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ABSTRACT

Lake, Roger K., Ph.D., Purdue University. August 1992. Application of the Keldysh
Formalism to Quantum Device Modeling and Analysis. Major Professor: Supriyo
Datta.

The effect of inelastic scattering on quantum electron transport through layered
semi-conductor structures is studied numerically using the approach based on the
non-equilibrium Green’s function formalism of Keldysh, Kadanoff, and Baym. The
Markov assumption is not made, and the energy coordinate is retained. The electron-
phonon interaction is treated in the self-consistent first Born approximation (SCFBA).
The Pauli-exclusion principle is taken into account exactly within the SCFBA. The
retention of the energy coordinate allows the calculation of a number of quantities
which give insight into the effect of inelastic scattering on electron transport: the
effect of inelastic scattering on the occupation of the energy levels, the density of
states, the energy distribution of the current density, and the power density is calcu-
lated from a quantum kinetic equation for actual device structures under high bias.
The approach is used to study the effect of emitter quasi-bound states on the I-V
characteristic of resonant tunneling diodes (RTD’s), the effect of barrier asymmetry
on the phonon-peak in RTD’s, and energy balance and heat exchange in mescopic

systems.



CHAPTER 1
INTRODUCTION

The treatment of inelastic scattering in quantum transport is interesting from both
a theoretical and practical point of view. From a practical perspective, the success of
the technology of molecular beam epitaxy has allowed the fabrication of layered
semiconductor structures such as double barrier resonant tunneling diodes (DBRTD)
[11, superlattices [2], and hot electron injection devices [3] which operate on quantum
mechanical principles under high bias. If one wishes to describe experiments on these
structures, such as photoluminescence measurements of the occupation of resonant
levels [4], or the valley current of a DBRTD [5], a treatment of inelastic scattering is
necessary.

Theoretically, there have been many studies of the effect of inelastic scattering
on resonant tunneling [6-14]. The treatment of the elastic and inelastic scattering
ranges in various degrees of sophistication. As discussed by Pevzner et al. and Sols
[15, 16], it is relatively easy to treat coherent-elastic scattering from potential barriers
and device geometries exactly using numerical methods while the inelastic scattering
is treated in an approximation. Two approximations are commonly used [8-12]; 1) the
inelastic scattering is confined to a finite region of space, and 2) the inelastic
scattering is treated within the one-electron picture, i.e: the Pauli exclusion principle
is ignored.

There have been many treatments of inelastic scattering in single barrier [17]
and double barrier tunneling [12,18] using the tunneling Hamiltonian method
[17,19,20]. However, solutions are only found to first order in the tunneling strength.
There have also been a number of treatments of phonon scattering in a resonant site
[8-12,21] using the independent boson model [22]. The coupling of the resonant site
to the leads has been included to all orders within the independent boson model
[8,10,21]. There have been several treatments of tunneling with dissipation based on
path-integral calculations [23, 24].

Caroli ez al. developed a transport theory based on a tight-binding model and the
non-equilibrium Green function theory of Keldysh [25] and applied it to single barrier



tunneling with phonons confined to the barrier [26-28] and Combescot applied the
formalism to single barrier tunneling with localized states in the barrier [29] and the
influence of impurities and the electron-phonon interaction on tunneling in metal-
semiconductor contacts [30, 31]. The approach was used by Ivezic to study tunneling
with magnetic impurity scattering [32]. This approach has recently been used to study
phonon scattering in one-dimensional double barrier resonant tunneling solving a
model Hamiltonian very similar to the one solved in this work [33]. Feuchtwang
developed a similar tunneling theory in the position representation [34, 35]. Many of
the approaches listed above have been limited to specific single or double barrier
tunneling problems.

