as shown in Fig. 8.8a. (If the mobility was determined from
a Hall e↵ect measurement, then what is plotted is actually the Hall mo-
bility.) Typically, the mobility initially increases with temperature, then
reaches a plateau and decreases for higher temperatures. The initial in-
crease with temperature is usually attributed to charged (ionized) impurity
scattering, and the decrease in mobility with increasing temperature gen-
erally indicates phonon scattering. When there are two di↵erent scattering
mechanisms, the overall mobility is described qualitatively by Mathiessen’s
Rule (Sec. 4.3.2 in [7]),

1

µtot
⇡ 1

µII
+

1

µph
, (8.41)

which states that the lower of the two mobility components controls the
overall mobility.

To understand why the mobility increases with temperature, recall Fig.
6.3. Charged impurities introduce fluctuations in the bottom of the con-
duction band, which act as random scattering potentials. The higher the
kinetic energy of carriers (kinetic energy is the distance above the bottom of
the conduction band), the less they see these potential fluctuations, so the
less they are scattered. The scattering time should increase with energy.
Since the average kinetic energy for non-degenerate carriers is proportional
to kBTL, the scattering time (and, therefore the mobility, µn = q⌧m/m⇤)
should increase with temperature. The precise temperature dependence
depends on averaging the energy dependent scattering time, ⌧m(E � Ec)
(e.g., as in eqn. (7.48) in 2D). In 3D, ionized impurity scattering leads
to a temperature dependence of T 3/2

L (see Sec. 4.8 of [7]). The impor-
tant point is that when the measurements show a mobility that increases
with temperature, it generally indicates the presence of charged impurity
scattering.

The decrease in mobility at high temperatures is generally due to in-
creased scattering by lattice vibrations (phonons). Thinking of the lattice
vibrations as particles, we expect the scattering rate to be proportional to
the phonon occupation number,
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Fig. 8.8 Sketch of a typical mobility vs. temperature characteristic. (A) General form
of the characteristic. (B) Influence of charged impurity scattering on the characteristic.

1

⌧(E)
/ nph . (8.42)

Since phonons obey Bose-Einstein statistics, nph is given by the Bose-
Einstein distribution,

nph =
1

e~!/kBTL � 1
. (8.43)

For covalent semiconductors, acoustic phonon scattering dominates, and
one can show by energy-momentum conservation arguments that small
energy (~!) phonons are involved. Accordingly, we find e~!/kBTL ⇡
1+~!/kBTL, which can be inserted in eqn. (8.43) to find nph ⇡ kBTL/~!.
(This expression is easy to interpret; it says that dividing the average ther-
mal energy by the energy of a phonon gives the number of phonons.) Fi-
nally, from eqn. (8.42) we conclude that ⌧ / 1/kBTL, so the mobility
should decrease with temperature. The precise value of the exponent de-
pends on properly averaging the scattering time over energy. For example,
in 3D, we find that µn / T�3/2

L when acoustic phonon scattering dominates
(Sec. 4.8 of [7]).

For polar semiconductors (e.g. III-V, II-VI semiconductors), the domi-
nant scattering mechanism tends to be polar interactions caused by optical
phonons with a frequency, !o, where ~!o is on the order of kBTL at room
temperature. In this case, we cannot expand the exponential in the Bose-
Einstein distribution for small argument, and must use eqn. (8.43) directly.
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For polar semiconductors, the mobility decreases exponentially with tem-
perature (Sec. 4.8 of [7]).

Figure 8.8b is a sketch of µn(TL) for three di↵erent densities of charged
impurities. Beginning at a low temperature, the mobility rises as the tem-
perature increases, and charged impurity scattering becomes less and less
e↵ective. The mobility reaches a maximum when the charged impurity
scattering equals the phonon scattering. Further increases in temperature
cause the mobility to drop as phonon scattering increases. The maximum
mobility achieved is limited by charged impurity scattering. The low tem-
perature mobility provides a good measure of the total concentration of
charged impurities.

8.6 Discussion

Obtaining reliable data from near-equilibrium transport measurements re-
quires great care; we have simply introduced the techniques in this lec-
ture. More comprehensive texts discuss measurement considerations in
detail (e.g. [3, 4]). In this section, we briefly discuss one of the things
that can go wrong, because it provides an example for the usefulness of the
coupled current equations developed in Lecture 5. We have also restricted
our attention to low magnetic fields, but some interesting things happen
under high magnetic fields, and we briefly discuss them in this section too.

A few words about measurement artifacts

Consider again measurements using the Hall bar geometry of Fig. 8.4.
The current enters contact 0 and leaves from contact 5. We expect Peltier
cooling at contact 5 and Peltier heating at contact 0. We have implicitly
assumed isothermal conditions in our analysis of the Hall e↵ect, but what
if the heat sink that the Hall bar sits on is not perfect, and there is a
temperature gradient in the x-direction? How is the measured Hall voltage
a↵ected? To answer this question, we should begin with the coupled current
equations developed in Lecture 5.

The coupled current equations, (5.30), can be written in indicial nota-
tion as
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Ei = ⇢ij( ~B)Jj + Sij( ~B)@jTL

JQ
i = ⇡ij( ~B)Jj � eij( ~B)@jTL .

(8.44)

For an isotropic semiconductor, the four transport tensors are diagonal,
but we saw in Lecture 7, that in the presence of a B-field, they acquire
o↵-diagonal components. For low magnetic fields, the extra terms come
from the cross product in the Lorentz force, and the diagonal terms are
una↵ected. For cubic materials, the transport parameters in the presence
of a small B-field can be written as

⇢ij( ~B) = ⇢0 + ⇢0µH✏ijkBk + . . .

Sij( ~B) = S0 + S1✏ijkBk + . . .

⇡ij( ~B) = ⇡0 + ⇡1✏ijkBk + . . .

eij( ~B) = e0 + e1✏ijkBk + . . . .

(8.45)

Each of the four transport coe�cients has the same form, a diagonal compo-
nent denoted with a subscript, 0, and o↵-diagonal components that involve
a cross product described by the alternating unit tensor, ✏ijk (Sec. 7.6).
Except for the resistivity (for which ⇢1 = ⇢0µH), we have not specified the
o↵-diagonal component and simply gave them a subscript 1.

Now lets return to the question of how a temperature gradient in the
x-direction would a↵ect the measured Hall voltage. From eqn. (8.44) we
have

Ey = ⇢0Jy + ⇢0µH✏yjkBkJj + S0@yTL + S1✏yjkBk@jTL . (8.46)

The experimental conditions dictate that the current is only in the x-
direction, and the B-field is only in the z-direction. Let’s also assume
that the experimental conditions maintain TL constant in the y-direction.
For these conditions, eqn. (8.46) becomes

Ey = +⇢0µH✏yxzBzJx + S1✏yxzBz@xTL . (8.47)

Finally, using the property of the alternating unit tensor, ✏yxz = �1, we
obtain

Ey = �⇢0µHBzJx � S1Bz@xTL . (8.48)
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The first term is the Hall e↵ect, which we are trying to measure, but
the second term is an artifact that comes from that fact that a temperature
gradient in the x-direction (produced by the x-directed current being used
for the Hall e↵ect measurement) gives rise to an additional component of
the y-directed electric field. The y-directed electric field that arises from
an x-directed temperature gradient in the presence of a z-directed B-field
is called the Nernst e↵ect. Note from eqn. (8.48) that if the current and
magnetic field were reversed, the first term, the Hall e↵ect term, would
not change sign, but the second term would change sign. So by measuring
the Hall voltage, then reversing the direction of the current and magnetic
field and measuring it again, and averaging the two results, the influence of
the Nernst e↵ect could be eliminated (provided that the switch was done
quickly so that @TL/@x does not change sign). A number of these kinds of
thermomagnetic e↵ects can occur and may cloud the interpretation of Hall
e↵ect measurements [6, 7]. Even in the absence of a B-field, a longitudinal
temperature gradient produced by Peltier heating/cooling between contacts
0 and 5 could a↵ect the measured resistivity.

What happens for high magnetic fields?

When solving the BTE in the presence of a B-field, we assumed that the
B-field was small, so that

!c⌧m ⌧ 1 , (8.49)

where for a parabolic energy band, the cyclotron frequency is

!c =
qB

m⇤ . (8.50)

From eqns. (8.49) and (8.50), we can also write the condition for a low
magnetic field as

µnB ⌧ 1 . (8.51)

We consider three questions: 1) What does eqn. (8.49) mean physically?
and 2) What is the cyclotron frequency for a more general E(k), and 3)
How do high magnetic fields change the measured results?

Figure 8.9 shows an electron in the x � y plane orbiting a z-directed
B-field. The period of the orbit is T = 2⇡/!c. The condition, eqn. (8.49),
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is, therefore, equivalent to T � ⌧m. For small magnetic fields, the pe-
riod is much longer than the time between scattering events, so electrons
rarely complete an orbit. For high B-field, T ⌧ ⌧m and electrons typically
complete an orbit or orbits before scattering.

Fig. 8.9 Sketch of an electron in the x � y plane orbiting a z-directed magnetic field.
Both the position vector, ~r(t) and the wavector, ~k(t), undergo a circular orbit.

The equation of motion for the electron in Fig. 8.9 is

d
⇣
~~k
⌘

dt
= �q~� ⇥ ~B . (8.52)

Expanding this equation, we find

~dkx
dt

= �q�yBz ! ~kd(cos ✓)
dt

= �q (� sin ✓)Bz

~dky
dt

= +q�xBz ! ~kd(sin ✓)
dt

= +q (� cos ✓)Bz .

(8.53)

If the first of these equations is di↵erentiated with respect to time, and then
the second equation is used, we find

d2(cos ✓)

dt2
= �!2

c cos ✓ , (8.54)

where
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!c =
q�Bz

~k . (8.55)

Equation (8.55) can be used to determine the cyclotron frequency for a
general, isotropic energy band. For parabolic bands, � = ~k/m⇤, so !c =
qBz/m⇤, as expected. In Lecture 10 we will discuss graphene, which has a
highly nonparabolic energy band. Equation (8.55) can be used to find the
cyclotron frequency of electrons in graphene.

Consider some typical numbers. For lightly doped silicon, the mobility
is about 1000 cm2/V � s. Assume a typical laboratory magnet with a B-
field of 0.2 Tesla (2000 Gauss). We find µnBz ⇡ 0.02 ⌧ 1, so we are safely
in the low magnetic field regime. Magnetic fields that are 10 times higher
are not hard to come by, but we would still be in the low magnetic field
regime. Magnetic fields that are 100 times higher are needed to operate
in the high field regime. Such magnets are available, but they represent
the state-of-the-art in magnet technology and are not readily available for
routine experiments.

The situation is di↵erent for high mobility materials such as III-V semi-
conductors and modulation-doped heterostructures. For example, consider
InGaAs at 300 K. Mobilities on the order of 10,000 are possible. We find
µnBz ⇡ 0.2 < 1. We are still in the low magnetic field regime. If we lower
the measurement temperature to 77 K or even lower, however, mobilities of
100,000 or more can be obtained. For these conditions, µnBz ⇡ 2 > 1. It is,
therefore, possible to operate in the high magnetic field regime with com-
monly available magnets when high mobility samples are used. Interesting
things happen at high magnetic fields.

Consider again, eqn (8.54); it describes a harmonic oscillation. We know
from quantum mechanics that the energy levels of a harmonic oscillator are
quantized according to

En =

✓
n+

1

2

◆
~!c . (8.56)

In this case, the quantized levels are called Landau levels. Consider 2D
electrons in the presence of a z-directed B-field. Fig. 8.10a illustates how
the Landau levels change the density of states. In the absence of the B-field,
the density-of-states is

D2D (E) = gv
m⇤

⇡~2 (E > ✏1) , (8.57)
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where ✏1 is the bottom of the first subband, and we assume that higher
subbands are not occupied. In the presence of a strong B-field, the density-
of-states becomes a series of �-functions,

D2D (E,Bz) = D0

1X

n=0

�


E � ✏1 �

✓
n+

1

2

◆
~!c

�
, (8.58)

where D0 is the degeneracy of each Landau level. Since all of the states
must be conserved (they are only re-arranged by the B-field), and since the
Landau levels are spaced by ~!c, we conclude that

D0 = ~!c ⇥
✓
gv

m⇤

⇡~2

◆
= gv

2qBz

h
. (8.59)

Fig. 8.10 Illustration of how a B-field changes the 2D density-of-states. (A) in the
absence of scattering and (B) in the presence of scattering.

