Solid State Devices

Section 25 Bipolar Junction Transistor - Design

Gerhard Klimeck

gekco@purdue.edu

School of Electrical and Computer Engineering

Section 25 Bipolar Junction Transistor - Design

 $I = G \times V$ = q × n × v × A \checkmark \uparrow \uparrow

charge density velocity area

- 24.1 Introduction
- 24.2 Band Diagram in Equilibrium
- 24.3 Currents in BJTs
- 24.4 Ebers Moll Model
- 25 BJT Design

 \geq

>

>

- 26 BJT High Frequency Response
- 27 HBT Heterojunction Bipolar Transistor

Section 25 Bipolar Junction Transistor - Design

- $I = G \times V$ = $q \times n \times v \times A$ $\swarrow \uparrow \uparrow \uparrow$
- charge density velocity area
- 25.1 Current gain in BJTs
 - 25.2 Base Doping Design
 - 25.3 Collector Doping Design (Kirk Effect, Base Pushou
 - 25.4 Emitter Doping Design
 - 25.5 Poly-Si emitter

>

>

>

• 25.6 Short base transport

Current flow with Bias

Current flow with Bias

Modern MOSFET - "Fundamental" Limit looks similar to BJT

Modern MOSFET - "Fundamental" Limit looks similar to BJT

Ebers Moll Model

Ebers Moll Model

Gummel Plot

Gummel Plot

 $\frac{I_C}{A} \approx -\frac{q D_n}{W_{\scriptscriptstyle D}} \frac{n_{i,B}^2}{N_{\scriptscriptstyle P}} \left(e^{q V_{BE}\beta} - 1\right)$

 $\frac{I_B}{A} \approx \frac{q D_p}{W_E} \frac{n_{i,E}^2}{N_E} \left(e^{q V_{BE} \beta} - 1 \right)$

$$\beta_{DC} \approx \frac{D_n}{W_B} \frac{W_E}{D_p} \frac{n_{i,B}^2}{n_{i,E}^2} \frac{N_E}{N_B}$$

- Gummel Plot: I_C and I_B on semi-log plot
- => device characterization

=> quality of the emitter-base junction with constant base-collector bias => DC gain β , base and collector ideality factors, series resistances and leakage currents.

Gummel Plot and Current Gain

Gummel Plot & Output Characteristic

How to make a Good Silicon Transistor?

Make-Base short ... (few mm in 1950s, 200 A now) Want high gradient of carrier density

Emitter doping higher than Base doping

Base doping hard to control Emitter doping easier

Doping for Gain ...

