Solid State Devices

Section 20 PN Diode I-V Characteristics

20.4 Non-Ideal Effects

Gerhard Klimeck gekco@purdue.edu

School of Electrical and Computer Engineering

status

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

- 20.4 Non-ideal effects:
 - »Junction recombination»Tunneling»Impact ionization

 $np = n_i^2 e^{(F_n - F_p)\beta} = n_i^2 e^{qV_A\beta}$

(4,6) Junction Recombination

Mass action in non-equilibrium

$$np = n_i^2 e^{(F_n - F_p)\beta} = n_i^2 e^{qV_A\beta}$$

(4,6) Junction Recombination

What is the recombination current?

$$I_{R} = -qA \int_{0}^{w} \frac{\partial n}{\partial t} dx$$
Shockley-Reed Hall
$$\frac{\partial n}{\partial t} = -\frac{[n(x) p(x) - n_{i}^{2}]}{\tau_{p}[n(x) + n_{1}] + \tau_{n}[p(x) + p_{1}]}$$

$$np = n_{i}^{2} e^{(F_{n} - F_{p})\beta} = n_{i}^{2} e^{qV_{A}\beta}$$
Follows from assuming
midgap traps
Assume
$$\tau_{n} = \tau_{p}$$

$$E_{i} = E_{T}$$

$$n_{1} = p_{1} = n_{i}$$

$$\frac{\partial n}{\partial t} = -\frac{n_{i}^{2}(e^{qV_{A}/kT} - 1)}{\tau[n(x) + p(x) + 2n_{i}]}$$

Electron/Hole Concentrations at Junction

Junction Recombination

Junction Recombination in Forward Bias

Electric field stronger at corners, sharp edges. \rightarrow increased recombination!

(Recombination in depletion region n=p=0)

Junction Recombination in Reverse Bias

(Recombination in depletion region n=p=0)

1

Integrate...

$$I_R \approx -qA \int_0^W \left(\frac{n_i}{2\tau}\right) dx$$

$$= -qA \frac{n_i W}{2\tau} \propto \sqrt{V_{bi} - V_A}$$

Ideally the flat – now it depends as a square root of voltage => another probe mechanism for traps in junction

 $| = G \times V$ $= q \times n \times v \times A$ $\uparrow \qquad \uparrow \qquad \uparrow$ charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

>

20.4 Non-ideal effects:
 »Junction recombination

»Impact ionization

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

>

• 20.4 Non-ideal effects: »Junction recombination

»Tunneling status

Forward Bias Nonlinearity (7): Esaki Diode

Reverse Bias (5): Zener Tunneling

Various Regions of I-V Characteristics

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

>

20.4 Non-ideal effects:
 »Junction recombination
 »Tunneling
 »Impact ionization

Avalanche Breakdown

Reverse Bias

Nonlinearity due to Impact-Ionization

High Reverse Bias > bandgap (typically 3/2 bandgap)

Impact-ionization and Flux Conservation

Impact-ionization and Flux Conservation

$$\frac{dI_n(x)}{dx} - (\alpha_n - \alpha_p)I_n(x) = \alpha_p I_T$$

Differential equation

$$y = \frac{1}{a}e^{ax+ca} - \frac{b}{a}$$

y' - ay = b

Solution form of differential equation $\int_{0}^{W} \alpha_{p} e^{-\int_{0}^{x} (\alpha_{n} - \alpha_{p}) dx'} dx + \frac{I_{n}(0)}{I_{T}}$

 $= \frac{1}{1 + \int_{0}^{W} (\alpha_{p} - \alpha_{n}) e^{-\int_{0}^{x} (\alpha_{n} - \alpha_{p}) dx'} dx}$

Reverse diffusion current

 $I_n(W)$

 I_T

Impact-ionization

Impact-ionization

Position

$$\int_{0}^{W} \alpha_{n} e^{-\int_{0}^{x} (\alpha_{n} - \alpha_{p}) dx'} dx = \left(1 - \frac{1}{M_{p}}\right) \approx 1$$

Assume: $\alpha_n = \alpha_p$

$$\int_{0}^{W} \alpha_n(x) dx = 1$$

Assume: $\alpha_n(x) = \alpha_n$

this cannot be quite right... n, p different masses etc

Most avalanche happens spatially at maximum electric field

from experiment and theory A and B material coeffients

Breakdown-Field

 $\alpha_p = A_0 e^{-B/\mathcal{E}}$

 $\alpha_n W = 1$

Impact-ionization: In Practice

Photon Detector

Good

Imagers single photon can create an avalanche

High E-fields at junction corners → Breakdown

Bad....

Junction Engineering

Reduced field for p-i-n junction, because V_{bi} (area under the curve) must be the same.

High practical relevance for MOSFET scaling Needed to reduce fields on the drain side....

Modern Considerations: Dead Space

Dead Space: Space you need before an electron can impact ionize.

For very small (ballistic) junctions, electrons can cross the junction without inducing impact Ionization. (Dead space too small)

Zener Breakdown vs. Impact Ionization

How do you differentiate between Zener tunneling and impact-ionization? Need

Can happen for smaller reverse bias ~1V Need bias > bandgap Very noisy – can be measured

Non-Ideal Effects: Conclusion

- Junction recombination is often used as a diagnostic tool for process maturity. Defects in junction arises from misplaced donor impurities, not necessary from deep-trap impurities.
- Impact ionization plays an important role in wide variety of devices (e.g. avalanche photo-diodes).

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

>

20.4 Non-ideal effects:
 »Junction recombination
 »Tunneling
 »Impact ionization

 $I = G \times V$ = q × n × v × A \checkmark charge density velocity area

- 20.1 Band diagram with applied bias
 - 20.2 Derivation of the forward bias formula
 - 20.3 Forward Bias Non-linear Regime
 - »Resistive drop
 »Ambipolar regime

>

>

>

20.4 Non-ideal effects:
 »Junction recombination
 »Tunneling
 »Impact ionization