In the presence of scattering the Landau levels broaden. The width
of each level is determined from �E�t ⇡ ~. Assuming that �t ⇡ ⌧m,
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the scattering time, then �E ⇡ ~/⌧m. A high magnetic field is defined
as a magnetic field high enough so that individual Landau levels can be
distinguished. This requires that the spacing of Landau levels, ~!c, be
greater than the spread, �E. This leads to the condition that !c⌧m >> 1
as the condition for a high magnetic field, and gives us another physical
interpretation eqn. (8.49).

Exercise 8.2: Shubnikov-de Haas oscillations

If Hall e↵ect and resistivity measurements are done as a strong magnetic
field is varied, interesting things can happen. First, consider some numbers.
Assume a modulation-doped semiconductor film with nS = 5⇥ 1011 cm�2

and a mobility of 100,000 cm2/V � s. If Bz = 1 T, how many Landau levels
are occupied?

First, we should determine whether separate Landau levels can be dis-
tinguished. The mobility of 100,000 cm2/V � s = 10 m2/V � s, so

µnBz = 10 >> 1 , (8.60)

and we are clearly in the high B-field regime. Next, we should compute the
degeneracy of the Landau levels. Assuming gv = 1, we find

D0 =
2qBz

h
= 4.8⇥ 1010cm�2 ,

so we find that

ns

D0
= 10.4 .

There are 10.4 Landau levels occupied; the first ten are completely filled,
and the Fermi level lies within the eleventh Landau level.

Figure 8.11 shows a typical measurement for such a structure [8]. Con-
sider first the longitudinal resistance (Rxx = Vx/I). For low fields, it is
independent of the B-field, and is simply related to the resistivity of the
sample, as we have discussed. As the B-field increases, Rxx begins to os-
cillate. This occurs as the Landau levels become well defined. When the
Fermi level lies within a Landau level, Rxx is low, but as the B-field in-
creases, the spacing between Landau levels increases, the degeneracy of each
Landau level increases, and the position of the Fermi level changes. When
the Fermi level lies between Landau levels, there are few states, and Rxx



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

172 Near-equilibrium Transport: Fundamentals and Applications

increases. The oscillations in Rxx are known as Shubnikov-de Haas (SdH)
oscillations and from the period of the oscillation, the carrier density can
be measured [9]. When the B-field is very high, Rxx actually goes to zero!
This is the quantum Hall E↵ect [8 -11].

The Hall voltage in Fig. 8.11 is also interesting. For small B-fields, the
Hall voltage is proportional to B, as expected from eqn. (8.32). As the B
field increases, however, we see that the Hall voltage becomes quantized and
begins to increase in steps. The steps in VH align with the zero resistance
regions in Rxx. The quantization in the Hall voltage can be so precise that
it can be used as a resistance standard [8].

A satisfactory discussion of the quantum Hall e↵ect would take us too
far afield for this lecture. Interested readers should consult [9-11].

Fig. 8.11 Hall e↵ect measurements for an AlGaAs/GaAs modulation doped structure
at 1.2 K in the presence of a large magnetic field. The injected current is 25.5 mA and the
2D sheet carrier density is 5.6⇥1011 cm�2. (From [8]. Copyright 1985 IEEE. Reprinted,
with permission, from IEEE Transactions on Instrumentation and Measurement.)
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8.7 Summary

This lecture has been a short introduction to some techniques commonly
used to characterize near-equilibrium transport. Hall bar or van der Pauw
geometries allow measurement of both the resistivity and the Hall concen-
tration, from which the Hall mobility can be deduced. In some cases, one
can estimate the value of the Hall factor, rH , in order to estimate the true
carrier density and mobility, but it is common practice to simply quote the
Hall concentration and Hall mobility. Temperature dependent measure-
ments help experimentalists identify the dominant scattering mechanisms.
Care must be taken to exclude galvano and thermomagnetic e↵ects like the
Nernst e↵ect, the Righi-Leduc e↵ect, and the Ettingshausen e↵ect, which
can a↵ect Hall e↵ect measurements. Finally, high magnetic fields provide
additional information, but to operate in the high magnetic field regime
with commonly available magnets, high mobility samples are required.
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Lecture 9

Phonon Transport
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9.6 Scattering
9.7 Discussion
9.8 Summary
9.9 References

9.1 Introduction

We have seen that electrons produce both charge and heat currents. In
metals electrons carry most of the heat, but in semiconductors, electrons
carry only a part of the heat; most of the heat is carried by vibrations, or
phonons.

The heat flux due to phonons is

JQ = �LdTL/dx W/m2 . (9.1)

Our goal in this lecture is to understand what controls the lattice thermal
conductivity, L, and how it is related to the basic materials parameters.
We will see that the same techniques used to describe electron transport can
also be used for phonon transport. From eqn. (9.1), we see that the units of
L are W/m�K. An exceptional thermal conductor, like diamond, has a
thermal conductivity of about 2000 W/m-K while a poor thermal conductor

177
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like glass has a thermal conductivity on the order of 1 W/m-K and air of
0.025 W/m-K. Electrical conductivities of solids vary over more than 20
orders of magnitude, but thermal conductivities of solids vary over a range
of only 3-4 orders of magnitude.

This lecture is a brief introduction to thermal transport by phonons.
The goal is to provide a starting point for learning about phonon transport.
Another goal is to discuss the similarities and di↵erences between electron
and phonon transport.

9.2 Electrons and phonons

Electrons in the conduction band of a semiconductor feel the influence of
the crystal potential and the potential of other electrons. This compli-
cated many body system can be described in most cases as if it consisted
of weakly interacting particles. These fictitious electron “quasi-particles”
travel through the solid much like electrons travel in a vacuum, but they
obey a modified version of Newton’s Laws (i.e. their e↵ective mass is dif-
ferent from the rest mass of an electron in vacuum).

In quantum mechanics, electrons can be treated as waves or as particles.
The dispersion of the electron waves is a plot of the allowed values of an
electron’s frequency, !, vs. its wavevector, ~k. Instead of plotting !(~k) for
electrons, we typically plot E(~k) = ~!(~k). Figure 9.1a is a sketch of a
typical dispersion for electrons. Because the crystal lattice is periodic in
real space, the dispersion is periodic in k-space, and all unique solutions
reside within a Brillouin zone. Note also that each band has a finite
bandwidth - the range of energies occupied by the band. To describe an
electron quasi-particle, we form a wavepacket, a superposition of electron
waves with di↵erent wavevectors. The velocity of the electron is the group
velocity of the wavepacket,

~�g(~k) =
1

~rkE(~k) , (9.2)

so the slope of E(~k) at ~k = ~k0 tells us the velocity of an electron wavepacket
centered at ~k0. Also shown in Fig. 9.1a (dashed line) is the e↵ective mass
approximation, which is widely-used to describe E(~k) near the bottom (or
top) of a band.

The vibrations of a crystal lattice also comprise a complicated, inter-
acting system that can be described in most cases as if it consists of weakly



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

Phonon Transport 179

Fig. 9.1 Sketch of dispersions for (a) electrons and (b) phonons. Simplified dispersions
commonly used for analytical calculations are also shown as dashed lines. See Fig. 9.3
for examples of realistic dispersions in silicon.

interacting particles. For lattice vibrations, the quasiparticles are phonons.
The dispersion of the lattice vibrations is a plot of the allowed values of
the frequency, !, vs. wavevector, ~q. Figure 9.1b is a sketch of a typical
dispersion for phonons. Because the crystal lattice is periodic in real space,
the phonon dispersion is periodic in q-space, and all unique solutions reside
within the same Brillouin zone that describes the electron dispersion. Note
also that each band has a finite bandwidth - just as for electrons.

To describe a phonon as a particle, we form a wavepacket, a superpo-
sition of lattice vibrations with di↵erent wavevectors. The velocity of the
phonon is the group velocity of the wavepacket,

~�g(~q) = rq!(~q) , (9.3)

so the slope of !(~q) at ~q = ~q0 tells us the velocity of a phonon wavepacket
centered at ~q0. Also shown in Fig. 9.1b (dashed lines) are some common
approximations widely-used to describe !(~q). The Debye approximation
describes the low frequency modes by a linear dispersion (!(q) = �sq),
and the Einstein approximation describes the high frequency modes by
!(q) = !0.

We can appreciate a little about lattice vibrations by thinking of the
bonding forces between atoms as springs holding masses together. To first
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order, the potential is harmonic, U(r) = 1/2ks(r � r0)2, where ks is the
spring constant, and r0 is the rest position. We learn in freshman physics
that a mass, M , on a spring will oscillate at a frequency, ! =

p
ks/M .

Classically, a harmonic oscillator can have any energy, but quantum me-
chanically, we know that the energy must be quantized according to

En =

✓
n+

1

2

◆
~! , (9.4)

where n is an integer, and E0 = ~!/2 is the zero point energy. Instead of
talking about the nth excited state of the normal mode with frequency, !,
we will think of n as the number of phonons, each with an energy, ~!.

The sketch in Fig. 9.2 provides a little more detail about phonon dis-
persion. Recall that for electrons, we have two spin states. For three-
dimensional solids, there are three polarization states for lattice vibrations,
one for atoms displaced in the direction of propagation (longitudinal) and
two for atoms displaced orthogonal to the direction of propagation (trans-
verse). The low energy modes are called acoustic modes. There are three
acoustic modes, one longitudinal (LA, analogous to sound waves that prop-
agate in air) and two transverse acoustic (TA) modes. Near q = 0, acoustic
modes display a linear dispersion. For the longitudinal mode,

!(q) = �sq

�s =
p

cl/⇢ ,
(9.5)

where �s is the sound velocity. The elastic constant, cl, plays the role of
the spring constant and ⇢ of the mass. Typical sound velocities are on the
order of 5⇥ 105 cm/s, about 20 times slower that the velocity of a typical
electron (⇡ 107 cm/s). Equation (9.5) shows that materials with heavier
atoms have lower sound velocities and correspondingly lower dispersion
bandwidths than materials with lighter atoms.

Also shown in Fig. 9.2 are the three optical modes. These modes display
little dispersion; ! is almost independent of q. The di↵erence between
acoustic and optical modes is that near q = 0, adjacent atoms are displaced
in the same direction for acoustic modes but in opposite directions for
optical modes. In polar materials, the optical modes can interact with light,
which is the origin of their name. Because the phonon velocity is given by
the slope of !(q), the acoustic modes have a relatively high velocity, and
the optical modes a low velocity. We expect, therefore, to find that the
acoustic modes transport most of the heat.
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Fig. 9.2 Sketch of a typical phonon dispersion showing the longitudinal acoustic (LA)
and optical (LO) modes and the transverse acoustic (TA) and optical (TO) modes.

Figure 9.3 is a comparison of realistic, computed dispersions for sili-
con along a [100] direction. Shown in Fig. 9.3a is the electron dispersion
showing the light and heavy hole valence bands and the conduction band.
Note that the maximum of the valence band is at k = 0, but the minimum
of the conduction band is near the zone boundary. Silicon is an indirect
semiconductor.

Figure 9.3b shows the phonon dispersion for silicon with the three acous-
tic and three optical branches. In a nonpolar material like Si, the LO and
TO branches are degenerate at q = 0 and the LO and LA branches are de-
generate at the zone boundary. The energy of the optical modes is greater
than kBTL at 300 K, so the population of the optical modes is relatively
small at room temperature and below. The most important thing to note
in comparing Figs. 9.3a and 9.3b is the di↵erence in the bandwidths. The
BWs of the conduction and valence bands are � kBTL at 300 K while
the BWs of the phonon dispersion are on the order of kBTL. In practice,
this means that only electron states near the top of the valence band and
bottom of the conduction band are important, while for phonons, most of
the states in the acoustic branches are occupied. This leads to a significant
di↵erence in the wavelength of an average electron and phonon.