A numerical approach which has been used to study the effect of inelastic
scattering on DBRTD’s has been based on a solution of the Wigner-Weyl transform of
the Liouville equation for the Wigner function [36-40]. The inclusion of inelastic
scattering in the above work has been conceptually problematic [39,40]. The exact
forms for the self-energy terms have recently been derived from a Wigner-Weyl
transformation of the general equations of Keldysh, Kadanoff, and Baym [40].
However, in practice, a relaxation time approximation is used [36-38, 40].

The majority of high-bias semiconductor quantum device simulators are based
on the tunneling formula described by Duke [17] and used by Tsu and Esaki [41-44].
In the tunneling formula, a transmission probability across the device is calculated by
solving the single particle Schrodinger equation, and the current is calculated by
integrating over all energies the transmission probability weighted by the difference of
the Fermi factors in the two contacts. There is no inelastic scattering in the device.
Thus, in the device, an electron, in the presence of an electric field, accelerates
forever, assuming an infinite parabolic band. A current and electrostatic potential
drop can be calculated, however, since there are no thermalization processes present
in the device, no power is dissipated in the device. Finally, starting from this
approach, it is conceptually unclear how to include electron-phonon and electron-
electron scattering. Electron-phonon scattering has been included in this approach for
one particular problem where it appears to be justified [5, 13,45-47].

The approach used in this work begins with the general many body, non-
equilibrium Green’s function theory of Keldysh, Kadanoff and Baym [25, 48] which
we will refer to as the KKB formalism. It is restricted to steady-state. The Pauli
exclusion principle is rigorously included. Three approximations are made.

i) Electron-phonon interaction is treated in the seclf-consistent first-Bom
approximation which means that only one phonon scattering is included, but it is
included exactly (to all orders in the language of perturbation theory).



ii) The phonons are modeled as a bath of independent oscillators which interact with
the electrons locally. This corresponds to a simple model of deformation potential
dispersionless optical phonons with the potential felt by the electrons proportional to
the ionic displacement.

iii) The phonon coordinates are traced out by assuming that the phonons remain in
equilibrium.

The phonons are not restricted to a finite region of space but extend throughout the
device and contacts from — oo t0 + oo in the case of a 1-D [49] simulation.

The fundamental quantity in the KKB formalism is the two-time correlation
function, G*(ry,t;;r,t2). By performing a Wigner transform on the time variables,

we can write the correlation function as G<(r;,ry;E,T) where T= %(t1+t2) and % is

the Fourier transform variable corresponding to the time difference coordinate (t;—t;).
The fundamental quantity in the Liouville equation, the density matrix, p(r;,rs;T), is
obtained by setting t; =ty in G° which is equivalent to integrating over energy,

dE ,
p(r1,r3T) = [ 2~ G(r,riE,T) [39, 50].

The KKB formalism gives energy resolved information. The retention of the
energy coordinate makes the inclusion of the phonon energy spectrum straight
forward both conceptually and in practice. It also allows the calculation of a number
of quantities which give insight into the effect of inelastic scattering on quantum
electron transport. The effect of transitions between levels can be seen in the
occupation of energy levels and in the energy distribution of the current density.
Knowing the mean energy of the current density, the spatial distribution of the power
being dissipated by the electrons to the phonon bath can be calculated throughout the
device. Numerical examples of all the above mentioned quantities will be presented in
this thesis.

The material in this thesis is extracted from references [51-55].



CHAPTER 2
STEADY-STATE KKB FORMALISM APPLIED TO A SIMPLE
DOUBLE BARRIER RESONANT TUNNELING DIODE

2.1. General Steady-State KKB Formalism

There has been much work based on the KKB formalism and there have been
several excellent reviews (see [56-58] and references therein). Recently, the
formalism has been used to study the effect of alloy scattering, transient transport, and
ac conductance in DBRTD’s [59-62], Coulomb effects in three-dimensionally
confined DBRTD’s [63, 64], the Kondo effect [65], and the fractional quantum Hall
regime [66]. A general transport formula for steady-state non-equilibrium interacting
Fermi systems [67] and for steady-state transport in the presence of ac fields [68] have
recently been presented.

