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Wave Packet and Group Velocity
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Group Velocity for a Given Band
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Effective Mass for a Given Band

U_EE 1 1d°E
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mass for each band
— mass changes throughout the band S
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Effective Mass is not Essential ...

A 1aE 114
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Mass appears to be ill-defined

= t
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Integral description of the momentum and position change of wavepackets

Do not need effective mass
=> Effective mass is not a critical physical property!
=> Graphene is a material with such linear dispersion!
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Electron and Hole fluxes: Filled/Empty Bands

E . Need
* Inversion symmetry

(number of states in +/-k identical)
« Pauli exclusion principle

JB:—ﬂ Z v, =0

L i( filled)
Empty bands carry no current

Full bands carry no current

93 b =253y =0

> (filled)
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Partially filled bands

Partial filling can be achieved by:

 Optical excitation
* Thermal excitation

e Doping + a little thermal excitation

3
\\/ Empty bands carry no current

2 Full bands carry no current

1 Let’s imagine there is a way to get
K > some electrons from the valence band
Into the conduction band!
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Electron and Hole Fluxes: Partially Filled Bands
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2 -V, charge moving with —v, mass

> +Vv, charge moving with +v_, mass

Shockley example — top view of parking lot
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Interpretation of the effective mass ?

p E 1/m*
VPRS-
e AP
1 1 d%E
TN m* 72 dk?

e m* not free mass

em™* function of k

e negative and positive
(in the same band!)

But for Transport:

e Some bands are more
important than others

e Some are always full

e Some are always empty

Minimizing energy:

e Electrons “fall” to the
bottom

e Holes “float” to the top

“Constant” Masses at:

e Bottom conduction band
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Conclusions

 Solution of Schrodinger equation is relatively x+ NL1 = w(x)e*N
easy for systems with well-defined periodicity. vl =y
« Kronig-Penney model is analytically solvable. 1 = cos kL §z£ o, = ngo
Real band-structures are solved numerically. 2 1_;/% Yo "
Such solutions are relatively easy — we will do CI_ -k compatison
HW problems on nanohub.org on this topic. i 055 * PPL_GaAs /
¢ P
 Electrons can only sit in-specific energy bands. > 50022
 Effective masses and band gaps summarize (il “ots
iInformation about possible electronic states. N> B 0.1(; .
 Effective mass is not a fundamental concept. 0k ormalzedicvector
There are systems for which effective mass A\ /™
can not be defined. S 13
TN Rl \\\/
« Of all the possible bands, only a few contribute S/ N
: NN N
to conduction. These are often called \/%' 2
conduction and valence bands. 1 3 1 d%E 1 X
m* #° dk® k
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