To estimate the wavelength of an average electron, let’s assume a non-
degenerate, 3D, semiconductor for which

hEi = 3kBTL/2 . (9.6)

From the e↵ective mass approximation, we find for an average electron,



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

182 Near-equilibrium Transport: Fundamentals and Applications

Fig. 9.3 Realistic computed dispersions along a [100] direction in silicon. (a) electrons
and (b) phonons. (Electron dispersion from Band Structure Lab, A. Paul, et al., 2011,
DOI: 10254/nanohub-r1308.18. Phonon dispersion after Jeong, et al. [5]).

hEi =
~2
⌦
k2
↵

2m⇤ . (9.7)

By equating the above two expressions, we can find an expression for the
rms average wavevector,

p
k2 = 2⇡/

⌦
�elB
↵
, where

⌦
�elB
↵
is the average elec-

tron de Broglie wavelength. The result is

⌦
�elB
↵
=

hp
3m⇤kBTL

⇡ 60
�
A , (9.8)

where we assumed m⇤ = m0 and TL = 300 K.
To estimate the wavelength of an average LA phonon, we recognize

that the average thermal energy of the phonons is also given by eqn. (9.6).
Instead of eqn. (9.7) for the dispersion, we use the Debye approximation
to write

hEi = ~�s hqi . (9.9)

By equating eqn. (9.6) to (9.9) and using hqi = 2⇡/
D
�phB

E
, where

D
�phB

E
is

the average phonon de Broglie wavelength, we find

D
�phB

E
=

4⇡~�s
3kBTL

⇡ 5 A , (9.10)
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where we have again assumed TL = 300 K.
These simple calculations show that the average wavelength of a phonon

is about ten times less than that of an average electron. The di↵erence can
be traced back to the di↵erent bandwidths of the dispersions for electrons
and phonons. For electrons, the thermal energy permits only states near
the bottom of the conduction band (where the wavevector is small and
wavelength long) to be occupied. For phonons, however, the thermal energy
is su�cient to occupy most of the acoustic branch, so there is a wide range
of wavevectors. The average wavevector is much larger than for electrons,
so the average wavelength of a phonon is much shorter.

This section has been a very brief introduction to phonons covering just
the essentials needed for this lecture. For a thorough treatment of both
electron and phonon dispersions, see [1-4].

9.3 General model for heat conduction

In Lecture 2, we developed a general model for current flow and expressed
it in eqn. (2.46) as

I =
2q

h

Z
Tel(E)Mel(E) (f1 � f2) dE (A) . (9.11)

The current is proportional to the probability that electrons can transmit
through a channel at energy, E, Tel(E), times the number of electron chan-
nels at that energy, Mel(E), times the di↵erence in Fermi functions of the
two contacts, f1(E)� f2(E).

Figure 9.4 is a sketch of a device that involves phonon transport. We
seek an expression for the heat flow through a channel, a material char-
acterized by its dispersion. The channel may be a bulk material, or a
nanostructure with reduced dimensionality and a dispersion much di↵erent
from the bulk. At the two ends of the channel are large thermal reservoirs
that maintain thermal equilibrium distributions of phonons at two di↵erent
temperatures. For electrons, the states in the reservoir were filled according
to the equilibrium Fermi function,

f0(E) =
1

e(E�EF )/kBTL + 1
, (9.12)

but phonons obey Bose statistics, and phonon states are filled according to
the equilibrium Bose-Einstein distribution,
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n0(~!) =
1

e~!/kBTL � 1
. (9.13)

For the left contact, TL = TL1 and for the right contact, TL = TL2. Just
as for electrons, we assume ideal, absorbing contacts. We assume that
phonons that enter a contact are not able to reflect back into the device,
so the transmission, Tph, describes the transmission of phonons across the
channel.

Fig. 9.4 Sketch of a device for which we seek the heat flow from contact 1 (left) to
contact 2 (right).

It is now easy to generalize eqn. (9.11) and apply it to heat transport.
For the phonon heat current, we replace the electron energy, E, with the
phonon energy, ~!. For the electric current, we have q, the charge carried
by an electron. For the heat current, we replace q with ~!, the energy
carried by a phonon, and move it inside the integral. Finally, the 2 in eqn.
(9.11) refers to the two spin polarizations of the electron. For phonons,
we remove the 2 and simply absorb the number of polarization states that
contribute to heat flow in Mph. The final expression for the heat current
due to phonons, analogous to the electric current given by eqn. (9.11), is

Q =
1

h

Z
(~!)Tph(~!)Mph(~!) (n1 � n2) d(~!) (W) . (9.14)

Since we are interested in near-equilibrium heat transport, we now need
to simplify eqn. (9.14) for small di↵erences in temperature. If TL1 ⇡ TL2,
then n1 ⇡ n2, and we can expand n2 in a Taylor series to find

n2 ⇡ n1 +
@n0

@TL
�TL , (9.15)
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which leads to

(n1 � n2) ⇡ � @n0

@TL
�TL . (9.16)

The derivative, @n0/@TL is readily evaluated from eqn. (9.13). It’s also
easy to evaluate the derivative, @n0/@(~!) and to show

@n0

@TL
=

~!
TL

✓
� @n0

@(~!)

◆
, (9.17)

where

@n0

@(~!) =

✓
� 1

kBTL

◆
e~!/kBTL

�
e~!/kBTL � 1

�2 . (9.18)

Finally, putting this all together and inserting it in eqn. (9.14), we find for
small di↵erences in temperature,

Q = �KL�TL , (9.19)

where KL is the thermal conductance in W/K and is given by

KL =
k2BTL

h

Z
Tph(~!)Mph(~!)

(✓
~!

kBTL

◆2✓
� @n0

@(~!)

◆)
d(~!) .

(9.20)
Equation (9.19) is just Fourier’s Law for heat flow; it says that heat flows
down a temperature gradient. The thermal conductance displays some
similarities to the electrical conductance that we should discuss.

Recall from Lecture 2, eqn. (2.51) that the electrical conductance is

G =
2q2

h

Z
Tel(E)Mel(E)

✓
�@f0
@E

◆
dE . (9.21)

The term,

Wel(E) = (�@f0/@E) , (9.22)

acts as a “window function” that determines which channels carry the elec-
trical current. Note that the electron window function is normalized,
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Z +1

�1

✓
�@f0
@E

◆
dE = 1 . (9.23)

In looking at eqn. (9.20), we see that the term in brackets seems to
be acting as a window function to determine which modes carry the heat
current, but if we integrate this function,

Z +1

0

✓
~!

kBTL

◆2✓
� @n0

@(~!)

◆
d(~!) = ⇡2

3
, (9.24)

we see that it is not normalized. We can define a normalized phonon window
function as

Wph(~!) ⌘
3

⇡2

✓
~!

kBTL

◆✓
@n0

@(~!)

◆
(9.25)

and write the thermal conductance as

KL =
⇡2k2BTL

3h

Z
Tph(~!)Mph(~!)Wph(~!)d(~!) , (9.26)

where, as we will see later,
�
⇡2k2BTL/3h

�
is the quantum of thermal con-

ductance. Comparing eqns. (9.21) and (9.26) we see that the electrical and
thermal conductances are very similar. Each is proportional to a quantum
of conductance times an integral of the transmission times the number of
modes times a window function.

The window functions for electrons and phonons are plotted in Fig. 9.5.
The two window functions have similar shapes, and each has a width of
a few kBTL. Along with the distribution of modes as determined by the
dispersion, these two window functions play a key role in determining the
electrical and thermal conductances.

9.4 Thermal conductivity

The thermal conductivity of a large, di↵usive sample is a key material
parameter that controls performance in many applications. For a di↵usive
sample,

Tph(~!) =
�ph(~!)

�ph(~!) + L
! �ph(~!)

L
. (9.27)
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Fig. 9.5 Plot of the window functions for electrons and phonons. Solid lines: 300 K
and dashed lines: 50 K. (a) Electron window function as given by eqn. (9.22) and (b)
phonon window function as given by eqn. (9.25). For electrons, the abscissa has both
positive and negative values because the energy, E�EF can be positive or negative. For
phonons, the abscissa is only positive because the phonon energy, ~! is always greater
than zero.

We also recognize that for large, 3D samples,

Mph / A , (9.28)

where A is the cross-sectional area of the structure.
Returning now to eqn. (9.19), we can multiply and divide the right-

hand-side by A/L to find

Q = �
✓
KL

L

A

◆
A
�TL

L
. (9.29)

If we divide both sides by A and recognize that �TL/L = dTL/dx, we find

JQ =
Q

A
= �L

d�TL

dx
, (9.30)

where

L = KL
L

A
(W/m�K) . (9.31)

Finally, using eqns. (9.26), (9.27), and (9.31), we find the lattice thermal
conductivity as
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L =
⇡2k2BTL

3h

Z
Mph(~!)

A
�ph(~!)Wph(~!)d(~!) (W/m�K) . (9.32)

It is useful to write eqn. (9.32) in a more compact form. Let’s define
the number of modes that participate in transport as

hMph/Ai ⌘
Z

Mph(~!)
A

Wph(~!)d(~!) . (9.33)

Then if we multiply and divide eqn. (9.32) by hMphi, we can express the
result as

L =
⇡2k2BTL

3h
hMph/Ai hh�phii , (9.34)

where the average mean-free-path is defined as

hh�phii ⌘
R Mph(~!)

A �ph(~!)Wph(~!)d(~!)
R Mph(~!)

A Wph(~!)d(~!)
. (9.35)

To summarize, we can write the near-equilibrium lattice heat flux and
electrical currents in similar forms

JQ = �L
dTL

dx
(W/m2)

J = �
d (Fn/q)

dx
(A/m2)

L =
⇡2k2BTL

3h
hMph/Ai hh�phii

� =
2q2

h
hMel/Ai hh�elii ,

(9.36)

Gradients in temperature give rise to heat flow, and gradients in the electro-
chemical potential give rise to current flow. The thermal conductivity and
the electrical conductivity are each a product of their quantum of conduc-
tance, the number of modes that participate in transport, and the average
mean-free-path for backscattering. To evaluate these expressions, we must
specify Mph(~!) and �(~!). These quantities are discussed in Sec. 9.5 and
9.6.
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Exercise 9.1: Relate the lattice thermal conductivity to the
lattice specific heat

One often sees elementary derivations of the lattice specific heat with the
result [1-4],

L =
1

3
hh⇤phii h�phiCv , (9.37)

where hh⇤phii is an appropriately-defined mean-free-path, h�phi is an aver-
age phonon velocity, and Cv is the lattice specific heat at constant volume.
Derive eqn. (9.37) from the approach in this lecture, and specify how the
average mean-free-path and velocity are defined.

i) specific heat

The total energy (per unit volume) of the lattice vibrations is given by

EL =

Z 1

0
(~!)Dph(~!)n0(~!)d(~!) , (9.38)

where Dph is the phonon density of states. The specific heat at constant
volume is the change in energy per degree change in TL,

Cv ⌘ @EL

@TL

=
@

@TL

Z 1

0
(~!)Dph(~!)n0(~!)d(~!)

⇡
Z 1

0
(~!)Dph(~!)

✓
@n0(~!)
@TL

◆
d(~!) .

(9.39)

using eqns. (9.17) and (9.25) we find

Cv ⇡ ⇡2k2BTL

3

Z 1

0
Dph(~!)Wph(~!)d(~!) . (9.40)

Next, we multiply and divide eqn. (9.32) by Cv to find

L =

(
1
h

R Mph(~!)
A �ph(~!)Wph(~!)d(~!)R1

0 Dph(~!)Wph(~!)d(~!)

)
Cv . (9.41)

To simplify this expression, we need to examine both �ph and Mph.
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ii) mean-free-path: �ph vs. ⇤ph

Recall from Lecture 6, that the mean-free-path for backscattering in an
isotropic 3D material is

�ph(~!) =
4

3
�ph(~!)⌧ph(~!) . (9.42)

Alternatively, the “mean-free-path” is commonly defined as

⇤ph(~!) = �ph(~!)⌧ph(~!) , (9.43)
so

�ph(~!) =
4

3
⇤ph(~!) . (9.44)

iii) Mph(~!) and Dph(~!)

In Lecture 2 we learned that M(E) is related to D(E) by

Mel(E) = A
h

4

⌦
�+x
↵
Del(E) , (9.45)

where h�+x i is the average velocity in the direction of transport at energy,
E. For spherical bands in 3D

⌦
�+x
↵
=
�el(E)

2
. (9.46)

It is important to note that the electron density of states contains a factor
of 2 for spin. In terms of the density of states per spin, D0

el(E) = Del(E)/2,
eqn. (9.45) becomes

Mel(E) = A
h

2

⌦
�+x
↵
D0

el(E) , (9.47)

Since there is no spin for phonons, we can find Mph directly from eqn.
(9.47) to obtain

Mph(~!) = A
h

2

✓
�ph(~!)

