**Solid State Devices** 



# Section 16 Recombination & Generation 16.2 Derivation of SRH formula (Shockley, Reed, Hall) 16.2.1 Trap Assisted Recombination Rates

Gerhard Klimeck gekco@purdue.edu



School of Electrical and Computer Engineering







### Section 16 Recombination & Generation





Vid

>

>

>

>

Video

>

>

>

>

How does the system go BACK to equilibrium?



- 16.1 Capture coefficient & Capture Cross Section
- 16.2 Derivation of SRH formula (Shockley, Reed, Hall)
  - »16.2.1 Trap Assisted Recombination Rates
  - » 16.2.2 Capture and emission relationship ( $n_1$  and  $p_1$ )

(3)

- »16.2.3 Steady State Trap Population
- »16.2.4 Recombination-Generation Rate



# Derivation of Shockley-Read-Hall (SRH) Recombination



### **Overall Process**



(1) one electron reduced from C-band(3) One hole reduced from V-band

(4) one hole created in V-band

(2) one electron created in C-band





## **Conduction Band Processes**



### **Overall Process**





(1) one electron reduced from C-band(2) one electron created in C-band

(1) one electron reduced from C-band(3) One hole reduced from V-band

(4) one hole created in V-band

(2) one electron created in C-band





## Valence Band Processes



#### **Overall Process**





(1) one electron reduced from C-band(2) one electron created in C-band

(1) one electron reduced from C-band(3) One hole reduced from V-band

(4) one hole created in V-band

(2) one electron created in C-band



(3) One hole reduced from V-band(4) one hole created in V-band







## Need a Definition of Initial and Final States



### **Overall Process**





(1) one electron reduced from C-band(2) one electron created in C-band

(1) one electron reduced from C-band(3) One hole reduced from V-band

(4) one hole created in V-band

(2) one electron created in C-band



(3) One hole reduced from V-band(4) one hole created in V-band







## **Focus on Electron Processes**





(1) one electron reduced from C-band  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef. (2) one electron created in C-band  $n_T$  electron-filled traps  $e_n$  electron emission coef.

## **Focus on Electron Processes**









 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.

 $e_n$  electron emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



(3) One hole reduced from V-band(4) one hole created in V-band

We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.

 $e_n$  electron emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.

 $e_n$  electron emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$









# (3) One hole reduced from V-band

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$

#### A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF

# Focus on Hole Proce We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.

 $e_n$  electron emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



(3) One hole reduced from V-band

$$\left. \frac{\partial p}{\partial t} \right|_{3,4} = -c_p p n_T + e_p p_T f_v$$

#### A REAL PROPERTY OF THE REAL PR

# Focus on Hole Proce We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.

 $e_n$  electron emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



(3) One hole reduced from V-band

#### a second second second second second

# Focus on Hole Proce We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.

 $e_n$  electron emission coef.  $e_p$  hole emission coef.

 $\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$ 



(3) One hole reduced from V-band

# Focus on Hole Proce We want a trap+hole-focused view



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.

 $e_n$  electron emission coef.  $e_p$  hole emission coef.

$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



## Trap Assisted Recombination



 $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.

 $e_n$  electron emission coef.  $e_p$  hole emission coef.





$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c) \qquad \left. \frac{\partial p}{\partial t} \right|_{3,4} = -c_p p n_T + e_p p_T f_v$$

## Section 16.2.2 Trap Assisted Recombination Rates

- $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.
- $e_n$  electron emission coef.  $e_p$  hole emission coef.





$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$

$$\left. \frac{\partial p}{\partial t} \right|_{3,4} = -c_p p n_T + e_p p_T f_v$$

- 16.1 Capture coefficient & Capture Cross Section
- 16.2 Derivation of SRH formula (Shockley, Reed, Hall)
  - »16.2.1 Trap Assisted Recombination Rates
  - »16.2.2 Capture and emission relationship ( $n_1$  and  $p_1$ )
  - »16.2.3 Steady State Trap Population
  - »16.2.4 Recombination-Generation Rate

Vid

>

>

>

## Section 16.2.2 Capture and emission relationship (n1 and p1)

- $n_T$  electron-filled traps  $p_T$  hole-filled (empty) traps  $c_n$  electron capture coef.  $c_p$  hole capture coef.
- $e_n$  electron emission coef.  $e_p$  hole emission coef.





$$\left. \frac{\partial n}{\partial t} \right|_{1,2} = -c_n n p_T + e_n n_T (1 - f_c)$$



status

Vid

>

>

>

>

- 16.1 Capture coefficient & Capture Cross Section
- 16.2 Derivation of SRH formula (Shockley, Reed, Hall)
  - »16.2.1 Trap Assisted Recombination Rates
  - »16.2.2 Capture and emission relationship ( $n_1$  and  $p_1$ )  $\checkmark$
  - »16.2.3 Steady State Trap Population
  - »16.2.4 Recombination-Generation Rate