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Original 
Problem

Periodic
Structure

Case 1:
Free electron

E >> U

Case 2:
Electron in infinite well

E  << U

Case 3:
Electron in finite well 

E < U

E

U

Section 5
Analytical Solutions to Free and Bound Electrons

• Section 5.1 – Free and Tightly Bound Electrons
»Time Independent Schrödinger Equation
»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well

• Section 5.2 - Electrons in a finite potential well

Reference: Vol. 6, Ch. 2 (pages 29-45) 
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Original 
Problem

Periodic
Structure

Case 3:
Electron in finite well 

E < U
E

U

Select a Single Well

 

d 2ψ
dx 2 + k 2ψ = 0

0 a
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Original 
Problem

Periodic
Structure E

U

Assume Other Wells are De-Coupled

 

d 2ψ
dx 2 + k 2ψ = 0

0 a

Assume the other wells 
are very far away

Case 3:
Electron in finite well 

E < U
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Original 
Problem

Periodic
Structure E

U

Assume a Reasonable Wavefunction Shape

 

d 2ψ
dx 2 + k 2ψ = 0

0 a

Assume some general 
shape of the wavefunction

Decaying in barrierBound 
in 

well

Decaying in barrier

( ) 0
( ) 0
x
x

ψ
ψ

= −∞ =
= +∞ =

Case 3:
Electron in finite well 

E < U
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Wavefunction Continuity Conditions

 

d 2ψ
dx 2 + k 2ψ = 0

0 a

Assume some general 
shape of the wavefunction

Decaying in barrierBound 
in 

well

Decaying in barrier

( ) 0
( ) 0
x
x

ψ
ψ

= −∞ =
= +∞ =

Second order differential equation
First and second order differential cannot be infinite!

Wavefunction must be continuous!
First differential must be continuous!

Case 3:
Electron in finite well 

E < U
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First Differential Must be Continuous

 

d 2ψ
dx 2 + k 2ψ = 0

0 a

Decaying in barrierBound 
in 

well

Decaying in barrier

( ) 0
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ψ
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Second order differential equation
First and second order differential cannot be infinite!

Wavefunction must be continuous!
First differential must be continuous!
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Case 3:
Electron in finite well 

E < U
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Case 3:
Electron in finite well 

E < U

Solution Ansatz

0 a

Decaying in barrier

Bound 
in 

well
Decaying in barrier
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sin cosA kx B kxψ = +

x xMe Ceα αψ − ++=
x xDe Neα αψ − ++=

2
2

2 0d
dx

kψ ψ+ =
2

2
2 0d

dx
αψ ψ− =

0

𝑘𝑘 ≡
2𝑚𝑚0𝐸𝐸
ℏ𝛼𝛼 ≡

2𝑚𝑚0 𝑈𝑈0 − 𝐸𝐸
ℏ

U0
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Case 3:
Electron in finite well 

E < U

Solution Ansatz

0 a

Bound 
in 

well

( ) 0
( ) 0
x
x

ψ
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= +∞ =

B B

B B

x x x x

x x x x

d d
dx dx

ψ ψ

ψ ψ

− +
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= =

= =

=

=

sin cosA kx B kxψ = +

x xMe Ceα αψ − ++=
x xDe Neα αψ − ++=

2
2

2 0d
dx

kψ ψ+ =
2

2
2 0d

dx
αψ ψ− =

U0

0 Decaying in barrierDecaying in barrier

𝑘𝑘 ≡
2𝑚𝑚0𝐸𝐸
ℏ𝛼𝛼 ≡

2𝑚𝑚0 𝑈𝑈0 − 𝐸𝐸
ℏ
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B B
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3) Boundary at each interface

0 a

Apply Boundary Conditions at Interfaces

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

x=0

x=a

U0

0

Case 3:
Electron in finite well 

E < U
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Apply Boundary Conditions at Interfaces

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

2 (1 )
tan( )

2 1
a

ξ ξ
α ξ

ξ
−

=
−

det (Matrix)=0

Only unknown is E

(i) Use Matlab function 
(ii) Use graphical method

U0

0

𝑘𝑘 ≡
2𝑚𝑚0𝐸𝐸
ℏ

𝛼𝛼 ≡
2𝑚𝑚0 𝑈𝑈0 − 𝐸𝐸

ℏ

Case 3:
Electron in finite well 

E < U

sin( ) co

0 0 0
0 0 0

0 0
00

s( )
cos( ) sin(

1

)

1

/

a

a

A
B
Cka ka e

ka ka e k D

k
α

αα

α
−

−

     
     