2

◆
Dph(~!) = A

h

4
�ph(~!)Dph(~!) , (9.48)

Finally, by inserting eqns. (9.44) and (9.48) in (9.41), we find

L =

(
1
3

R
⇤(~!)�ph(~!)Dph(~!)Wph(~!)d(~!)R1

0 Dph(~!)Wph(~!)d(~!)

)
Cv , (9.49)

which is still not in the final form, eqn. (9.37) that we seek.
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iv) average mean-free-path and velocity

The next step is to multiply and divide eqn. (9.49) by

Z
�phDphWphd(~!) , (9.50)

after which we can group terms and define an average mean-free-path as

hh⇤phii ⌘
R
⇤ph(~!)�ph(~!)Dph(~!)Wph(~!)d(~!)R

�ph(~!)Dph(~!)Wph(~!)d(~!)
(9.51)

and an average velocity as

h�phi ⌘
R
�ph(~!)Dph(~!)Wph(~!)d(~!)R

Dph(~!)Wph(~!)d(~!)
. (9.52)

Finally, using eqns. (9.51) and (9.52) in (9.49), we find the desired result,
eqn. (9.37).

Equation (9.37) is often used to estimate the average mean-free-path
from the measured heat capacity and thermal conductivity. To do this,
we need to know the average velocity, which is frequently assumed to be
the longitudinal sound velocity. Our derivation has identified the precise
definitions of the average mean-free-path and velocity. Given a phonon
dispersion, for example, we can compute the average velocity from eqn.
(9.49). It is typically very di↵erent from the longitudinal sound velocity,
which means estimates of the average mean-free-path can be very wrong if
they assume the longitudinal sound velocity [5].

9.5 Debye model for Mph(~!)

For electrons, the e↵ective mass model is widely-used and generally pro-
duces reasonably accurate results. This occurs because, as shown in Fig.
9.3a, the bandwidth of the electronic dispersion is typically � kBTL, so
only states near the bottom of the conduction band where the e↵ective
mass model is reasonably accurate are occupied. For phonons, however,
the situation is much di↵erent. As illustrated in Fig. 9.3b, the bandwidth
of the phonon dispersion is on the order of kBTL, so states across the en-
tire Brillouin zone are occupied. The widely-used Debye approximation,
! = �q, sketched in Fig. 9.1b, fits the acoustic branches, as long as q is not
too far from the center of the Brillouin zone.
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To make use of the Debye approximation, we need to be careful. First,
we write

~! = ~�Dq , (9.53)

where �D, the Debye velocity, is an average velocity of the longitudinal and
transverse acoustic modes. Then it is easy to find the density of states just
as we do for electron states. The answer is

Dph(~!) =
3(~!)2

2⇡2(~�D)3
(no./J�m3) . (9.54)

The factor of three is for the three polarizations, LA and two TA. A word
of caution. We have computed Dph(~!), the density-of-states per unit
volume per Joule because we are working in phonon energy space to keep
the analogy to the electron density-of-states in energy space. In textbooks,
one usually sees, Dph(!) the density-of-states per unit volume per Hz. The
two are related by

Dph(~!) =
Dph(!)

~ . (9.55)

Having computed the density-of-states, we can obtain the number of phonon
modes per cross-sectional area from eqn. (9.48) to find

Mph(~!) =
3(~!)2

4⇡(~�D)2
, (9.56)

but this is not enough. Since all of the states in the Brillouin tend to be
occupied at moderate temperatures, we need to be sure that we have the
correct number of states. For a crystal with N/⌦ atoms per unit volume,
there are 3N/⌦ states per unit volume. To find the total number of states
we integrate the density-of-states,

Z ~!D

0
Dph(~!)d(~!) . (9.57)

The upper limit of this integral, ~ times the so-called Debye frequency, is
chosen so to produce the correct total number of states, 3N/⌦. The result
is

~!D = ~�D
✓
6⇡2N

⌦

◆1/3

⌘ kBTD . (9.58)
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The Debye frequency defines a cuto↵ frequency above which no states are
permitted. Alternatively, we could express this as a cuto↵ wavevector, qD,
beyond which no states are permitted. This cuto↵ can also be expressed as
a Debye temperature, TD = ~!/kB . For TL ⌧ TD, only states with small
wavevectors for which the Debye approximation is accurate are occupied.

Now returning to eqn. (9.32), we can find the lattice thermal conduc-
tivity by integrating to the Debye cuto↵ energy,

L =
⇡2k2BTL

3h

Z ~!D

0

Mph(~!)
A

�ph(~!)Wph(~!)d(~!) (W/m�K) (9.59)

and using the Debye approximation, eqn. (9.56) for Mph. The integral
must be done numerically, but if we can develop expressions for the mean-
free-path, then the integral can be done. This is how lattice thermal con-
ductivities were first calculated [7, 8].

With fast digital computers, it is relatively straightforward these days
to compute the “exact” Mph(~!) from an accurate phonon dispersion [5].
Figure 9.6 displays some example calculations. Figure 9.6a shows that the
Debye result for Mph is a good approximation to the exact result only for
~! < 0.02 eV. For TL = 50 K, the window function is restricted to low
energies, and only the states for which the Debye approximation holds are
occupied. For 300 K, however, the window function is very broad. All of
the states are occupied, and the Debye approximation is poor. For silicon,
TD ⇡ 640 K, so TL must be very much less than this value to ensure the
accuracy of the Debye approximation. Figure 9.5b, a similar comparison
for electrons, shows that the e↵ective mass approximation is quite good. At
both low and high temperatures, only low energy channels are occupied,
and the e↵ective mass approximation is good.

9.6 Phonon scattering

Equations (9.36) show that both the electrical and lattice thermal con-
ductivities are proportional the average mean-free-path for backscattering.
Electrons scatter from defects (ionized impurities, neutral impurities, crys-
tal defects, etc.), from phonons, from roughness at surfaces and boundaries,
and from other electrons. As discussed in Lecture 6, we compute scattering
rates by using Fermi’s Golden Rule.

Phonons can also scatter from defects (not charged defects, but impurity
atoms, isotopes, etc.) from other phonons, from surfaces and boundaries,
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Fig. 9.6 Comparison of the actual distribution of channels in silicon with simple ap-
proximations. (a) Exact distribution of phonon channels (solid line) compared with the
Debye approximation, eqn. (9.56) (dashed line). Also shown (right axis) are the window
functions at 300 K (solid line) and 50 K (dashed line). (The calculations for electrons
use the methods described in [6].) (b) Exact distribution of electron channels (solid line)
compared with the e↵ective mass approximation, eqn. (5.55) (dashed line on top of the
solid line). Also shown are the window functions at 300 K (solid line) and 50 K (dashed
line). Phonon results are after Jeong, et al. [5].

and from electrons. Phonon-electron scattering can give rise to phonon
drag, which can become important at low temperatures. Just as for elec-
trons, we compute phonon scattering rates by using Fermi’s Golden Rule.

Phonon-phonon scattering occurs because the potential energy of the
bonds in the crystal are not exactly harmonic. The first term in a Taylor
series expansion of the potential is harmonic (i.e. U / �r2, where �r is the
deviation from the equilibrium lattice spacing), but higher order terms are
treated as a scattering potential. Figure 9.7 illustrates two types of phonon
scattering. In the normal (N) process (Fig. 9.7a), two phonons interact
and create a third phonon. Energy and momentum must be conserved, so

~~q3 = ~~q1 + ~~q2
~!3 = ~!1 + ~!2 .

(9.60)

This type of scattering has little e↵ect on the heat flux because the total
momentum of the phonon ensemble is conserved.

A second type of scattering, Umklapp or U scattering is illustrated in
Fig. 9.7b. In this case, the two initial phonons have larger momentum,
so that when they scatter, the resulting phonon would have a momentum
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outside the Brillouin zone. This value of the momentum is non-physical
because it implies a wavelength that is shorter than the lattice spacing.
Instead, we find the final momentum by adding a reciprocal lattice vector,
~G. As shown in Fig. 9.7b, this type of scattering reverses the x-directed
momentum, so it does a↵ect the heat current. It may be easier to under-
stand U-scattering in a repeated zone plot of ~! vs. q. The final state (the
dashed line in Fig. 9.7b) lies in a portion of the next Brillouin zone where
the velocity is opposite to the incident velocity. For U-scattering to occur,
a large population of large q phonons is needed, so the U-processes become
important at high temperatures.

Fig. 9.7 Illustration of phonon scattering processes. (a) normal or N processes, which
conserve phonon crystal momentum and (b) Umklapp or U processes, which do no
conserve crystal momentum.

Scattering rates add, so the total phonon scattering rate is

1

⌧ph(~!)
=

1

⌧D(~!) +
1

⌧B(~!)
+

1

⌧U (~!)
, (9.61)

where the first term describes scattering from defects, the second scattering
from boundaries, and the third phonon-phonon scattering by U processes.
Alternatively, we could write eqn. (9.61) in terms of the mean-free-paths,

1

�ph(~!)
=

1

�D(~!) +
1

�B(~!)
+

1

�U (~!)
, (9.62)

where for 3D spherical systems, � = (4/3)�ph⌧ph.
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Expressions for each of the scattering rates can be developed. For ex-
ample, for scattering from point defects, we find [4]

1

⌧D(~!) / !4 . (9.63)

This type of scattering is known a Raleigh scattering ; it is like the scattering
of light from dust particles in the atmosphere. Higher frequency (short
wavelength) phonons “feel” these small defects more and are, therefore,
more strongly scattered.

For boundaries and surfaces, we can write [4]

1

⌧B(~!)
/ �ph(~!)/L , (9.64)

where L is the shortest dimension of the sample. This type of scattering
is inversely proportional to the time it takes for a phonon to travel to the
boundary.

The third important process, Umklapp scattering, is harder to describe
simply. A commonly used expression is [4]

1

⌧U (~!)
/ e�TD/bTLT 3

L!
2 . (9.65)

With this background, we are now able to understand the temperature-
dependent lattice thermal conductivity.

9.7 Discussion

i) lattice thermal conductivity vs. temperature

Figure 9.8 is a plot of the measured lattice thermal conductivity of silicon
vs. temperature. The solid line is a theoretical calculation using techniques
discussed in this lecture and in [5]. According to eqn. (9.36), L is pro-
portional to the number of channels that are occupied, hMphi, and to the
average mean-free-path, hh�phii. The characteristic in Fig. 9.7 can be un-
derstood by understanding how hMphi and hh�phii vary with temperature.

Using eqn. (9.33), it can be shown that at low temperatures, hMphi
varies as T 3

L (the same is true of the specific heat). The initial rise in ther-
mal conductivity is due to the fact that the number of populated channels
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rises quickly with temperature. At low temperatures, boundary scatter-
ing is important. As the temperature increases, more high q (short wave-
length) phonons are produced. These shorter wavelength phonons “see”
point defects, so defect scattering becomes important. As the temperature
approaches the Debye temperature, all of the phonon modes are populated,
and further increases in temperature do not change hMphi. Instead, the
high temeperatures lead to increased phonon scattering by U-processes, so
the thermal conductivity drops with increasing temperature.

Fig. 9.8 The measured and simulated thermal conductivity of bulk silicon as a function
of temperature. (The calculated results use the methods of Jeong, et al. [5], and the data
points are from C.J. Glassbrenner and G.A. Slack, “Thermal Conductivity of Silicon and
Germanium from 3 K to the Melting Point,” Phys. Rev., 134, A1058, 1964.)

ii) di↵erence between lattice thermal and electrical conduc-
tivities

The expressions for the lattice thermal conductivity and the electrical con-
ductivity as given by eqns. (9.36) are very similar. In practice, the average
electron and phonon mean-free-paths are of the same order of magnitude.
Why then does the electrical conductance vary over more many orders of
magnitude while the lattice thermal conductivity only varies over a few?
The answer lies in the window functions as given by eqns. (9.22) and (9.25).
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For both electrons and phonons, higher temperatures broaden the window
function and increase the population of states. Electrons are fermions,
however, and the position of the Fermi level has a dramatic e↵ect on the
magnitude of the window function. By controlling the position of the Fermi
level, the electrical conductivity can be varied over many orders of magni-
tude.