Our concern is with steady-state transport in mesoscopic systems. In steady-
state, the coupled non-equilibrium Green-function equations take on a relatively
simple form which provide a good starting point for a general, quantum- mechanical
treatment of electron-phonon and electron-electron interactions in mesoscopic
structures far from equilibrium. We summarize below a steady-state version of the
KKB formalism that is the starting point of this work.

We do not make the gradient expansion [58] since potentials in mesoscopic
systems vary rapidly in space. In steady-state, it is assumed that there is no

’

. +t . .
dependence on the center-of-mass time, t—z——, and we Fourier transform the relative

time coordinate to energy, E. The notation and definitions for the Green’s functions
and self-energies correspond to that found in [69]. The equations for the retarded
Green’s function, GR, and the correlation functions, G§, are [58,69,70]

[E - Ho(®)] G* (r.r";E) - [dry ZR(r,riB)GR (r1,1E) = 8(r-1)  (2.1)

G5 (r,I';E) = [dr,dryGR(r,r;;E)E5(ry, 1 E)GR (¢, r2:E) 2.2)

Since we are only concerned with steady-state, a boundary term has been dropped
from (2) which depends on the time at which the interaction is adiabatically turned on
[70]. We write the retarded self-energy, 3R as



SR(r.r'.E) = o(r,r’;E) - 15(112@ (2.3)
R, vA : R _vA
where 6= = +2" ang AL _ 2" —%" 1 (3) g is the Hermitian part of ZX, and

2 2 2
~l—2£ is the anti-Hermitian part of ZR. If we Fourier transform the relative coordinate,

r-r, to k, o and % become, respectively, the real and imaginary parts of

r+r
2

of ZR is the Hilbert transform of the anti-Hermitian part plus a term, Syp, due to the

singular part of =R from the Hartree-Fock diagrams [56].

vy = 1 ppdE I'(r,r’;E)

olr,riE) = T P 2n E-F

I is given by the sum of the in-scattering function, iX<, and the out-scattering
function, —X”.

IR (R,k;E) where R is the center-of-mass coordinate,

[56]. The Hermitian part

+ Syr 2.4)

Ir(@,r;E) = i (Z°(r,r;E) - Z*(r,r’;E)) (2.5)

35 depends on the type of interaction being considered. Once X< and %> are
specified, (1)-(5) plus the equations for 5 become the closed set of equations that
need to be solved.

The systems we consider are those with boundary conditions (an applied bias)
that have been fixed for a long time. However, there is some evidence from numerical
simulations that such systems may not reach steady state [71]; coulomb charging
effects can result in high-frequency oscillations in the current for a fixed applied
voltage. Under such circumstances, the steady-state equations cannot be used.

2.2. Point Scatterer Model

In this work (following [69] ) we use a model for which the in-scattering and
out-scattering functions, Z<(r,r’;E) and X’ (r,r’;E), are proportional to delta functions
in space. This leads to a simplification of the transport equations as described in the
following section. The physical model is described by the following three
Hamiltonians [69]. The electrons are described by the one-electron effective mass
Hamiltonian



2
Hp = (p—eé) +V@) (2.6)
2m

where V includes the linear potential drop and the conduction band discontinuities.
Magnetic fields are neglected in this work (A=0). De-phasing is assumed to be
caused by a reservoir of independent oscillators (maintained in thermodynamic
equilibrium) described by

Hy = X Nom(ah on + ) 3

The electrons are assumed to interact with the bath through a delta potential.
H =Y US(r-ry)al +ay) 2.8)
m

Assuming a continuum of modes, the sum over m becomes an integral,
Zn; - _[drfd(ﬁ(o) Jo (r;hw), where J,, is the density of oscillator modes. One is free to
choose the energy spectrum, Jo(hm), of the oscillators. In this work, we have used
three different models:

i)  Elastic phase breaking, Jo(iw) ~ & (),

ii) Einstein phonon, Jo(hm) ~ & (@ * wyp), ho, =36 meV.

iii) Debye phonon, Jo(iw) ~ w?68(w@p — |@|), hwp =20 meV.

