Solid State Devices

Section 7 Bandstructure in 1D Periodic Potentials

Gerhard Klimeck

gekco@purdue.edu

School of Electrical and Computer Engineering

Section 7 Bandstructure - in 1D Periodic Potentials

Goal: Representation of "Infinite Systems"

- 7.1 Bandstructure Problem Formulation
- 7.2 Bandstructure Solutions
- 7.3 Band Properties

Reference: Vol. 6, Ch. 3

Daniel Mejia, Gerhard Klimeck (2019), "Periodic Potential Lab - Kronig Penney Model, "<u>https://nanohub.org/resources/kronigpenneylab</u>. (DOI: 10.21981/TT2Y-A185).

Reminder Transmission through Repeated Wells

n barriers =>n-1 resonance

As the number of barriers are increased more and more energy resonances begin to appear and energy bands are formed.

Reminder: Five Steps for Closed System Analytical Solution

Open

$$1) \quad \frac{d^2\psi}{dx^2} + k^2\psi = 0 \quad -$$

Solution Ansatz → 2N unknowns for N regions

^z
$$\psi(x) = A_{+}e^{ikx} + A_{-}e^{-ikx}$$

 $\psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$

Boundary Conditions at the **Open** edge Reduces 2 unknowns

3)
$$\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$$
$$\frac{d\psi}{dx}\Big|_{x=x_B^-} = \frac{d\psi}{dx}\Big|_{x=x_B^+}$$

Boundary Condition at each interface:Set 2N-2 equations for2N-2 unknowns (for continuous U)

4) Det (coefficient matrix)=0 And find E by graphical er numerical colution 5) $\int_{-\infty}^{\infty} |w(x, E)|^2 dx = 1$ Normalization of unity probability for wave function

Periodic Potential Concept

As the number of barriers is increased the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).

Choosing the Smallest Unit Cell

As the number of barriers is increased the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).

Choose the smallest cell to reduce computational work load

Solution Ansatz Choose the Simplest Basis Set

As the number of barriers is increased the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).

Choose the smallest cell to reduce computational work load

Finally an (almost) Real Problem ...

But N atoms have two 2N unknown constants to find For large N, isn't there a better way ?

10

Reminder:

Five Steps for Chesca System Analytical Solution

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad -$$

PeriodicIIISolution Ansatz $\psi(x) = A_+e^{ikx} + A_-e^{-ikx}$ N unknowns $\psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$ for N regions $\psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$ Edge => huge number of cellsBoundary Conditions at the Periodic edgeReduces 2 unknowns

3)
$$\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$$
$$\frac{d\psi}{dx}|_{x=x_B^-} = \frac{d\psi}{dx}|_{x=x_B^-}$$

Boundary Condition at each interface: Interface => interfaces in periodic cell

 4) Det (coefficient matrix)=0 And find E by graphical or numerical solution

5)
$$\int_{-\infty}^{\infty} |\psi(x, E)|^2 dx = 1$$

Normalization of unity probability for wave function

Periodic U(x) and Bloch's Theorem Periodic U(x) and Bloch's Theorem

Phase-factor for N-cells

Step 2: Periodic Boundary Condition

Step 3: Boundary Conditions

$$\psi \Big|_{x=0^{-}} = \psi \Big|_{x=0^{+}}$$
$$\frac{d\psi}{dx} \Big|_{x=0^{-}} = \frac{d\psi}{dx} \Big|_{x=0^{+}}$$
$$B_{a} = B_{b}$$
$$\alpha A_{a} = \beta A_{b}$$

$$\beta \equiv i\sqrt{2m(U_0 - E)/\hbar^2} \qquad \alpha \equiv \sqrt{2mE/\hbar^2}$$

$$\psi_b = A_b \sin \beta x + B_b \cos \beta x + B_a \cos \alpha x$$

$$\left. \begin{array}{c} \psi_{a} \Big|_{x=a} = \psi_{b} \Big|_{x=-b} e^{ikL} \\ \frac{d\psi_{a}}{dx} \Big|_{x=a} = \frac{d\psi_{b}}{dx} \Big|_{x=-b} e^{ikL} \end{array} \right.$$

