Solid State Devices

Section 28 MOS Electrostatics & MOScap

Gerhard Klimeck

gekco@purdue.edu

School of Electrical and Computer Engineering

	Equilibrium	DC	Small signal	Large Signal	Circuits	
PN Diode						
Schottky Diode						
BJT/ HBT						
MOS				Differences between MOS FET and Bipolar: MOS FET have insulator		

 $I = G \times V$ = $q \times n \times v \times A$ \swarrow \uparrow \checkmark charge density velocity area

- 28.1 Background
- 28.2 Band diagram in equilibrium and with bias => MOScap
- 28.3 Qualitative Q-V characteristics of MOS capacitor
- 28.4 MOScap Induced charges in depletion and inversion
- 28.5 MOScap Exact solution of electrostatic problem

MOS ; metal oxide semiconductor

Can be capacitors or transistor

>90% of the markets

Temperature Management as one of the Grand Challenges in Electronics

1965 – Gordon Moore predicts the future of integrated circuits

Changed Human History

Costs of 66 different technologies over time, 1930 to 2013

4x10⁴ smaller 1x10⁶ larger Changed Human History

Source: J. Doyne Farmer and François Lafond (2016)

Fundamental Transistor Operation

A Picture speaks a 1000 words - but: These pictures should inspire a 1000 questions!

Modern Devices are not planar – but 3D These pictures should inspire a 1000 questions!

- Conduction band?
- p and n doping?
- Density of states?
- Fermi distribution?
- 60mV/dec?

Material choices

- Crystal structures
- Structure / Geometry

Modern Devices are not planar – but 3D These pictures should inspire a 1000 questions!

- Material choices
- Crystal structures
- Structure / Geometry
- Confinement/Turnelin

Strain

© Gerhard Klimeck - https://en.wikipedia.org/wiki/File:Threshold_formation_nowatermark.gif

Basic Configuration of a MOSFET

Symbols

Channel when $V_G = 0$

Enhancement Type Requires a Gate-Source voltage, (V_{GS}) to switch the device "ON". Equivalent to a "Normally Open" switch.

Depletion Type Requires a Gate-Source voltage, (V_{GS}) to switch the device "OFF". Equivalent to a "Normally Closed" switch.

Background

Strained MOSFET

High-k/metal gate MOSFET

Sources: IBM J. Res. Dev. Google Images Intel website

MOSFET begins to look a lot like double heterojunction HBT

charge density velocity area

• 28.1 Background

- 28.2 Band diagram in equilibrium and with bias => MOScap
- 28.3 Qualitative Q-V characteristics of MOS capacitor
- 28.4 MOScap Induced charges in depletion and inversion
- 28.5 MOScap Exact solution of electrostatic problem

 $I = G \times V$ $= q \times n \times v \times A$

charge density velocity area

- 28.1 Background
- 28.2 Band diagram in equilibrium and with bias => MOScap
- 28.3 Qualitative Q-V characteristics of MOS capacitor
- 28.4 MOScap Induced charges in depletion and inversion
- 28.5 MOScap Exact solution of electrostatic problem