Another key di↵erence between electrons and phonons comes from how
the states are populated. For a thermoelectric device, EF ⇡ Ec, and the
electron and phonon window functions are quite similar. For electrons,
however, the bandwidth of the dispersion is very large, so only a few states
near the bottom of the band are populated. The e↵ective mass approxi-
mation works well for these states, so it is easy to get analytical solutions.
For phonons, the bandwidth of the dispersion is small. At moderate tem-
peratures states all across the entire Brillouin zone are occupied. Simple,
analytical approximations do not work well, so is hard to obtain analytical
solutions for the lattice thermal conductivity.

iii) quantized lattice thermal conductivity

In Lecture 3 Sec. 3.2, we discussed quantized electrical conductance. Con-
sider eqn. (9.36) at low temeperatures where Wph(~!) is sharply peaked
near ~! = 0. Accordingly, eqn. (9.36) becomes

KL =
⇡2k2BTL

3h
Tph(0)Mph(0) . (9.66)

For a bulk material, Mph(~!) ! 0 as ~! ! 0, but for a nanostructure,
such as a nanowire or nanoribbon, one can have a finite number of phonon
modes. For ballistic phonon transport, Tph = 1, so we expect to see KL =
⇡2k2BTL/3h times the number of zero frequency modes. In an experiment
with 4 modes, just such a result was observed [9]. Given the close analogy
between electron and phonon transport, quantized heat flow is expected.
The experiments are easier to do with electrons because with electrical
gates it is possible to control the dimensions of a channel and, therefore,
the number of modes. For phonons, the number of modes is fixed by the
physical structure.
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9.8 Summary

This lecture has been a very short introduction to phonon transport. We
saw that the concepts used to describe electron transport can be general-
ized for phonons. The Landauer approach for phonon transport describes
transport all the way from ballistic to di↵usive regimes. Thermal trans-
port is even quantized, just as electron transport is, and quantized thermal
transport has been observed in nanostructures. In the di↵usive regime, the
results are equivalent to well-known, traditional approaches based, for ex-
ample, on the phonon Boltzmann Transport Equation. We saw that the
lattice thermal conductivity can be written in a form that is very similar
to the electrical conductivity, but there are two important di↵erences.

The first di↵erence between electrons and phonons is the di↵erence in
bandwidths of their dispersions. The bandwidth of the phonon dispersion
is on the order of kBTL, so at room temperature, all of the acoustic modes
across the entire Brillouin zone can be occupied. For electrons, the disper-
sion typically has a bandwidth much greater than kBTL at room tempera-
ture, so only low energy, small wavevector electron states are occupied. As
a result, the simple Debye approximation to the acoustic phonon dispersion
does not work nearly as well as the simple e↵ective mass approximation to
the electron dispersion.

The second di↵erence between electrons and phonons is that for elec-
trons the population of the modes is controlled by the window function,
which depends on the position of the Fermi level and on the temperature.
For phonons, the window function depends only on the temperature. The
results is that electrical conductivities vary over many orders of magnitude
as the position of the Fermi level varies, while lattice conductivities vary
over only a few orders of magnitude.

This lecture is only a starting point - much more could be said about
thermal conduction. For example, the engineering of lattice thermal con-
ductivities by nanostructuring materials is a current research topic of great
interest.
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10.1 Introduction

In these lectures we have developed an understanding of near-equilibrium
transport along with the mathematical theory to compute transport coef-
ficients. The coupled current equations can be written as in eqns. (5.26)
as:

Jx = �
d (Fn/q)

dx
� S�

dTL

dx

JQx = ⇡�
d (Fn/q)

dx
� 0

dTL

dx
,

(10.1)

or, in the inverted form as in eqns. (5.30):

d (Fn/q)

dx
= ⇢Jx + S

dTL

dx

JQx = ⇡Jx � e
dTL

dx
.

(10.2)
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The transport coe�cients in 2D are:

�S = 1/⇢S =

Z
�0(E) dE

S = �
✓
kB
q

◆Z ✓
E � EF

kBTL

◆
�0(E) dE/�

⇡ = TLS

0 = TL

✓
kB
q

◆2 Z ✓E � EF

kBTL

◆2

�0(E) dE

e = 0 � ⇡S�

�0 (E) =
2q2

h

M (E)

W
� (E)

✓
�@f0
@E

◆
.

(10.3)

Equations (10.1) - (10.3) are valid for di↵usive transport in either n- or
p-type materials and also when conduction is through both the conduction
and valence bands. A two-dimensional conductor has been assumed; for
3D, replace M(E)/W by M(E)/A and for 1D by M(E). To treat transport
from the di↵usive to the ballistic limits, replace the mean-free-path by the
apparent mean-free-path, 1/�app = 1/�+1/L. To evaluate these equations,
we only need to specify two parameters, M(E) and �(E). For parabolic
energy bands, M(E) is given by eqns. (2.31), but eqns. (10.1) - (10.3) are
valid for any bandstructure; we just need to use the appropriateM(E). The
mean-free-path, �(E) also needs to be specified according the the physics
of the scattering processes.

Graphene provides us with a good case study on applying the approaches
described in these lectures to new materials. The bandstructure is simple,
but distinctly non-parabolic. It is a material of great scientific interest, as
recognized by the 2010 Noble Prize in physics [1], and there is also much
interest in potential technological applications. For our purposes, however,
graphene simply provides us with an example of how to compute transport
coe�cients when the bandstructure is non-parabolic.

10.2 Graphene

Graphene is a one atom thick, planar sheet of carbon atoms arranged in
a honeycomb lattice. Techniques to produce large areas of high quality
graphene have recently been developed. The striking feature of graphene
is its unusual bandstructure. As shown in Fig. 10.1, the conduction and
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valence bands meet at the six vertices of a 2D Brillouin zone. There is
no bandgap. Under charge neutral conditions, the Fermi level lies at the
intersection of the two bands. As shown in Fig. 10.1b, only two of the six
points in the Brillouin zone, are distinct, the others can be reached by a
reciprocal lattice vector. Consequently, the valley degeneracy for graphene
is gv = 2. For a tutorial on graphene bandstructure, see Datta [2].

Fig. 10.1 The bandstructure of graphene as computed from a simple tight-binding
model. (a) E(k) and (b) the Brillouin zone showing the six k-points where the conduction
and valence bands meet, two of which are distinct.

For near-equilibrium transport, only states near the Fermi level where
the conduction and valence bands of graphene intersect are important. We
can, therefore, simplify the bandstructure as shown in Fig. 10.2. The
conduction and valence bands are two cones that meet at E = 0, which is
called the neutral point or Dirac point. Near the Dirac point, we have

E (k) = ±~�F k = ±~�F
q

k2x + k2y . (10.4)

We will refer to the case where EF > 0 as n-type graphene, and EF < 0 as
p-type graphene. Note that the electron velocity is constant, independent
of k,

� (k) =
1

~
@E

@k
⌘ �F ⇡ 1⇥ 108 cm/s . (10.5)

The linear dispersion of graphene near the Dirac point gives a constant
velocity. For graphene, this value is very high, about 108cm/s, which has led
to considerable interest for possible applications in high-speed electronics.
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Fig. 10.2 Simplified bandstructure of graphene for energies near the Dirac point.

We should also mention that the electron wavefunction for graphene
has a special character that leads to some unusual properties. We often
describe electrons in the conduction band of a semiconductor by a simple
envelope function,

 (x, y) =
1p
A
ei(kxx+kyy) , (10.6)

where A is a normalization area. (The actual wavefunction is a product
of the envelope function and a Bloch function with the periodicity of the
lattice.) There are valence bands too. For common, cubic semiconductors,
we have light hole, heavy hole, and split o↵ bands. In principle, we should
deal with a wavefunction that couples all of these bands, but if the bandgap
is large, we can deal with the conduction and valence bands separately. For
graphene, there is no bandgap, and the conduction and valence bands are
always coupled. As a result, electrons in graphene are described by a two-
component wavefunction,

✓
 a

 b

◆
=

1p
2A

✓
1

sei✓

◆
ei(kxx+kyy) , (10.7)

s = sgn (E)

✓ = arctan (ky/kx) .
(10.8)
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This wavefunction has some interesting consequences. For example, elec-
trons along +kx and �kx have orthogonal wavefunctions, so there is no
probability of backscattering by 180 degrees.

10.3 Density-of-states and carrier density

Our aim is to compute the conductivity of graphene, but the conductivity
depends on EF , and the location of EF depends on the carrier density.
Experimentally, the location of the Fermi level is controlled by controlling
the carrier density. To compute the carrier density, we need the density-of-
states.

Calculation of the density-of-states for graphene proceeds as illustrated
in Fig. 10.3. (For a review of computing the density-of-states, see [3].) The
number of states between k and k + dk is

N(k)dk =
2⇡kdk

(2⇡/Lx)(2⇡/Ly)
⇥ 2⇥ gv , (10.9)

where LxLy = A is the area for which the number of states is being com-
puted, the denominator is the k-space area occupied by a 2D k-state, the
factor of 2 is for spin, and gv is the valley degeneracy. Using the dispersion,
E = ~�F k, we change variables to energy, use gv = 2, and find

N(k)dk = Agv
EdE

⇡(~�F )2
. (10.10)

Finally, writing D(E)dE as the number of states per unit area between E
and E + dE and recognizing that the energy can be greater or less than
zero, we find the density-of-states for graphene to be

D (E) =
2|E|
⇡~2�2F

. (10.11)

The number of electrons in the conduction band is obtained from

nS (EF ) =

Z 1

0
D(E)f0(E) dE . (10.12)

Because graphene is degenerate, the TL = 0 K assumption is a good approx-
imation, even at room temperature. Accordingly, eqn. (10.12) becomes
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Fig. 10.3 The number of states between k and k+dk is the shaded area, 2⇡kdk, divided
by the area associated with a k-state in two dimensions.

nS (EF ) =

Z EF

0
D(E)dE =

2

⇡~2�2F

Z EF

0
EdE (10.13)

from which we find

nS (EF ) =
E2

F

⇡~2�2F
. (10.14)

10.4 Number of modes and conductance

According to eqn. (2.25), the number of modes at energy, E, is

M(E) = W
h

4

⌦
�+x (E)

↵
D2D(E) . (10.15)

For graphene

⌦
�+x (E)

↵
=

2

⇡
�F , (10.16)

and the density-of-states is given by eqn. (10.11), so we find
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M (E) = W
2|E|
⇡~�F

. (10.17)

Figure 10.4 compares D(E) and M(E) for graphene. Note that in contrast
to the case for parabolic energy bands where D(E) and M(E) depend
di↵erently on energy (Fig. 2.3), for graphene both the density-of-states
and number of modes are proportional to energy.

Fig. 10.4 Comparison of the density-of-states and number of modes vs. energy for
graphene.

Computing the conductivity is now straight-forward. From eqn. (10.3),
we find

�0 (E) =
2q2

h

M (E)

W
� (E)

✓
�@f0
@E

◆

⇡ 2q2

h

M(E)

W
� (E) �(E � EF ) ,

(10.18)

where we have again made the TL = 0 K assumption. The sheet conduc-
tance is

�S =

Z
�0
n(E) dE =

2q2

h

M(EF )

W
�(EF )

=
2q2

h

✓
2EF

⇡~�F

◆
�(EF ) .

(10.19)
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We have derived a simple expression for the sheet conductance of graphene.
When the mean-free-path is independent of energy, the conductivity is pro-
portional to EF , which means that it is proportional to

p
nS .

10.5 Scattering

The shape of the conductance vs. EF or conductance vs. nS characteristic
is determined by how the mean-free-path depends on energy. Recall that
the mean-free-path for backscattering is given by

�(E) =
⇡

2
�F ⌧m(E) , (10.20)

so to understand �(E), we need to understand how the momentum relax-
ation time, ⌧m(E) varies with energy.

We learned in Lecture 6 that for short range scattering potentials and
for acoustic phonon scattering, the scattering rate is proportional to the
density-of-states,

1

⌧(E)
=

1

⌧m
/ D (E) / E . (10.21)

Accordingly, ⌧m / E�1 and

� (E) / E�1 . (10.22)

What does this type of scattering mean for the sheet conductance? Accord-
ing to eqn. (10.19) we must conclude that �S is constant - independent of
EF or nS . Since �S = nSqµn, we also conclude that the mobility is in-
versely proportional to nS . This is an unusual situation. Normally, the
higher the carrier density the higher the conductivity. When this type of
scattering dominates, the conductivity of graphene is independent of the
carrier density.