 $A_{a} \sin \alpha a + B_{a} \cos \alpha a =$ $e^{ik(a+b)} [-A_{b} \sin \beta b + B_{b} \cos \beta b]$

 $\alpha A_a \sin \alpha a - \alpha B_a \cos \alpha a =$ $e^{ik(a+b)} [\beta A_b \sin \beta b + \beta B_b \cos \beta b]$

Step 4: Det(matrix)=0 for Energy-levels

Reminder:

Five Steps for Circled System Analytical Solution

Bloch Theorem

3) $\psi|_{x=x_{p}^{-}} = \psi|_{x=x_{p}^{+}}$ $\frac{d\psi}{dx}$ $d\psi$

Period Blution Ansatz $\psi(x) = A_{+}e^{ikx} + A_{-}e^{-ikx}$ 2N unknowns $\psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$ for N regions Edge => huge number of cells Boundary Conditions at the **Periodic** edge Reduces 2 unknowns

Boundary Condition at each interface:

Interface => interfaces in periodic cell SVVIIS (ICE COILCIIGOUS OF

4) Det (coefficient matrix)=0 And find E by graphical or numerical solution

5)
$$\int_{-\infty}^{\infty} |w(x, E)|^2 dx = 1$$

Normalization of unity probability for wave function

$$\frac{1-2\xi}{2\xi\sqrt{1-\xi}} \times \dots = \cos kL \qquad \xi \equiv \frac{E}{U_0} \quad \alpha_0 \equiv \sqrt{\frac{2mU_0}{\hbar^2}}$$

Five Steps for Periodic System Analytical Solution

1)
$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \longrightarrow$$

Solution Ansatz $\psi_a = A_a \sin \alpha x$ 4 unknowns $+B_a \cos \alpha x$ for 1 periodic cell $\psi_b = A_b \sin \beta x$ $+B_b \cos \beta x$

$$(\psi[x+NL]) = \psi(x)e^{ikLN}$$

big constraints big constraints constraints Periodic Boundary Conditions Imposes symmetry

Boundary Condition in periodic cell:
 Set 4 equations for 4 unknowns

4) Det (coefficient matrix)=0 And find E by graphical or numerical solution $5) \int_{-\infty}^{\infty} |w(x, F)|^2 dx = 1$ Normalization of unity probability $\frac{1-2\xi}{2\xi\sqrt{1-\xi}} \times \dots = \cos kL \qquad \xi = \frac{E}{U_0} \quad \alpha_0 = \sqrt{\frac{2mU_0}{\hbar^2}}$ for wave function

One Video Segment

• 7.3 Band Properties

Reference: Vol. 6, Ch. 3

Daniel Mejia, Gerhard Klimeck (2019), "Periodic Potential Lab - Kronig Penney Model, https://nanohub.org/resources/kronigpenneylab. (DOI: 10.21981/TT2Y-A185).

Section 7 Bandstructure - in 1D Periodic Potentials

- •7.1 Bandstructure Problem Formulation
 - »Kronig-Penney Model setup
 - »Bloch theorem
 - » Analytical solution process
- 7.2 Bandstructure Solutions
 » Bandgaps
 » Comparison to finite system model
- 7.3 Band Properties

One Video Segment

One Video Segment

One Video Segment

Reference: Vol. 6, Ch. 3

Daniel Mejia, Gerhard Klimeck (2019), "Periodic Potential Lab - Kronig Penney Model, "<u>https://nanohub.org/resources/kronigpenneylab</u>. (DOI: 10.21981/TT2Y-A185).

$$\psi[x + NL] = \psi(x)e^{ikLN}$$
$$\frac{1 - 2\xi}{2\xi\sqrt{1 - \xi}} \times \dots = \cos kL \qquad \xi \equiv \frac{E}{U_0} \quad \alpha_0 \equiv \sqrt{\frac{2mU_0}{\hbar^2}}$$

status