
Klimeck – Solid State Devices
1

Section 14
Doping

Gerhard Klimeck

gekco@purdue.edu

Solid State Devices

mailto:gekco@purdue.edu


Klimeck – Solid State Devices
2

Transport with scattering, non-equilibrium Stat. Mech. 
• Drift-diffusion equation with recombination-generation

Understanding transport in concrete devices
• Diodes, BJT/HBT, MOS

Section 14
Doping

• Materials, composition, crystals
• Tabulated for “known” bulk materials
• At nm-scale properties change with geometry => theory

⇒ Equilibrium Statistical Mechanics
• Occupation factors

⇒ Quantum Mechanics Mechanics
• Concepts of density of states and masses

I = G x V

density velocitycharge area

= q x n x v x A 

• Semiconductor
» Ge: Eg=0.8eV ni~1013/cm3 0.1 in a billion
» Si: Eg=1.1eV ni~1010/cm3  0.1 in a trillion
» GaAs: Eg=1.42eV ni~106/cm3 1 in 1017

» Very weakly conducting
» Fermi level about midgap – no DOSNot Enough Electrons available

• Metal:
» Conducts electrons even at very low temperatures
» Fermi Level crosses multiple bands

=> large density of states at Fermi level
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I = G x V

density velocitycharge area

= q x n x v x A 

• Semiconductor
» Ge: Eg=0.8eV ni~1013/cm3 0.1 in a billion
» Si: Eg=1.1eV ni~1010/cm3  0.1 in a trillion
» GaAs: Eg=1.42eV ni~106/cm3 1 in 1017

» Very weakly conducting
» Fermi level about midgap – no DOS

• Metal:
» Conducts electrons even at very low temperatures
» Fermi Level crosses multiple bands

=> large density of states at Fermi level

semiconductormetal
• Insulator

» “Not” conducting – Fermi level midgap
» SiO2, Eg= 9eV, ni~10-68/cm3  
 The whole earth has about 1050 atoms!  If you made the whole world out of glass, there would be not one 

electron conductive at room temperature!

Not Enough Electrons available
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» Very weakly conducting
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• Metal:
» Conducts electrons even at very low temperatures
» Fermi Level crosses multiple bands

=> large density of states at Fermi level

semiconductor

Not Enough Electrons available

» Need to “move” the Fermi level
» ”add” electrons – n-type doping – EF close to Ec

» “add” holes – p-type doping – EF close to Ev
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I = G x V

density velocitycharge area

= q x n x v x A 
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https://commons.wikimedia.org/wiki/File:Band_filling_diagram.svg

semiconductor

» Need to “move” the Fermi level
» ”add” electrons – n-type doping – EF close to Ec

» “add” holes – p-type doping – EF close to Ev

• 14.1 Basic concepts of donors and acceptors 

• 14.2 Statistics of donor and acceptor levels

• 14.3 Temperature dependence of carrier concentration

• 14.4 Multiple doping, co-doping, and heavy-doping
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• Materials, composition, crystals
• Tabulated for “known” bulk materials

Transport with scattering, non-equilibrium Stat. Mech. 

https://commons.wikimedia.org/wiki/File:Band_filling_diagram.svg
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Simplified Planar View of Atoms
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Even with donors, material 
is charge neutral

Donor Atoms
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Donor Atoms in H2-analogy
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a~0.5nm=5A    => hundreds of Si atoms

Assumption of Large Radius …

r0

ET=E1~10s meV

1/β~kBT~25meV at T=300K
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a~0.5nm=5A    => hundreds of Si atoms

Single Impurity / Donor in a modern FinFET

ET=E1~10s meV

1/β~kBT~25meV at T=300K
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Usman, M., Bocquel, J., Salfi, J. et al. Spatial metrology of dopants in silicon with exact lattice 
site precision. Nature Nanotech 11, 763–768 (2016). https://doi.org/10.1038/nnano.2016.83

16

Measurement of Donor Wavefunctions

ET=E1
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The number of donor atoms is much smaller 
compared to host atoms. Therefore, the 
electrons from one donor atom can go to the 
other donor atoms only via the  conduction 
/valence bands of the host crystal.

Just like a Hydrogen atom, it is possible to have 
multiple localized level for a given atom (see the 
blue levels).  

Good donors live close to the conduction band, 
so that they can offer electrons easily. However, 
if they are below the midgap, the donor levels 
are marked with (D) to differentiate them from 
acceptor atoms (which live close to the valence 
band). 

Characteristics of Donor Atoms

ET=E1

r0

(D)
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Even with acceptor, material 
is charge neutral

Acceptor Atoms

r0
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Characteristics of Acceptor Atoms

r0
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acceptor-typeDonor-type

Amphoteric Dopants

r0
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Table of Donors and Acceptors

r0
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Intrinsic carrier concentration is so small that semiconductor 
must be doped to make it useful. 

A doping atom behaves like a H-atom, except that the 
dielectric constant and effective masses are given by by those 
of the host atom. 

Conclusion

r0
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I = G x V

density velocitycharge area

= q x n x v x A 
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» Need to “move” the Fermi level
» ”add” electrons – n-type doping – EF close to Ec

» “add” holes – p-type doping – EF close to Ev

• 14.1 Basic concepts of donors and acceptors

• 14.2 Statistics of donor and acceptor levels

• 14.3 Temperature dependence of carrier concentration
• 14.4 Multiple doping, co-doping, and heavy-doping
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Not Enough Electrons available

A doping atom behaves like a H-atom, except that the dielectric constant 
and effective masses are given by by those of the host atom. 
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Not Enough Electrons available

A doping atom behaves like a H-atom, except that the dielectric constant 
and effective masses are given by by those of the host atom. 
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