As discussed in Chapter 6, ionized impurity scattering introduces fluc-
tuations in the potential that scatter carriers. Higher energy carriers “see”
these fluctuations less and are consequently scattered less. The mean-free-
path increases with energy. Calculations show that the mean-free-path
varies linearly with energy [4],

�(E) = �IIE , (10.23)
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which, when inserted in eqn. (10.19), gives a conductivity that goes as E2
F .

The carrier density, nS , also varies as E2
F , so we conclude that charged im-

purity scattering leads to a conductivity that varies as nS . The result from
�S = nSqµn shows that charged impurity scattering leads to a constant
mobility.

Several other scattering mechanisms can be important in graphene.
These include short range scattering due to defects in the honeycomb lat-
tice and polar phonons in the SiO2 that the graphene often lies on. For
a comprehensive review of the electronic properties of graphene, see [4].
The general features of the conductivity vs. gate voltage characteristic are
readily understood as illustrated in Fig. 10.5. Two scattering mechanisms
are assumed: 1) ionized impurity scattering which produces a linear �S(nS)
vs. ns characteristic and 2) ADP or short range scattering, which produces
a constant �S(nS) vs. ns characteristic. Scattering rates add, so the total
mean-free-path is

1

�tot
=

1

�II
+

1

�SR
, (10.24)

and

1

�tot
⇡ 1

�II
+

1

�SR
. (10.25)

At any given carrier density, the smaller of the two contributions limits the
total �S , so the result is the non-linear characteristic sketched in Fig. 10.5.

Exercise 10.1: Maximum conductivity of graphene

Consider pure graphene with no defects or ionized impurities to scatter elec-
trons. What is the conductivity? At higher temperatures, other phonon-
assisted scattering processes occur, but near room temperature, acoustic
deformation potential scattering dominates. The scattering rate is propor-
tional to D(E), and the scattering time can be evaluated as [5]:

⌧m(E) =
4~3⇢m�2F�2S
D2

AkBTL

✓
1

E

◆
, (10.26)

where ⇢m is the mass density, �S the sound velocity, and DA the acoustic
deformation potential, which is a measure of the strength of the electron-
phonon coupling. From eqn. (10.20) with (10.26), we find the mean-free-
path as
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Fig. 10.5 Illustration of the expected shape of the conductivity vs. carrier density
characteristic for graphene. Two scattering mechanisms are assumed: 1) ionized impurity
scattering and 2) ADP or short range scattering. Also shown is the expected shape of
the ballistic characteristic.

�(E) =
2⇡~3⇢m�3F�2S
D2

AkBTL

✓
1

E

◆
, (10.27)

and, from eqn. (10.19), a sheet conductance of

�S =
4q2~⇢m�2F�2S
⇡D2

AkBTL
. (10.28)

Inserting the appropriate values for graphene

�S ⇡ 2.1⇥ 104 m/s

⇢m ⇡ 7.6⇥ 10�7 kg/m2

DA ⇡ 18 eV ,

we find

⇢S =
1

�S
⇡ 30⌦/⇤ . (10.29)
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(As discussed in reference to eqn. (8.3), recall that ⇤ is not a real unit
of measurement. The sheet resistance is commonly written as “Ohms per
square” because the resistance of a square, L = W , resistor is just ⇢S .)

Equation (10.29) gives the upper limit of the conductivity (lower limit
sheet resistance) that we should expect. In practice, other scattering
mechanisms, would raise the sheet resistance. How does this lower limit
sheet resistance compare to other materials? Consider a Si MOSFET with
nS ⇡ 1013 cm�3 and an inversion layer mobility of µeff ⇡ 250 cm2/V � s.
For such a 2D channel, we find ⇢S ⇡ 2500⌦/⇤. For a high mobil-
ity channel like InGaAs with nS ⇡ 2 ⇥ 1012 cm�3 and a mobility of
µeff ⇡ 10, 000 cm2/V � s, we find ⇢S ⇡ 300⌦/⇤. We conclude that the
intrinsic conductivity of graphene is very high.

10.6 Conductance vs. carrier density

Measurements of the near-equilibrium conductivity vs. the location of the
Fermi level or carrier density are commonly-used to characterize the quality
of graphene layers. Experiments are typically done as sketched in Fig. 10.6.
A layer of graphene is placed on a layer of SiO2, which is on a doped silicon
substrate. By changing the potential of the Si substrate (the “back gate”),
the potential in the graphene can be modulated to vary EF and, therefore,
nS . Typical oxide thicknesses are 90 or 300 Angstroms. When a single
monolayer is placed on an oxide layer with these thicknesses, the change
in color makes single monolayers visible. The location of the Fermi level is
fixed by the workfunction of the metal contacts, and the back gate potential
moves the Dirac (or neutral) point up and down so that both n- and p-type
conduction can be explored. According to simple MOS electrostatics, we
expect

qnS ⇡ Cins (VG � VNP ) , (10.30)

where

Cins =
✏ins
tins

, (10.31)

and VNP is the gate voltage that locates EF at the Dirac point. The value
of VNP is determined by the di↵erence in the workfunction of the metal
gate and the graphene and by stray charges. For very thin SiO2 layers,
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such as those used in devices, the capacitance of the graphene must also
be included, which results in a smaller nS at a given VG. (See [5] for a
discussion of this e↵ect.)

Fig. 10.6 Illustration of the commonly used “back-gating” geometry to characterize
the graphene conductivity vs. carrier density. Instead of the two-probe measurement
geometry sketched here, four-probe geometries can also be used to eliminate the influence
of the contacts.

Figure 10.7 shows the results of typical measurements. In these experi-
ments, pristine graphene was first characterized, and then the sample was
exposed to potassium for various times. Several things should be noted.
First, note that �S does not go to zero at the Dirac point. This occurs be-
cause the random distribution of background charges in the system makes
it impossible for a single gate voltage to align the Fermi level to the Dirac
point everywhere [4]. These background charges (and workfunction di↵er-
ences) also shift the location of the neutral point so that it does not occur
at VG = 0 V.

Before exposure to potassium, the results in Fig. 10.7 show a nonlinear
�S vs. VG characteristic, reminiscent of the expected characteristic sketched
in Fig. 10.5. Increasing exposure to potassium shifts that location of the
neutral point to increasingly negative voltages, because of the e↵ect of the
charge on the gate electrostatics. It also makes the characteristics increas-
ingly linear, which indicates the increasing dominance of charge impurity
scattering. Increasing exposure to potassium also lowers the slope of the
�S vs. VG characteristic, which indicates a lowering of the mobility.
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Fig. 10.7 Measured conductance versus gate voltage for graphene on SiO2. The con-
ductivity vs. gate voltage characteristic, �S vs. VG, was measured before exposure to
potassium and after exposures of various times. (Reprinted by permission from Macmil-
lan Publishers Ltd: Nature Phys., J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E.
D. Williams, and M. Ishigami, “Charged-impurity scattering in graphene,” 4, 377-381,
copyright 2008.)

The first question to ask is: “How close to the ballistic limit are these
results?” From eqns. (10.14) and (10.19), we find

�S
q2/h

= 4

r
nS

⇡
�app(EF ) . (10.32)

For a ballistic sample, �app ! L, where L is the length of the resistor.
In this case, L ⇡ 10µm. For the pristine sample, the maximum deviation
in gate voltage from the neutral point voltage is �Vmax ⇡ 30 V. From the
insulator thickness (tins = 300 nm and eqns. (10.30) and (10.31), we find
nS |max ⇡ 2⇥ 1012 cm�2. Inserting these numbers in eqn. (10.32), we find

�S |ball
q2/h

⇡ 3200 , (10.33)

so the results in Fig. 10.7 are far below the ballistic limit.
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The next question to ask is: “How close to the upper (acoustic deforma-
tion potential scattering) limit are these results?” In Exercise 10.1, we es-
timated the limit to be ⇢S ⇡ 30⌦/⇤, which translates to �S/(q2/h) ⇡ 865,
well above the maximum sheet conductances displayed in Fig. 10.7. The
nonlinearity observed for the pristine sample is not, therefore, due to the
ADP limit, but possibly to short range scattering due to defects. (Such non-
linearities are also common in two probe measurements where they reflect
the properties of the contacts.)

Finally, it is of interest to determine the carrier mobility. When the �S
vs. VG characteristic is linear, it is straight-forward to show that

µn =
1

Cins

d�S
dVG

. (10.34)

Inserting numbers for the sample with a six second exposure to potassium,
we find µn ⇡ 3, 000 cm2/V � s, a fairly high mobility for an intentionally
doped material, which explains much of the interest in graphene for elec-
tronic applications.

Analysis of the gated conductance of graphene has shed much light on
the physics of this interesting material. For a review of this work, see [4],
and for a tutorial treatment, an online lecture is available [6].

10.7 Discussion

We have shown in this lecture how to apply the concepts developed in
previous lectures to new and novel materials, such as graphene. In this
section, we briefly discuss a few additional topics.

Mobility and the Drude formula

According to eqn. (10.19),

�S =
2q2

h

M(EF )

W
�(EF ) =

2q2

h

✓
2EF

⇡~�F

◆
�(EF ) . (10.35)

If we wish to define a mobility, we would do so by equating this result to
�S = nSqµn to find

µn =
2q

h

1

nS

✓
2EF

⇡~�F

◆
�(EF ) , (10.36)
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which, using eqn. (10.14) for nS can be written as

µn =
2q�F
⇡EF

�(EF ) . (10.37)

One often hears that electrons in graphene are “massless,” which makes
sense because the linear dispersion is like the ! vs. k dispersion for photons.
Accordingly, to find the mobility, we should not begin with the Drude
expression,

µn =
q ⌧m
m⇤ , (10.38)

but eqn. (10.37) shows that we can define a mobility without bringing in
an e↵ective mass. Nevertheless, a connection can be made. Using eqn.
(10.20) to express the mobility in eqn. (10.37) in terms of the scattering
time rather than the mean-free-path, we find

µn =
q ⌧m(EF )

EF /�2F
, (10.39)

which is just like the Drude expression, eqn. (10.38) if we define the e↵ective
mass as

m⇤ ⌘ EF

�2F
. (10.40)

This definition of mass reminds us of the relativistic expression, E = mc2.

Cyclotron resonance frequency

In Chapter 8, we discussed the cyclotron resonance frequency, !c, the fre-
quency at which an electron orbits a magnetic field. Equation (8.55) gave

!c =
q�Bz

~k . (10.41)

For a parabolic energy band, we found

!c =
qBz

m⇤ (10.42)

and for graphene we use � = �F and E = ~�F k to find

!c =
qBz

EF /�2F
(10.43)

so the e↵ective mass for the Drude mobility, eqn. (10.40), works for the
cyclotron frequency of graphene too.
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E↵ective mass of graphene

The e↵ective mass form of the mobility and cyclotron frequency suggest that
there might be a more general way to define e↵ective mass, rather than the
conventional definition that relates it to the curvature of the energy band.
Indeed this is a case. Datta shows that a conductivity e↵ective mass can
be defined for general (but isotropic) energy bands as [7]

m⇤ ⌘ p

�
=

~k
�

. (10.44)

Equation (10.44) gives the expected result for parabolic energy bands, and
it gives eqn. (10.40) for graphene. See Datta [7] for a discussion of this
point.

Hall e↵ect for graphene

In Sec. 7.5, we worked out the near-equilibrium magnetoconductivity tensor
for low B-fields. For graphene, we begin, again, at eqn. (7.52), but eqn.
(7.57) assumes parabolic energy bands. Beginning from eqn. (7.55), which
is correct for graphene, the additional term in the BTE due to the B-field
is

rp(�f) = rp


⌧m(E)

✓
�@f0
@E

◆n
~� ⇧ ~G

o�

= ⌧m(E)

✓
�@f0
@E

◆
rp

n
~� ⇧ ~G

o
.