This allows comparisons between simple elastic phase breaking and inelastic
scattering where transitions between energy levels are present. When we model
inelastic scattering, both the Debye and Einstein oscillators are included. The Debye

oscillators allow for small energy transitions and close the energy gap that would
otherwise occur in IR at low temperatures [22].

When the Einstein spectrum is used, the local oscillator model corresponds
precisely to a simple model for dispersionless deformation potential optical phonons
(DPOPs). This is shown as follows. The potential felt by the electrons due to the
phonons for DPOPs is

Hep(r,0) = —\/1\-7— MY el T(age ™ +a% '™ 2.9)
q

Then DX = <Heyr,t) Hgyr',t)) > is [69]
D (ry,rp3h0) = M2(2m)8 (r) —r2) {[IN(@9) + 11 8 (@ + @) + N( o) 3 (@ — 1)} (2.10)

where N is the Bose-Einstein factor. This is precisely the form of D< when using the
Einstein spectrum in the local oscillator model (compare eq. (A.8a) in [69] ).



2.3. Steady-State KKB Formalism Applied to Point Scatterers
We introduce a few identities and one definition. We need the identities for the
electron density per unit energy, n(r;E) = % G<(r, r; E), the hole density,

p(rE) = # G”(r, r; E), and the local density of states, No(r E) = n(r;E) + p(r;E)

- :1—51- Im GR(r,r;E). We define the non-equilibrium occupation factor as

f(r;E) = n(r, E)/No(r, E). Atequilibrium, f(r;E) is simply the Fermi-Dirac factor.

In this work, the self-energies for the electron-phonon interaction are evaluated
in the self-consistent Born approximation,

3(r,r";E) = [dE'G5(r,r';E-E)DS(r,r";E) (2.11)
where
D3@r,r’E) = [d(t-1) B <H @O H (1) >

Since, in our model, the electron-phonon interaction is local, the corresponding self-
energies, in the SCFBA, are local. We write the self energies as

Z5(ry,rgE) = —i?P-(-gES(l‘l—l'z)
2 (r1,r2:E) = ”?n"(g;“ﬁs‘" ~r2)
and
R (r1,r2:E) = [0(r;:E)—i E(—’:—I;E—)l 8(r1 —r2)

where 1/1,, is the electron outscattering rate, 1/T, is the hole outscattering rate, 1/14 is
the total de-phasing rate, and ¢ is the real part of R,

Only the diagonal elements of G5 are needed to calculate the self-energies
because of the local nature of the interaction. With the above identities and
definitions, the coupled equations for GR, the diagonal elements of G<, 35, and 3R,
take the following forms, respectively,

- o(rE) i 1GR(r.r:E) = 8(r—r'
[E-Hy(r) o(r,E)+121¢(r;E)]G(r,r,E) S(r-r) (212

R ‘. 2
1 B 401G T B

(3B = N B 2 ,(r'; E)

(2.13)




_t;a'l_'f)_ = %—fd(ﬁm) F(r,hw) No(r ; E-hw) f(r ; E-Hw) (2.14a)
a;lfg)‘ = %]d(ﬁm) F(r,hiow) No(r; E+ho)[1~f(r; E+ho)] (2.14b)

1 1 1
= +
T(r;E) %(rE) tn,(@E)
So far, in practice, we have ignored the real part of SR In (14), F is a known function

consisting of a strength, U, the density of oscillator modes, J,, and the Bose Einstein
factor, N.

(2.15)

N(w) , >0
F(r,hw) = U2 J (r,
(r.hw) = U™ Jo(r Iml){N(lo)lHl , ©<0
Substituting (14a) into (13) gives a homogeneous integral equation for the occupation
factor.