     =     
        

−

 

−

− 

+



Klimeck – Solid State Devices
12

2 5x x= +

2 5y x= +2
1y x=

y

x

E1x0

Graphical Solution

2 (1 )
tan( )

2 1
a

ξ ξ
α ξ

ξ
−

=
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Case 3:
Electron in finite well 

E < U
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E1E1

Graphical Solution

2 (1 )
tan( )

2 1
a

ξ ξ
α ξ

ξ
−

=
−

Case 3:
Electron in finite well 

E < U
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Obtained the eigenvalue => could stop here in many cases

Graphical Solution

E1

E 1

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

Did not compute the explicit wavefunction yet

Case 3:
Electron in finite well 

E < U
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2 (1 )
tan( )

2 1
a

ξ ξ
α ξ

ξ
−

=
−

det (Matrix)=0

0
2

0

2 U
U
E mξ α≡ ≡



=> Linear dependent system
=> Only 3 variables are unique
=> One variable is undetermined
Let’s assume A can be freely 
Chosen => can get B,C,D

Need another boundary condition! 

Wave Function Normalization

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

Case 3:
Electron in finite well 

E < U
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Non-linear => no simple linear algebra expression
2

1dxψ
∞

−∞
= ⇒∫

( ) ( )
20 2 2 2 2

0
1
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a
e dx Asin kx B sin kx dx eDC dxα α∞ −

−∞
 + + + = ∫ ∫ ∫

Another boundary condition! 

Step 5: Wave-functions

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

=> Linear dependent system
=> Only 3 variables are unique
=> One variable is undetermined
Let’s assume A can be freely 
Chosen => can get B,C,D

Case 3:
Electron in finite well 

E < U
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xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

Non-linear => no simple linear algebra expression
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Another boundary condition! 

Step 5: Wave-functions

Get “A”

Get 
“B,C,D”

Case 3:
Electron in finite well 

E < U
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( ) 0
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d 2ψ
dx 2 + k 2ψ = 0

B B
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x x x x
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1) 
Solution Ansatz
2N unknowns 
for N regions

2) Boundary Conditions at the edge
Reduces 2 unknowns

3) Boundary Condition at each interface:
Set 2N-2  equations for 
2N-2 unknowns (for continuous U)

Det (coefficient matrix)=0
And find E by graphical 
or numerical solution

4) 2( , ) 1x E dxψ
∞

−∞
=∫5)

Normalization of unity probability
for wave function

( ) x xx De Eeα αψ − += +
( ) ikx ikxx A e A eψ −

+ −= +

Five Steps for Closed System Analytical Solution

Case 1:
Free electron

E >> U

Case 2:
Electron in infinite well

E  << U

E

U

Case 3:
Electron in finite well 

E < U
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Key Summary of a Finite Quantum Well

Case 1:
Free electron

E >> U

Case 2:
Electron in infinite well

E  << U

Case 3:
Electron in finite well 

E < U

E

U

xCeαψ = xDe αψ −=

sin cosA kx B kxψ = +

• Problem is analytically solvable 
• Electron energy is quantized and wavefunction is localized
• In the classical world:

» Particles are not allowed inside the barriers / walls => C=D=0
• In the quantum world:

» C and D have a non-zero value!
» Electrons can tunnel inside a barrier
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Key Summary of a Finite Quantum Well

E

U
SiO2 SiSi

Case 1:
Free electron

E >> U

Case 2:
Electron in infinite well

E  << U

Case 3:
Electron in finite well 

E < U

• Problem is technically relevant
»Confinement under a gate
»Gate tunneling

• Heterostructures in general
»Multiple layered materials
»3D Structures

• Applications:
»Transistors
»Optical devices

• Problem is analytically solvable 
• Electron energy is quantized and wavefunction is localized
• In the classical world:

» Particles are not allowed inside the barriers / walls => C=D=0
• In the quantum world:

» C and D have a non-zero value!
» Electrons can tunnel inside a barrier
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Original 
Problem

Periodic
Structure

Case 1:
Free electron

E >> U

Case 2:
Electron in infinite well

E  << U

Case 3:
Electron in finite well 

E < U

E

U

Section 5
Analytical Solutions to Free and Bound Electrons

• Section 5.1 – Free and Tightly Bound Electrons
»Time Independent Schrödinger Equation
»(Almost) Free Electrons
»Tightly bound electrons – infinite potential well

• Section 5.2 - Electrons in a finite potential well

Reference: Vol. 6, Ch. 2 (pages 29-45) 
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