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I = G x V

density velocitycharge area

= q x n x v x A 

Section 32
Modern MOSFET

• 32.1 Some of Moore’s Law Challenges
• 32.2 Short channel effect
• 32.3 Control of threshold voltage
• 32.4 Mobility enhancement  
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Solution: Ultra-thin Body SOI
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Example: FINFET, OmegaFET, X-FET
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Electro-Static Control in a GAA Nanowire
nanowire tool on nanoHUB.org

5

• https://nanohub.org/tools/omenwire
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Quantization and Control of Fin-width 
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Motivation

• Significant reduction of ON-
current/mobility in NW with 
diameter less than 3 nm. 

• What causes this?

[1] S. D. Suk, IEDM, 2007
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Interface roughness scattering

• Bandstructure: tight-binding/full-band
• 3D-atomistic interface roughness
• SiO2 included in transport
• Low/High-drain bias

Comparison with experiments
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Difficulties: Interface roughness scattering

• Realistic/atomistic rough interface between Si/SiO2
» Adapt experimentally generated statistical function: How do we know the generated interface 

roughness is correct?
» Many statistical samples needed: computational cost high
» Electrons may penetrate into the SiO2 region. How do we count it?
» Computational cost increases as we take into account SiO2 in tight-binding approximation.
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Difficulties: Full band Tight-binding simulation

• To correctly include scattering mechanisms (interface roughness/phonon 
scattering) <110> NW
» Beyond the effective mass approximation, full band tight-binding simulation is needed: 

computational cost is higher
 Effective mass cannot understand non-parabolicity/anisotropy in the bandstructure of <110> oriented NW
 At high drain/gate bias drain side of the channel, higher subbands are mixing and influence the scattering
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Variability in Vth at Low Doping
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IBM Journal of Res. And Tech.  2003.

Variation of VT in 
short channel 
devices 

Stronger effect of 
dopant number 
fluctuations on VT
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Variability in Threshold Voltage
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If every transistor has different 
Vth and therefore different current, 
circuit design becomes difficult
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Vth control by Substrate Bias
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Vth control by Metal Work-function
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Quantization in Inversion
“Exact” solution is not really exact …
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Wave function should be accounted for

Bandgap widening near the  interface 
must also should  be accounted for. 

Assumption of nondegeneracy may not 
always be valid

wavefunction, not potential !
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“Exact” solution is not really exact … really

R. Bowen, Chenjing Fernando, Gerhard Klimeck, Amitava Chatterjee, Daniel Blanks, Roger Lake, 
J. Hu, Joseph Davis, M. Kularni, Sunil Hattangady, I.C. Chen,
"Physical Oxide Extraction and Versification using Quantum Mechanical Simulation"
Proceedings of IEDM 1997, IEEE, 869 (1997);doi : 10.1109/IEDM.1997.650518, Cited by 42

http://dx.doi.org/10.1109/IEDM.1997.650518
http://scholar.google.com/scholar?cites=14461432730641357170&as_sdt=800005&sciodt=0,15&hl=en&num=20
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Tunneling Current
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Don’t make oxides too thin  tunneling!
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How to make Vth Roll-off small …
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• Shallow junction and geometry of transistors
laser annealing of junctions, FINFET

• Substrate doping NA 
consider WT and junction breakdown

• Thinner gate oxides
consider tunneling current

• Higher gate dielectric 
consider bulk traps

High-k/metal gate MOSFET

High k oxides allow for 
smaller Lmin but lot of 
defects
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Advantages of High-k Dielectric …
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High-k/metal gate MOSFET
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Thicker oxide (x0) for same capacitance … 

… ensures the drive-current is not reduced
, but tunneling current is suppressed.
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I = G x V

density velocitycharge area

= q x n x v x A 

Section 32
Modern MOSFET

• 32.1 Some of Moore’s Law Challenges
• 32.2 Short channel effect
• 32.3 Control of threshold voltage
• 32.4 Mobility enhancement  
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