1
No(r;E)

f(r;E) = fdr’[aE’ |GR(r, r'; B)|2F(",E)N, (;E—E) f(r';E-E)  (2.16)

2.3.1. Boundary Conditions

Two boundary conditions have to be specified, one for GR in Eq. (2.12) and one
for f(r;E) in Eq. (2.16). We take these up one by one.

We use open-ended boundary conditions for GR(r,r;E) to simulate perfectly
absorbing contacts. GR is calculated numerically using a finite difference solution to
(2.12) (which is formally equivalent to the tight binding model) on a finite lattice and
extended analytically to oo [72]. This is similar to the asymptotic scattering
boundary conditions used by other researchers to calculate a transmission coefficient
[42,73-75]. However, there is a subtle difference. Usually, the boundary regions are
ideal leads with no scattering of any kind extending to e where, presumably, there is
an ideal reservoir which is the contact. By contrast, inelastic scattering is included
throughout our boundary regions from —eo to +eo. In our model, the entire boundary
region acts as the contact; we do not conceptually divide up the region into an ideal
lead and an ideal reservoir.

The integral equation for f(r;E) is solved subject to the boundary condition that
in the contacts



f(r;E) = f,(E—}J;) r € contacti
where f; is the Fermi-Dirac factor. This is similar in spirit to the boundary condition

imposed on the electrostatic potential, and the chemical potentials when solving the

drift-diffusion equation [76]. Note that we specify the energy distribution rather than
the momentum distribution. Usually, it is the incident momentum distribution that is
specified as an equilibrium distribution, both in semi-classical [77] and quantum
transport [17,39,41,78,79]. Despite this difference, in the limit of long T4, we find
remarkable agreement between simulations based on our approach and simulations
from SEQUAL [42-44,80] based on the Tsu-Esaki approach [41] which assumes
phase coherent transport and specifies the incident flux at the boundaries. We also
find, for a ballistic wire with iw propagating subbands at low temperature and low

bias, a conductance of M—Zﬁ—. It thus appears that specifying the equilibrium

boundary conditions in terms of the energy distribution rather than the incident
momentum distribution makes no significant difference to the result. It will be noted
that since inelastic scattering is included throughout our boundary regions, energy and
momentum are independent variables related through the spectral function.
Consequently, it is somewhat more complicated to impose a boundary condition on
the momentum distribution.

The concept of an ideal reservoir [72,78,81-84] has received much attention in
the field of electron transport in electron waveguide structures since it is implicit but
fundamental to the Landauer conductance formula [85] and the multi-probe current
formula [79, 86] which have proven so successful in modeling mesoscopic phenomena
[87]. An ideal reservoir acts as a black-body for electrons which can be characterized
by two properties:

(i) Every electron incident on the reservoir is absorbed.
(ii) The reservoir emits electrons according to an equilibrium thermal distribution.

The boundary conditions on GR and f(r;E) are consistent with the two properties
listed above. The open-ended boundary conditions on GR ensure property (i).
Property (ii) is satisfied since we impose equilibrium statistics over the contact region.

The imposition of equilibrium statistics in the contacts gives rise to a contact
resistance in the form of a dis-continuity in the electro-chemical potential at the
device-contact interface in the linear-response theory [72], and, for the non-linear
theory presented here, a dis-continuity in f(zE) at the device-contact interface. If we
simulate a ballistic wire, the occupation factor calculated for the wire will be the
average of the occupation factors in the contacts,
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fw(E)= —%— [foE—Hc, ) +L,(E—Hc, ) ] where ¢, is the electro-chemical potential in

the left (right) contact. The contact resistance, which appears as a dis-continuity in

f(z;E), is a natural result of making the voltage and current measurements between

two equilibrium regions [78]. It must appear if we are to find the two-terminal
2

