Solid State Devices

Section 32 Modern MOSFET

32.3 Control of threshold voltage

Gerhard Klimeck gekco@purdue.edu

School of Electrical and Computer Engineering

 $I = G \times V$ = $q \times n \times v \times A$ $\swarrow \uparrow \uparrow \uparrow$ charge density velocity area

status

- 32.1 Some of Moore's Law Challenges
- 32.2 Short channel effect

2

- 32.3 Control of threshold voltage
- 32.4 Mobility enhancement

Solution: Ultra-thin Body SOI

Example: FINFET, OmegaFET, X-FET

Electro-Static Control in a GAA Nanowire nanowire tool on nanoHUB.org

https://nanohub.org/tools/omenwire

Quantization and Control of Fin-width

$$\varepsilon_n = \frac{\hbar^2 n^2 \pi^2}{2m^* t_{Si}^2}$$

$$E'_G = E_G + \varepsilon_1 + \varepsilon_{1h}$$

Band-gap widening Fluctuation in thickness

Х

Motivation

[1] S. D. Suk, IEDM, 2007

- Significant reduction of ONcurrent/mobility in NW with diameter less than 3 nm.
- What causes this?

Interface roughness scattering

- Realistic/atomistic rough interface between Si/SiO₂
 - » Adapt experimentally generated statistical function: How do we know the generated interface roughness is correct?
 - » Many statistical samples needed: computational cost high
 - » Electrons may penetrate into the SiO₂ region. How do we count it?
 - » Computational cost increases as we take into account SiO_2 in tight-binding approximation.

- To correctly include scattering mechanisms (interface roughness/phonon scattering) <110> NW
 - » Beyond the effective mass approximation, full band tight-binding simulation is needed: computational cost is higher
 - ✓ Effective mass cannot understand non-parabolicity/anisotropy in the bandstructure of <110> oriented NW
 - ✓ At high drain/gate bias drain side of the channel, higher subbands are mixing and influence the scattering

Variability in Vth at Low Doping

Variation of V_T in short channel devices

Stronger effect of dopant number fluctuations on V_T

$$\sigma_{\rm V_T} = 3.19 \times 10^{-8} \left(\frac{t_{\rm ox} N_{\rm A}^{0.4}}{\sqrt{L_{\rm eff} W_{\rm eff}}} \, [\rm V] \right),$$

Figure 2

Threshold voltage histogram for FETs in the 90-nm-technology node.

IBM Journal of Res. And Tech. 2003.

Variability in Threshold Voltage

 $V_{th} = 2\phi_F - \frac{Q_B}{C_{or}} = 2\phi_F - \frac{qN_AW_T}{C_{or}} \qquad \sigma_{V_T} = 3.19 \times 10^{-8} \left(\frac{t_{ox}N_A^{0.4}}{\sqrt{L_{eff}W_{eff}}}[V]\right),$

If every transistor has different
V_{th} and therefore different current, circuit design becomes difficult

V_{th} control by Substrate Bias

V_{th} control by Metal Work-function

High-k/metal gate MOSFET

$$Q_i = C_{ox}(V_G - V_{th})$$
$$V_{th} = -V_{FB} + \psi_s - \frac{Q_B}{C_{ox}}$$

Klimeck - Solid State Devices

Quantization in Inversion "Exact" solution is not really exact ...

$$\frac{\psi}{z^2} = \frac{-q}{\varepsilon} \left[p(x) - n(x) |\psi(x)|^2 + N_D^+ - N_A^- \right]$$
wavefunction not potential

Wave function should be accounted for

Bandgap widening near the interface must also should be accounted for.

Assumption of nondegeneracy may not always be valid

"Exact" solution is not really exact ... really

R. Bowen, Chenjing Fernando, Gerhard Klimeck, Amitava Chatterjee, Daniel Blanks, Roger Lake, J. Hu, Joseph Davis, M. Kularni, Sunil Hattangady, I.C. Chen, **"Physical Oxide Extraction and Versification using Quantum Mechanical Simulation"** Proceedings of IEDM 1997, IEEE, 869 (1997);doi: 10.1109/IEDM.1997.650518, Cited by 42

"Exact" solution is not really exact ... really

R. Bowen, Chenjing Fernando, Gerhard Klimeck, Amitava Chatterjee, Daniel Blanks, Roger Lake, J. Hu, Joseph Davis, M. Kularni, Sunil Hattangady, I.C. Chen, **"Physical Oxide Extraction and Versification using Quantum Mechanical Simulation"** Proceedings of IEDM 1997, IEEE, 869 (1997);doi: 10.1109/IEDM.1997.650518, Cited by 42

"Exact" solution is not really exact ... really

R. Bowen, Chenjing Fernando, Gerhard Klimeck, Amitava Chatterjee, Daniel Blanks, Roger Lake, J. Hu, Joseph Davis, M. Kularni, Sunil Hattangady, I.C. Chen, **"Physical Oxide Extraction and Versification using Quantum Mechanical Simulation"**

Proceedings of IEDM 1997, IEEE, 869 (1997);<u>doi : 10.1109/IEDM.1997.650518</u>, <u>Cited by 42</u>

Tunneling Current

Don't make oxides too thin \rightarrow tunneling!

How to make Vth Roll-off small ...

High k oxides allow for smaller L_{min} but lot of defects

High-k/metal gate MOSFET

- Shallow junction and geometry of transistors laser annealing of junctions, FINFET
- Substrate doping NA consider WT and junction breakdown
- Thinner gate oxides consider tunneling current
- Higher gate dielectric consider bulk traps

Advantages of High-k Dielectric ...

$$L_{c} = \frac{qN_{A}W_{T}}{\frac{\kappa_{ox}\varepsilon_{0}}{x_{0}}} \frac{r_{J}}{\alpha} \left(\sqrt{1 + \frac{2W_{T}}{r_{J}}} - 1\right)$$

$$I_{D} = \frac{\mu C_{ox}}{L_{ch}} (V_{G} - V_{th}^{*})^{2}$$

Thicker oxide (x_0) for same capacitance ...

... ensures the drive-current is not reduced , but tunneling current is suppressed.

 $I = G \times V$ = $q \times n \times v \times A$ $\swarrow \qquad \uparrow \qquad \uparrow$

charge density velocity area

status

- 32.1 Some of Moore's Law Challenges
- 32.2 Short channel effect

2

- 32.3 Control of threshold voltage
- 32.4 Mobility enhancement

