Solid State Devices

Section 13 Band Diagrams

Gerhard Klimeck

gekco@purdue.edu

School of Electrical and Computer Engineering

- Materials, composition, crystals
- Tabulated for "known" bulk materials
- At nm-scale properties change with geometry => theory
- \Rightarrow Quantum Mechanics Mechanics
- Concepts of density of states and masses
- \Rightarrow Equilibrium Statistical Mechanics
- Occupation factors

Transport with scattering, non-equilibrium Stat. Mech.

• Drift-diffusion equation with recombination-generation

Understanding transport in concrete devices

• Diodes, BJT/HBT, MOS

- Materials, composition, crystals
- Tabulated for "known" bulk materials
- At nm-scale properties change with geometry => theory

\Rightarrow Quantum Mechanics Mechanics

- Concepts of density of states and masses
- \Rightarrow Equilibrium Statistical Mechanics
- Occupation factors

Transport with scattering, non-equilibrium Stat. Mech.

• Drift-diffusion equation with recombination-generation

Understanding transport in concrete devicesDiodes, BJT/HBT, MOS

x N

Q

- Materials, composition, crystals
- Tabulated for **"known" bulk materials**
- At nm-scale properties change with geometry => theory
- > Quantum Mechanics Mechanics
- Concepts of density of states and masses
- \Rightarrow Equilibrium Statistical Mechanics
- **Occupation factors**

Transport with scattering, non-equilibrium Stat. Mech.

Drift-diffusion equation with recombination-generation

Understanding transport in concrete devices Diodes, BJT/HBT, MOS

 $\blacktriangleright N_C \quad n = N_C e^{-\beta(E_c - E_F)}$ E_F $\blacktriangleright N_{v} \quad p = N_{v} e^{+\beta(E_{v} - E_{F})}$

E-k Diagram

 $P.E. = E_c - E_{ref} = -qV$

Position Resolved E-k Diagram

Position Resolved E-k Diagram with Applied Potential, Potential, Field, and Charge

In most practical cases start from charge and derive potentials! => Useful to learn "graphical" integration

Position Resolved E-k Diagram with Applied Potential, Potential, Field, and Charge

In most practical cases start from charge and derive potentials! => Useful to learn "graphical" integration

Can we replace the E(k) with a compact representation?

harge Distribution No energy Distribution!

$$n = \int_{E_{c}}^{E_{cop}} g_{c}(E)f(E)dE$$
Delta Function Charge

$$M_{c} \quad n = N_{c}e^{-\beta(E_{c}-E_{F})}$$

$$g_{c}(E)[1-f(E)]$$

$$M_{v} \quad p = N_{v}e^{+\beta(E_{v}-E_{F})}$$
As if all states are at a single level E_c

$$p = \int_{E_{bar}}^{E_{v}} g_{v}(E)[1-f(E)]dE$$

p

Why does this work?

- n_i is of the order of 10¹⁰/cm³ in 10²²/cm³ atoms!
- Each atom has ~10-20 electrons
 ~1 in 10¹³ electrons is mobile
- Typical doped devices have 10¹⁸ mobile electrons
 ~1 in 10⁵ electrons is mobile
- => Do not include the coulomb interactions of individual free electrons

 \Rightarrow Consider system to be in local equilibrium

No energy Distribution!

Delta Function Charge

$$N_C \quad n = N_C e^{-\beta(E_c - E_F)}$$
$$E_F$$
$$N_V \quad p = N_V e^{+\beta(E_v - E_F)}$$

As if all states are at a single level E_c

E-k Diagram vs. Band-diagram

All quantum mechanics is now hidden in a single point per band!

In most practical cases start from charge and derive potentials! => Useful to learn "graphical" integration