conductance of M-%E—— for a ballistic wire,

An interesting property of the equilibrium boundary condition is that while
current is conserved in the device, it is not conserved in the contacts. If there is
scattering throughout the contact regions, then the contacts must be in equilibrium far
from the device. Thus no current flows deep inside the contacts, although current
flows from the contacts into (or out of) the device. The current density decays
exponentially away from the device with a decay length Ly =v14. If scattering is
present in the boundary region adjacent to the device, then the same lack of current
conservation occurs for the incident equilibrium flux boundary condition used in the
Wigner function and Monte Carlo simulations and the Dirichlet boundary conditions
used at ohmic contacts in drift diffusion analysis. For example, in a drift diffusion
analysis it is common to assume a constant electrochemical potential, p, at the
contacts. Thus, the current density (J=-0oV}) is zero inside the contacts although a
current flows at the device contact interface. Further discussion of the boundary
conditions can be found in [69, 72].

In summary, we consider the boundary regions as providing boundary conditions

on the ’interesting’ region, the device. The boundary regions act as ideal reservoirs.
2

We find the correct contact resistance of 3—;—— per mode. We find excellent agreement

with the results from SEQUAL which uses the incident equilibrium flux boundary
condition. Current is conserved in the device but not in the boundary regions. This
condition is inherent in equilibrium boundary conditions with inelastic scattering
present throughout the boundary region.

2.3.2. Current Density and Current Continuity

Equations (2.12) through (2.15) are solved iteratively. After convergence, the
off-diagonal elements of G can be calculated from the general equation,
G< =GR 2<GR' and then the current density, J(r; E), is calculated from
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-eh .. IR (e o
Ty [ (V-V')G(,rE) ]

—ieh? "' dar’
4mm* ' 1,(r';E)

J(r.E)

[G** (., V;E)VGR(r,I";E)-GR(r,r;E)VGX* (r,";E) 12.17)

It is important that the continuity equation,
JAEV-J(r.,E) = 0 (2.18)
be satisfied. Mahan has proven that the continuity equation is satisfied for any self-
energy which can be written as 2§(x,x') = g(x,x") G§(x,x') where x=(r,t) and g is a
symmetric function which satisfies g(x,x")=g(x’,x) [58]. This is true of the self-
consistent first Born treatment of the electron-phonon interaction. We have, however,
ignored the real part of TR in solving the coupled equations (2.12) - (2.15). We show
below that (18) still holds in our formulation of the coupled equations, (2.12) - (2.15).
Starting with equations (2.17) and (2.12), we can show that
pmE) _ n(rE)
HIME)  t(@E@E)
In equilibrium, (2.19) is a statement of detailed balance and is equal to zero at each
energy [56]. This can be seen after noting that in equilibrium [69],
BB _ 1
T(E)  H(E)

(2.19)

1
—e—V J(rE) =

(2.20)

and
1""fo (E) = 1
T(E)  T(rE)

Away from equilibrium, we must check that the quantity J'dE V+J(r;E) is zero.

We write % and -Tlp- in (2.19) using (2.14), so that (2.19) integrated over energy

(2.21)

becomes
1 dEVJ(rE) = dE—%-n— dE’ {F(rE-E"n(r;E")p(r;E) — F(r;E-E)p(r;E)n(r;E) (2.22)
e R

The right hand side of (2.22) is anti-symmetric under interchange of E and E’ and is
thus equal to zero. Thus, the divergence of the current in the device is zero.
Numerically, we find that the current is conserved throughout the device to within a
few percent.
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2.3.3. Terminal Current

The total current flowing at each energy is obtained by integrating J(r;E) over a
cross section of the device. Choosing the cross-section to be the device contact
interface, we can use the divergence theorem to convert the surface integral into a
volume integral over the contact since there is no current flowing out the back of the
contact at teo. We can then write the terminal current in an alternate form [88]

Rie.r’:B)(2 [fo
I = [dB jdr—;-%jdr' |G” (r.rB)| { Frie) __1 } (2.23)

reC To(r;E) @B  1,@"E)

We have checked numerically that Eq. (2.23) gives the same result for the terminal
current as obtained by integrating the current density over a cross-section of the
device.