(10.45)

To evaluate

rp

n
~� ⇧ ~G

o
=

@

@px
(�xGx + �yGy) x̂+

@

@py
(�xGx + �yGy) ŷ , (10.46)

we must develop expressions for �x and �y. In graphene, the magnitude of
the velocity is �F , a constant, independent of energy, so

�x = �F cos ✓ = �F
kx

k2x + k2y
=

~kx
±E/�2F

, (10.47)

where the last result comes from the graphene bandstructure, eqn. (10.4).
A similar result is obtained for �y, so we conclude that
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�x =
px

m⇤(E)

�y =
py

m⇤(E)
,

(10.48)

where

m⇤(E) = +E/�2F (E > 0)

m⇤(E) = �E/�2F (E < 0) .
(10.49)

We see once again the graphene e↵ective mass as defined in eqn. (10.40),
but for energies above the Dirac point, the e↵ective mass is positive, and
for energies below the Dirac point it is negative.

Now if we return to eqn. (10.46) and use eqn. (10.48), we find

rp

n
~� ⇧ ~G

o
=

G

m⇤(E)
, (10.50)

which is just like eqn. (7.57) for parabolic bands but with the graphene
e↵ective mass given by eqn. (10.49). (To obtain this result, we did the dif-
ferentiation at a constant energy, anticipating that later on, we’ll integrate
the constant energy result over all of the energy channels to get the total
currents.)

If we continue and evaluate Jx and Jy, it’s easy to believe that the
result will be a magneto conductivity tensor like eqn. (7.84). The sign of
the o↵-diagonal components will depend on the sign of the e↵ective mass.
The resulting Hall coe�cient will be like the parabolic band case, eqn.
(8.17); the sign will be negative for n-type conduction (Fermi level above
the Dirac point) and positive for p-type conduction (Fermi level below the
Dirac point). Working out the details is a useful exercise. (Hint: Assume
T = 0 K to keep the math simple.)

Thermoelectric coe�cients

So far, we have only discussed the conductivity in eqns. (10.1), but we can
also work out the Seebeck coe�cient and thermal conductivity of graphene.
In this case, we cannot assume T = 0 K, or we won’t get a finite answer,
but the results are readily worked out in terms of Fermi Dirac integrals.
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10.8 Summary

The purpose of this lecture has been to show that the concepts and ap-
proaches introduced in earlier lectures are quite general. Given a bandstruc-
ture, E(k), one can readily work out expressions for the density-of-states,
carrier density, number of conduction channels, conductivity, and the other
parameters in the coupled current equations. Actually, the general model
for transport as presented in Lecture 2 is even more general; it does not
even require a crystal with a periodic structure that leads to a dispersion,
E(k). (See Datta’s lecture notes for a discussion of this point [7].) In this
lecture, we used graphene as an example of how to apply the concepts and
formulas developed in previous lectures, but graphene is an interesting ma-
terial in its own right, and the references provide some starting points for
exploring this fascinating material.

10.9 References

Graphene is a two-dimensaional material of great scientific and technolofi-
cal interest. An introduction to its properties can be found at:

[1] ”The Nobel Prize in Physics 2010”. Nobelprize.org. 9 June 2011
http://nobelprize.org/nobel_prizes/physics/laureates/2010/

Datta gives an introduction to the bandstructure of graphene in two online
lectures:

[2a] S. Datta, ÒECE 495N: Lecture 21, Fall 2008,Ó https://nanohub.

org/resources/5710

[2b] S. Datta, ÒECE 495N: Lecture 22, Fall 2008,Ó https://nanohub.

org/resources/5721

For a review of how to determine the density-of-states in k-space and in
energy-space, see

[3] M.S. Lundstrom, “ECE 656: Lecture 2: Sums in k-space/Integrals in
Energy Space, Fall 2009,”http://nanohub.org/resources/7296
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Consult these articles for information on the electronic properties of
graphene:

[4a] S. das Sarma, S. Adam, E.H. Hwang, and E. Rossi, “Electronic trans-
port in two-dimensinal graphene,” Rev. Modern Phys., 83, pp. 407-470,
2011.

[4b] W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering,
mobilities, and electrostatic potential in monolayer, bilayer, and trilayer
graphene,” Phys. Rev. B., 80, 235402, 2009.

[4c] V. Perebeinos and P. Avouris, “Inelastic scattering and current satu-
ration in graphene,” Phys. Rev. B., 81, 195442, 2010.

The notes below discuss near-equilibrium transport in graphene. They in-
clude a discussion of how to derive the scattering time for ADP scattering.

[5] Dionisis Berdebes, Tony Low, and Mark Lundstrom, “Lecture
Notes on Low Bias Transport in Graphene: An Introduction,”
2009. http://nanohub.org/resources/7436/downloadNotes_on_

low_field_transport_in_graphene.pdf

For a tutorial introduction to the near-equilibrium conductance of graphene,
see:

[6] M.S. Lundstrom, “Colloquium on Graphene Physics and Devices: Lec-
ture 3: Low Bias Transport in Graphene: An Introduction,” http:

//nanohub.org/resources/7401

Datta discusses a general definition of the conductivity e↵ective mass that
works for parabolic energy bands as well as for graphene. See Lecture 5 in:

[7] Supriyo Datta, Lessons from Nanoelectronics: A new approach to trans-
port theory, World Scientific Publishing Company, Singapore, 2011.
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Appendix A

Summary of Key Results

The first part of this appendix is a summary of some key equations for near-
equilibrium transport along with pointers to specifics in the notes. The goal
is to collect in one place the equations needed for typical calculations. The
second part of the appendix lists expressions for thermoelectric transport
parameters in 1D, 2D, and 3D for parabolic band semiconductors with
power law scattering. The last part of the appendix lists expressions for
thermoelectric transport parameters of graphene, a 2D material with an
unusual, but simple bandstructure.

General model for current

The general model for current in a nanodevice can be written in two, equiv-
alent forms as given by eqn. (2.46):

I =
2q

h

Z
�(E)⇡

D(E)

2
(f1 � f2) dE

I =
2q

h

Z
T (E)M(E) (f1 � f2) dE ,

(A.1)

where � is the broadening, defined in eqn. (2.13), and D(E) is the density-
of-states with the factor of 2 for spin included. In the second form, M(E) is
the number of channels (or modes) at energy, E. The transmission, T (E),
is given by eqn. (2.43) as

T (E) =
�(E)

�(E) + L
, (A.2)

where � is the mean-free-path for backscattering and L is the length of the

223
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conductor. General expressions for M(E) are given in eqns. (2.25) or by
eqns. (2.13) for parabolic bands and by eqn. (10.17) for graphene.

Near-equilibrium transport

For small applied bias (and constant temperature), we can expand (f1�f2)
in eqn. (A.1) to find

(f1 � f2) ⇡
✓
�@f0
@E

◆
qV , (A.3)

where (�@f0/@E) is known as the Fermi window function. Only channels
where the magnitude of the window function is significant contribute to
current flow. With this near-equilibrium assumption, we find the current,
eqn. (2.50), to be

I = GV , (A.4)

where the near-equilibrium conductance, G, is given by eqn. (2.51) as

G =
2q2

h

Z
T (E)M(E)

✓
�@f0
@E

◆
dE . (A.5)

For ballistic transport, T (E) = 1. For di↵usive transport, T (E) ⇡
�(E)/L, where L is the length of the sample. For a sample much longer
than a mean-free-path, we obtain eqn. (2.56), the current equation for bulk
(di↵usive) transport as

Jnx = �n
d(Fn/q)

dx
, (A.6)

where Fn is the electrochemical potential (also known as the quasi-Fermi
level). The conductivity is given by eqn. (2.57) as

�n =
2q2

h

Z
M2D(E)�(E)

✓
�@f0
@E

◆
dE , (A.7)

We have assumed a 2D conductor in eqn. (A.7), but similar considera-
tions apply in 1D and 3D. (Recall that M2D(E) = M(E)/W .) Equations
(3.56) show di↵erent, but mathematically equivalent ways of writing the
conductivity.
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Another way to write the conductance is as the product of the quantum
of conductance, times the number of channels for conduction, times the
average transmission as in eqn. (3.63)

G =
2q2

h
hMi hhT ii , (A.8)

where (see eqns. (3.63))

hMi ⌘
Z

M(E)

✓
�@f0
@E

◆
dE , (A.9)

and

hhT ii ⌘

R
T (E)M(E)

⇣
�@f0

@E

⌘
dE

R
M(E)

⇣
�@f0

@E

⌘
dE

=
hMT i
hMi . (A.10)

The quantity, hMi is simply the number of channels in the Fermi window.
Yet another way to write the conductance is in terms of the so-called

di↵erential conductance, G0 (E), as

G =

Z
G0 (E) dE

G0 =
2q2

h
M (E)T (E)

✓
�@f0
@E

◆
.

(A.11)

Similar expressions apply for the conductivity, which can be written in
terms of the di↵erential conductivity as in eqn. (3.58) for 2D.

Temperature di↵erences and gradients

When there are di↵erences in both voltage and temperature across the
device, then we must Taylor series expand (f1 � f2) in both voltage and
temperature to find, as in eqn. (5.6),

(f1 � f2) ⇡
✓
�@f0
@E

◆
q�V �

✓
�@f0
@E

◆
(E � EF )

TL
�T . (A.12)

The result is an extra term in the current equation and also an equation
for the heat current due to electrons:
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I = G�V + ST�T

IQ = �TLST�V �K0�T ,
(A.13)

as in eqn. (5.24). In these equations, �V is the di↵erence in voltage be-
tween contact 2 and contact 1, and �T is the di↵erence in temperature.
The current, I, is defined to be positive when it flows into contact 2 (elec-
trons flowing out of contact 2). The heat current, IQ, is positive when it
flows in the +x direction – out of contact 2. The four transport coe�cients
in eqn. (A.13) are given by eqn. (5.25) as

G0 (E) =
2q2

h
T (E)M (E)

✓
�@f0
@E

◆

G =

Z
G0(E) dE

ST = �
✓
kB
q

◆Z ✓
E � EF

kBTL

◆
G0(E) dE

K0 = TL

✓
kB
q

◆2 Z ✓E � EF

kBTL

◆2

G0(E) dE .

(A.14)

For long, di↵usive samples, we can write eqns. (A.13) in the common
form used to describe bulk transport as

Jnx = �n
d (Fn/q)

dx
� sT

dTL

dx

JQx = TLsT
d (Fn/q)

dx
� 0

dTL

dx
,

(A.15)

which is eqn. (5.26). The four transport coe�cients are given by eqn.
(5.27) as

�0
n (E) =

2q2

h
M3D (E)� (E)

✓
�@f0
@E

◆

�n =

Z
�0
n(E) dE

sT = �
✓
kB
q

◆Z ✓
E � EF

kBTL

◆
�0
n(E) dE

0 = TL

✓
kB
q

◆2 Z ✓E � EF

kBTL

◆2

�0
n(E) dE .

(A.16)
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These equations are written for 3D conductors (recall that M3D(E) =
M(E)/A). Similar equations can be written for 2D and 1D transport.

In practice, the inverted form of these equations is often preferred. Using
eqn. (5.28), the inverted form of eqn. (A.13) becomes

�V = RI � S�T

IQ = �⇧I �Kn�T ,
(A.17)

where

S =
ST

G
⇧ = TLS

Kn = K0 �⇧SG .

(A.18)

Similarly, the inverted form of the bulk transport equations become, eqn.
(5.30),

d (Fn/q)

dx
= ⇢nJnx + Sn

dTL

dx

JQx = TLSnJnx � n
dTL

dx
,

(A.19)

which should be compared to eqns. (5.26). The transport parameters in
eqns. (5.30) are

⇢n = 1/�n

Sn = sT /�n

n = 0 � S2
n�nTL .

(A.20)

In summary, given a bandstructure, the number of channels, M(E),
can be evaluated from eqns. (2.25) and, if a model for the mean-free-
path for backscattering, �(E) can be obtained, then the near-equilibrium
transport parameters can be evaluated using the expressions listed above.
For parabolic energy bands and power law scattering, analytical expressions
in terms of Fermi-Dirac integrals can be obtained.

