Solid State Devices

Section 24 Bipolar Junction Transistor - Fundamentals

24.3 Currents in BJTs

Gerhard Klimeck gekco@purdue.edu

School of Electrical and Computer Engineering

Band Diagram with Bias

Electrostatics in Equilibrium

Two back to back p-n junctions

Electrostatics in Equilibrium

Current flow with Bias

Current flow with Bias

n++

р

n+

Input small amount of holes results in large amount of electron output

Modern MOSFET - "Fundamental" Limit looks similar to BJT

Modern MOSFET - "Fundamental" Limit looks similar to BJT

Carrier Distribution in Base

$$\Delta n(x) = \frac{n_{i,B}}{N_B} \left(e^{qV_{BE}\beta} - 1 \right) \left(1 - \frac{x}{W_B} \right) + \frac{n_{i,B}}{N_B} \left(e^{qV_{BC}\beta} - 1 \right) \left(\frac{x}{W_B} \right)$$

Current-Voltage Characteristics