Assuming translational invariance, the 3-D quantities in equations (2.13), (2.17),
and (2.23) are reduced to 1-D quantities by projecting onto the transverse eigenstates
and averaging over the cross-section. The details are described in Appendix A.
Details of the numerical solution of equations (2.12) - (2.15) are given in Appendix B.

2.3.4. Coherent and Incoherent Components of the Current

The coherent and incoherent contributions to the total current can be calculated
from (2.23) by breaking up the integral over r’ into two parts as described in {89]. We
define the coherent current as that part of total current which traverses the device from
one contact to the other without suffering a de-phasing event. For a two contact
device with contacts C; and C, sandwiching the "device" with r in contact C,, the
integral in (2.23) would be broken up as follows.

The coherent current is obtained by only integrating r’ in (2.23) over contact C,.
fo (E_IJCZ)

m (2.23) as W.

Since r’ is constrained to C,, we use (2.20) to write

1
Tp(r';E)
Then the coherent current is given by

_ eh (o, IGREEBI? Jf By -
Locherent = JdE c{ dr— Cjzdr W EER D) {o(E ie,) fo(E—uc,)} (2.24)

If we write a transmission coefficient as

|GR(r,r";E) |

T4 (r;E) 1 (r’;E) (2.25)

T(E) = [dr [dr'B?
¢ G

(2.24) takes the form of the well known tunneling formula [17,41].
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Looherent = % [EETE) [fo(E—uc,)—fo(E—ug)] (2.26)

At first it may seem surprising that the inelastic scattering times in the contacts
enter the expression for the transmission coefficient, T(E). We show in Appendix C
that the factors of 7y cancel after performing the integral in (2.25) and that the
transmission coefficient takes the same form as that obtained by Fisher and Lee for
coherent transport across the device [90] (see Appendix C). However, this does not
mean that the coherent component of the current is unaffected by inelastic scattering
within the device. The quantity IGR(r,r';E)I2 in (2.25) is defined by (2.12) which
includes an imaginary potential proportional to the dephasing rate —2% If the de-
phasing rate is increased in the device, |G |2 in (2.25) is decreased and thus, T(E) is
decreased.

The incoherent component of the terminal current at C; is due to that part of the
flux that has suffered a de-phasing event in the device. Thus, the incoherent
component is obtained by restricting the integral over r’ in (2.23) to the device region.
Note that if de-phasing is absent in the device, _'El_ and —5; in (2.23) will be zero in the

L]
device, and the incoherent component will be zero. As mentioned earlier, the

coherent current is obtained by integrating r’ in (2.23) over C,. Also, it can be shown
that the contribution from integrating r’ over C; gives zero. The sum of the coherent
and incoherent components of the current thus add up to the total current as they must.

2.3.5. Elastic Phase Breaking

Elastic phase breaking scattering occurs when the density of oscillator modes,
Jo(hw), is proportional to 8(hw). In this instance, 1/ To(TE) o« No(r;E) [72]. Since
the scattering is elastic, current is conserved at each energy, VeJ(r;E) =0 V E.

For purposes of comparison, it is convenient to have the capability of using a
constant T, independent of position and energy that is not calculated self-consistently
so that 1/t is not proportional to N,. However, we must insure that current continuity
is preserved. Since

1 p(r;E) _ n(rE)

il VoJ r;E = —

M s S )

current conservation can be ensured if n(r;E) / 1, (r;E) = p(r;E) / 1,(r;E). Dividing both
sides by N, (r;E) and re-grouping gives
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1 _ _f(rE)
BHIE)  t%(E)
If we set T, constant, then we use (2.27) to calculate 7, in place of Eq. (2.14), and thus

ensure current conservation. Examples will be given below of the use of a constant T,
to simulate de-phasing without inelastic transitions.