Thermoelectric Coe�cients for Parabolic Band Semiconduc-
tors in 1D, 2D, and 3D

In the expressions for the various transport parameters listed below,
parabolic energy bands:
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E(k) =
~2k2
2m⇤ , (A.21)

and power law scattering:

�(E) = �0

✓
E

kBTL

◆r

, (A.22)

are assumed. Unipolar (electron) conduction is assumed; bipolar conduc-
tion can be treated as discussed in Sec. 5.5. The location of the Fermi level
in relation to the band edge is described by the dimensionless parameter:

⌘F =
(EF � EC)

kBTL
, (A.23)

where EC is the conduction band edge.
The results listed below are taken from Appendix B. of the Ph.D.

thesis of Raseong Kim, Physics and Simulation of Nanoscale Electronics
and Thermoelectric Devices, Purdue University, West Lafayette, Indiana,
U.S.A., August, 2011.

Thermoelectric coe�cients in 1D: Ballistic

G =
2q2

h
F�1(⌘F )

ST = �kB
q

2q2

h

�
F0(⌘F )� ⌘FF�1(⌘F )

�

K0 = TL

✓
kB
q

◆2 2q2

h

�
2F1(⌘F )� 2⌘FF0(⌘F ) + ⌘F

2F�1(⌘F )
�

S = �kB
q

✓
F0(⌘F )

F�1(⌘F )
� ⌘F

◆

Kn = TL

✓
kB
q

◆2 2q2

h

✓
2F1(⌘F )�

F 2
0 (⌘F )

F�1(⌘F )

◆
.

(A.24)
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Thermoelectric coe�cients in 1D: Di↵usive

G =
2q2

h

✓
�0
L

◆
�(r + 1)Fr�1(⌘F )

ST = �kB
q

2q2

h

✓
�0
L

◆
�(r + 1)

�
(r + 1)Fr(⌘F )� ⌘FFr�1(⌘F )

�

K0 = TL

✓
kB
q

◆2 2q2

h

✓
�0
L

◆
⇥

�
�(r + 3)Fr+1(⌘F )� 2⌘F�(r + 2)Fr(⌘F ) + ⌘F

2�(r + 1)Fr�1(⌘F )
�

S = �kB
q

✓
(r + 1)Fr(⌘F )

Fr�1(⌘F )
� ⌘F

◆

Kn = TL

✓
kB
q

◆2 2q2

h

✓
�0
L

◆
�(r + 2)

✓
(r + 2)Fr+1(⌘F )�

(r + 1)F 2
r (⌘F )

Fr�1(⌘F )

◆
.

(A.25)

To find the 1D conductivity in siemen-meters (S-m) as opposed to the
conductance in seimens as listed above, recall that

G = �1D

✓
1

L

◆
, (A.26)

so

�1D = GL . (A.27)

Similarly, we have

sT = STL

0 = K0L

n = KnL .

(A.28)
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Thermoelectric coe�cients in 2D: Ballistic

G = W
2q2

h

✓p
2⇡m⇤kBTL

h

◆
F�1/2(⌘F )

ST = �W
kB
q

2q2

h

✓p
2⇡m⇤kBTL

h

◆✓
3

2
F1/2(⌘F )� ⌘FF�1/2(⌘F )

◆

K0 = WTL

✓
kB
q

◆2 2q2

h

✓p
2⇡m⇤kBTL

h

◆
⇥

✓
15

4
F3/2(⌘F )� 3⌘FF1/2(⌘F ) + ⌘F

2F�1/2(⌘F )

◆

S = �kB
q

✓
3F1/2(⌘F )

2F�1/2(⌘F )
� ⌘F

◆

Kn = WTL

✓
kB
q

◆2 2q2

h

✓p
2⇡m⇤kBTL

h

◆ 
15

4
F3/2(⌘F )�

9F 2
1/2(⌘F )

4F�1/2(⌘F )

!
.

(A.29)
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Thermoelectric coe�cients in 2D: Di↵usive

G = W
2q2

h
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�0
L
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2m⇤kBTL
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(A.30)

To find the 2D conductivity in siemens (S) (or S/square) as opposed to
the conductance in siemens as listed above, recall that

G = �2D

✓
W

L

◆
, (A.31)

so

�2D = G

✓
L

W

◆
. (A.32)

Similar expressions apply for the other transport coe�cients.



January 30, 2022 17:22 World Scientific Book - 9in x 6in ws-near-eq˙transport

232 Near-equilibrium Transport: Fundamentals and Applications

Thermoelectric coe�cients in 3D: Ballistic
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(A.33)
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Thermoelectric coe�cients in 3D: Di↵usive
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(A.34)

To find the 3D conductivity in siemens/meter (S/m) as opposed to the
conductance in siemens as listed above, recall that

G = �3D

✓
A

L

◆
, (A.35)

so

�3D = G

✓
L

A

◆
. (A.36)

Similar expressions apply for the other transport coe�cients.

Thermoelectric Coe�cients for Graphene

Graphene is a two-dimensional material with a unique bandstructure,
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E(k) = ~�F k = ~�F
q
k2x + k2y . (A.37)

The transport parameters can be evaluated from eqns. (A.14) and (A.18)
with the number of channels given by eqn. (10.17) as

M (E) =
2|E|
⇡~�F

W . (A.38)

For scattering described in power law form as in eqn. (A.22), we can eval-
uate the thermoelectric parameters for graphene in terms of Fermi-Dirac
integrals. Since the bandgap is zero, bipolar conduction should be consid-
ered whenever TL > 0 K.
The results listed below were provided by Dr. Raseong Kim.

Thermoelectric coe�cients of graphene: Ballistic
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(A.39)
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Thermoelectric coe�cients of graphene: Di↵usive
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(A.40)

To find the 2D conductivity of graphene in siemens (S) (or S/square)
as opposed to the conductance in siemens as listed above, refer to eqns.
(A.31) - (A.32).
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acoustic modes
elastic constant, 180
sound velocity, 180

acoustic phonons, 180
alternating unit tensor, 146

ballistic
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transport, 19, 26

bipolar conduction, 100
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collision operator, 130
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near-equilibrium solution, 133
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with B-field, 139

Bose-Einstein distribution, 164, 183
Brillouin zone, 178
broadening, 23

carbon nanotubes, 58
chemical potential, 14
coe�cient of performance, 79
collision operator, 130
conductance

ballistic, 37

di↵erential, 90
di↵usive, 44
general expression, 36, 56
near-equilibrium, 27
quantized, 38
sheet, 37, 50

conductance, electrical, 3
conductance, heat

electronic
open circuit, 94
short circuit, 93

phonon, 185, 186
conductance,heat, 185
conductivity, 3, 29

di↵erential, 52
expressions in 2D, 51
expressions in 3D, 94
general expression, 73, 94
in terms of density-of-states, 51
lattice thermal, 177
near-equilibrium, 29
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driving forces, 37, 88, 89
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heat, 88, 92, 177, 184
in presence of B-field, 143, 145

cyclotron frequency, 141, 167, 168

de Broglie wavelength, 21
electrons, 182
phonons, 182

Debye
frequency, 192
model, 191
temperature, 193
velocity, 192

density-of-states
energy, 14, 16
energy, 2D, 19
graphene, 207
k-space, 135
parabolic bands, 21
phonons, 190, 192

di↵usion
coe�cient, 25, 50, 120
Fick’s Law, 24, 120

dispersion
bandwidth, 178
Brillouin zone, 178
Debye approximation, 179
Einstein approximation, 179
electrons, 178, 180
group velocity, 178, 179
phonons, 179, 181

distribution function, 127
drift velocity, 2
drift-di↵usion equation, 30
driving forces, 37, 88, 89

Einstein
approximation for phonons, 179
relation, 30, 49, 122

electrochemical potential, 28, 30
electrothermal field, 133
envelope function, 206
equation of motion

k-space, 128
real space, 128

Ettingshausen e↵ect, 173

Fermi function, 14, 183
Fermi window, 37, 88, 185
Fermi’s Golden Rule, 112
Fermi-Dirac distribution, 14, 183
Fermi-Dirac integral

definition, 41
derivative, 42
non-degenerate limit, 42
order one-half, 40
Roman, 42
Script, 42

Fick’s Law, 24, 120
figure of merit

thermoelectric, 78, 80
four probe measurements, 154
Fourier’s Law, 185

Gamma function, 41
generalized force, 133
generic device

current, 18, 21
electron number, 18

Golden Rule, 112
graphene

M(E), 208
acoustic phonon scattering, 210,

211
bandstructure, 205
density-of-states, 207
Dirac point, 205, 213
e↵ective mass, 217
group velocity, 205
ionized impurity scattering, 210
mobility, 216
neutral point, 205, 213
sheet carrier density, 207
sheet conductance, 209
two-component wavefunction, 206
valley degeneracy, 205

group velocity
electrons, 178
graphene, 205
phonons, 179

Hall
bar geometry, 154
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coe�cient, 156
concentration, 156
e↵ect, 141, 154

p-type semiconductors, 156
quantum, 172
van der Pauw method, 160

factor, 144, 145, 156
mobility, 144
voltage, 146

harmonic
oscillator, 180
potential, 180, 194

heat current, 88, 184
Fourier’s Law, 185

heat flux, 177
holes, 31
hot electrons, 52

indicial notation, 146
alternating unit tensor, 146
summation convention, 146

Joule heating, 69, 77

Kelvin relation, 71
Kubo-Greenwood formula, 121

Landau levels, 169
Lorenz number, 71, 72, 100, 105

magnetoresistance, 141
Mathiessen’s Rule, 48, 163
matrix element, 112
mean-free-path, 23, 109

and di↵usion coe�cient, 120
and mobility, 122
apparent, 48, 204
average, 45
backscattering, 117
definition of average, 45
phonon, 188, 190, 191
power law, 118

mobility, 3, 121, 123
apparent, 47, 48
ballistic, 47, 49
definition, 47

di↵usive, 47
Drude expression, 47, 217
Mathiessen’s Rule, 48, 163

modes, 18, 22
definition of average, 45
general expressions, 20
graphene, 208
parabolic bands, 22
phonons, 190

Debye model, 192
momentum relaxation time, 110
Mott formula, 107

nanowire, 35
Nernst e↵ect, 167

occupation number
electron, 127
electrons, 14, 183
phonons, 164, 183

Ohm’s Law, 1
Onsager relations, 73
optical phonons, 180

p-type conduction, 91, 100, 152
Peltier

coe�cient, 62, 70
cooler, 76
e↵ect, 68, 75

phonon drag, 194
phonon scattering

boundary, 196
Raleigh, 196
Umklapp, 194, 196

phonons, 177, 179
acoustic, 180
optical, 180

power factor
thermoelectric, 81

power law scattering, 114
mean-free-path, 45

quantum Hall e↵ect, 172
quantum of conductance, 31
quantum of thermal conductance, 186
quantum well, 35
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quasi-Fermi level, 30
quasi-particles

electrons, 178
phonons, 179

relaxation time
momentum, 110, 131

Relaxation Time Approximation, 131
resistance

quantized, 37
quantum contact, 54

resistivity, 150
van der Pauw method, 161

Righi-Leduc e↵ect, 173

scattering
charged impurity, 113
electron-phonon, 113
power law, 104, 114, 118, 123, 138

scattering rate, 110
Seebeck

coe�cient, 62, 73, 82
bipolar, 103
degenerate limit, 107
e↵ect of leads, 83
electrons, 66
holes, 68
Mott formula, 107

e↵ect, 63, 75
voltage, 63, 82

sheet resistance, 150
Shubnikov-de Haas oscillations, 171,

172
Soret coe�cient, 90
specific heat, 189
spring constant, 180
summation convention, 146

thermal conductivity
electronic, 62

open circuit, 62
short circuit, 62

lattice, 178
quantized, 198

thermal velocity, 56
thermoelectric

coe�cient of performance, 79
cooler, 76
couples, 77
figure of merit, 78, 80
power factor, 81
power generator, 76

thermopower, 62
transit time, 20

ballistic, 24
di↵usive, 24

transition rate, 110
transmission, 23, 26, 109, 116
transmission line

measurements, 152
structure, 152

transport
ballistic, 19, 26
coe�cients

2D, 204
di↵usive, 2, 23, 26
high field, 4
near equilibrium, 4
near-equilibrium, 27
non-local, 4
parameters, 93–95, 227
quantum, 4
quasi-ballistic, 26

valley degeneracy, 19
van der Pauw method, 158, 162
velocity

drift, 2
group

electrons, 178
phonons, 179

thermal, 56

wavepacket, 178, 179
Wiedemann-Franz Law, 71, 72, 100

generalized, 72
window function

electrons, 37, 88, 185
phonons, 186

zero point energy, 180


