Solid State Devices

Section 27 Heterojunction Bipolar Transistor

27.3 Types of Heterojunctions

Gerhard Klimeck gekco@purdue.edu

School of Electrical and Computer Engineering

N-Al_{0.3}Ga_{0.7}As: p-GaAs (Type-I Heterojunction)

P-Al_{0.3}Ga_{0.7}As : n-GaAs (Type I junctions)

Klimeck - Solid State Devices

Type I junctions

(AllnAs/InP) Type II Junctions

Type I & II Junctions

 $N-AI_{0.3}Ga_{0.7}As : n-GaAs$ Junctions

'Isotype Heterojunction'

P-GaSb : n-InAs (Type III) $E_{g,2} - \Delta_2 + \chi_2 = \Delta_1 + \chi_1 + qV_{bi}$

P-GaSb : n-InAs (Type III) $E_{g,2} - \Delta_2 + \chi_2 = \Delta_1 + \chi_1 + qV_{bi}$

Type I,II, III

Summary

- 1. HBTs offer a solution to the limitations of poly-Si bipolar transistors.
- 2. Equilibrium solutions for HBTs are very similar to those of normal BJTs.
- 3. Depending on the alignment, there could be different types of heterojuctions. Each has different usage.

Section 27 Heterojunction Bipolar Transistor

 $I = G \times V$ = q × n × v × A \checkmark \uparrow \checkmark charge density velocity area

status

- 27.1 Applications, Concept, Innovation, Nobel Prize
- 27.2 Heterojunction Equilibrium Solution
- 27.3 Types of heterojunctions
- 27.4 Abrupt junction HBTs
- 27.5 Graded junction HBTs
- 27.6 Graded base HBTs
- 27.7 Double heterojunction HBTs
- 27.8 Modern Designs

 $eta_{poly, ballistic}$ – $\frac{n_{i,B}^2}{n_{i,E}^2} = \frac{N_{C,B} N_{V,B} e^{-E_{g,B}\beta}}{N_{C,E} N_{V,E} e^{-E_{g,E}\beta}} \approx e^{\left(E_{g,E} - E_{g,B}\right)\beta}$ Type I Type II E_v Type III

Mark Lundstrom, "Heterostructure Fundamentals," Purdue University, 1995. Herbert Kroemer, "Heterostructure bipolar transistors and integrated circuits," Proc. *IEEE*, **70**, pp. 13-25, 1982.

Section 27 Heterojunction Bipolar Transistor

 $I = G \times V$ = q × n × v × A \checkmark \uparrow \checkmark charge density velocity area

status

- 27.1 Applications, Concept, Innovation, Nobel Prize
- 27.2 Heterojunction Equilibrium Solution
- 27.3 Types of heterojunctions
- 27.4 Abrupt junction HBTs
- 27.5 Graded junction HBTs
- 27.6 Graded base HBTs
- 27.7 Double heterojunction HBTs
- 27.8 Modern Designs

 $eta_{poly, ballistic}$ – $\frac{n_{i,B}^2}{n_{i,E}^2} = \frac{N_{C,B} N_{V,B} e^{-E_{g,B}\beta}}{N_{C,E} N_{V,E} e^{-E_{g,E}\beta}} \approx e^{\left(E_{g,E} - E_{g,B}\right)\beta}$ Type I Type II E_v Tvpe III

Mark Lundstrom, "Heterostructure Fundamentals," Purdue University, 1995. Herbert Kroemer, "Heterostructure bipolar transistors and integrated circuits," Proc. *IEEE*, **70**, pp. 13-25, 1982.