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• 7.1 Bandstructure - Problem Formulation
»Kronig-Penney Model setup
»Bloch theorem
»Analytical solution process

• 7.2 Bandstructure - Solutions
»Bandgaps
»Comparison to finite system model

• 7.3 Band Properties
»Wave packets
»Effective mass
»Electrons and Holes

Section 7
Bandstructure – in 1D Periodic Potentials
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Reference: Vol. 6, Ch. 3
Daniel Mejia, Gerhard Klimeck (2019), "Periodic Potential Lab - Kronig Penney Model,
" https://nanohub.org/resources/kronigpenneylab.  (DOI: 10.21981/TT2Y-A185).

https://nanohub.org/resources/kronigpenneylab
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Wave Packet and Group Velocity
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Group Velocity for a Given Band
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mass for each band
mass changes throughout the band

Effective Mass for a Given Band
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Mass appears to be ill-defined

Integral description of the momentum and position change of wavepackets
Do not need effective mass
=> Effective mass is not a critical physical property!
=> Graphene is a material with such linear dispersion!
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Effective Mass is not Essential … 
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• inversion symmetry

(number of states in +/-k identical)
• Pauli exclusion principle
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Empty bands carry no current
Full bands carry no current
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Electron and Hole fluxes: Filled/Empty Bands
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Partially filled bands

Empty bands carry no current
Full bands carry no current

Let’s imagine there is a way to get 
some electrons from the valence band 
into the conduction band!

Partial filling can be achieved by:
• Optical excitation
• Thermal excitation
• Doping + a little thermal excitation
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Electron and Hole Fluxes: Partially Filled Bands

Shockley example – top view of parking lot
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Interpretation of the effective mass ? 

•m* not free mass
•m* function of k
•negative and positive 

(in the same band!)
But for Transport:
•Some bands are more 

important than others 
•Some are always full
•Some are always empty
Minimizing energy:
•Electrons “fall” to the 

bottom
•Holes “float” to the top
“Constant” Masses at:
•Bottom conduction band
•Top valence band
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Conclusions

• Solution of Schrodinger equation is relatively 
easy for systems with well-defined periodicity.

• Kronig-Penney model is analytically solvable. 
Real band-structures are solved numerically. 
Such solutions are relatively easy – we will do 
HW problems on nanohub.org on this topic. 

• Electrons can only sit in-specific energy bands. 
• Effective masses and band gaps summarize 

information about possible electronic states.
• Effective mass is not a fundamental concept. 

There are systems for which effective mass 
can not be defined. 

• Of all the possible bands, only a few contribute 
to conduction. These are often called 
conduction and valence bands. 2
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• 7.1 Bandstructure - Problem Formulation
»Kronig-Penney Model setup
»Bloch theorem
»Analytical solution process

• 7.2 Bandstructure - Solutions
»Bandgaps
»Comparison to finite system model

• 7.3 Band Properties
»Wave packets
»Effective mass
»Electrons and Holes

Section 7
Bandstructure – in 1D Periodic Potentials
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Reference: Vol. 6, Ch. 3
Daniel Mejia, Gerhard Klimeck (2019), "Periodic Potential Lab - ….,
" https://nanohub.org/resources/kronigpenneylab.  (DOI: 10.21981/TT2Y-A185).

https://nanohub.org/resources/kronigpenneylab
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