Solid State Devices

Section 29 MOS Capacitor Signal Response

Gerhard Klimeck

gekco@purdue.edu

School of Electrical and Computer Engineering

Section 27 Heterojunction Bipolar Transistor

	Equilibrium	DC	Small signal	Large Signal	Circuits
PN Diode					
Schottky Diode					
BJT/ HBT					
MOScap MOScap					

Section 29 MOS Capacitor Signal Response

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

status

- 29.1 Introduction / Background
- 29.2 Small Signal Response
- 29.3 Large Signal Response

Where do charges come from?

• Integrate charge to find potential.

Response Time

Capacitance Model

Small Signal Equivalent Circuit

Small Signal Equivalent Circuit

Junction Capacitance

$$C_{G} \equiv \frac{dQ_{G}}{dV_{G}} = \frac{d(-Q_{S})}{dV_{G}}$$
$$V_{G} \equiv \psi_{S} - \frac{Q_{S}}{C_{O}}$$
$$\frac{dV_{G}}{d(-Q_{S})} \equiv \frac{d\psi_{S}}{d(-Q_{S})} + \frac{1}{C_{O}}$$
$$\frac{1}{C_{G}} \equiv \frac{1}{C_{S}} + \frac{1}{C_{O}}$$

Junction Capacitance

Definition of *m* for later use

'body effect coefficient'

$$m = \left(1 + \kappa_S x_O / \kappa_0 W_T\right)$$

 W_T depends on the voltage

in practice:

 $1.1 \le m \le 1.4$

Section 29 MOS Capacitor Signal Response

 $I = G \times V$ = q × n × v × A \checkmark \uparrow \checkmark charge density velocity area

status

- 29.1 Introduction / Background
- 29.2 Small Signal Response
- 29.3 Large Signal Response

Section 29 MOS Capacitor Signal Response

 $I = G \times V$ = q × n × v × A \checkmark \uparrow \checkmark charge density velocity area

status

- 29.1 Introduction / Background
- 🕨 29.2 Small Signal Response 🛛 🐗
- 29.3 Large Signal Response