(2.27)

2.3.6. Energy Current and Power Dissipation

The energy current, Jg, is
Je(r) = [dE EJnG; E) (2.28)

where Jy is the particle current. Note the Jg is the foral energy current not the kinetic
energy current, Jg, ; E=E; +E.(r) where Ey is the kinetic energy and E.(r) is the
potential energy. The power density, P(r), due to loss of energy from the electrons to
the phonon bath is

P(r) = =V Jg(r). (2.29)

Again, note that in Boltzman transport theory this is always written as the sum of two
terms, a term due to the kinetic energy, and a term due to the potential energy,

P(r) = -V +Jg, (r) + &) * J@) (2.30)

(cf. eq. (7.39) of [91] ). The derivation of (2.30) from (2.29) is trivial but will be
shown here since working with total energy is unusual and has caused confusion.
Re-write (2.28) as

Je(®) = dek {[Ec(r)+Ek]JN(r;Ek)}

= Ec(r) Jn(r) + Jg, (r)

and take the divergence to obtain (2.30).

2.3.7. Mean Energy of the Current
The mean energy of the current, Y, is defined in 1-D as
[ dE EX(zE)

= 2.31
j dE J(zE) @3

Ky

For low bias, the heat current is defined in the usual way as Jq = Jg — N where L is
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the electrochemical potential [77]. From the definition of py, Jo =Ny — I), and
from the definition of the Peltier coefficient (in 1-D), ®t=Jgo/Jy =H; — l. Also, in 1-
d

D, the p:jwer density is proportional to the slope of py: P(z) =—%JE =—IN e Hy.

For this reason, the concept of iy is useful for understanding the location and intensity 7
of power dissipation in devices.

2.4. Results and Discussion

The effect of phonon scattering in a simple double barrier device and in a double
barrier device with an emitter quasi-bound state will be analyzed. Inelastic scattering
will be compared to simple energy broadening such as that obtained from the Breit-
Wigner formula. The coherent and incoherent components of the total current will be
calculated. By considering the local density of states, N,(z;E), the non-equilibrium
occupation of the energy levels, f(z;E), the energy spectrum of the current density,
J(z;E), and the consequent quantities, the mean energy of the current density, pj, and
the power density, P(z), throughout the device, we will obtain a clear picture of the
effect of the electron-phonon scattering on the electron transport.

2.4.1. Device Description

The first device that is modeled is a simple double barrier resonant tunneling
diode (DBRTD). The conduction band for the device is shown in Fig. 2.1. The
temperature is 77K. A constant effective mass of 0.067 is used. The barrier-well
conduction band discontinuity is 220 meV. A linear potential drop is applied. The
electrostatic potential is not calculated self-consistently. The lattice constant for the
spatial grid is 54.

2.4.2. Comparison with Coherent Transport

Fig. 2.2 shows a comparison of I-V characteristics. The dashed line is the output
of the program SEQUAL [42-44,80] which is based on equation (2.26) and assumes
phase-coherent transport from contact to contact. Furthermore, the boundary
conditions in SEQUAL are specified by an equilibrium incident momentum
distribution. The solid line is the output from our quantum kinetic equation solver,
labeled KKB, with the phase relaxation time set equal to a constant value,
independent of position and energy, of 10 ps. The imaginary term in eq. (2.12) is
0.033 meV. This is a factor of 20 smaller than the smallest energy scale in the
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Figure 2.2.  Comparison of the results of simulator based on the Keldysh formalism
(KKB) with the results of SEQUAL which assumes phase coherent
transport. A constant Ty of 10 ps is used in the KKB simulator.
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problem which is the resonance width. Thus, we arc approximating a pure-state
retarded-Green’s function, GR =(E—-H,+i8)!, by letting the infinitesimal
imaginary term, i8, become non-zero but small. In this limit, the current is essentially
given by (2.24), which is identical to (2.26). Thus, in this limit, we would expect the
two simulators to give the same result. Fig. 2.2 shows that this is indeed the case.

The two simulators not only differ in their theoretical basis, but they also differ
in their numerical approach. SEQUAL solves for the transmission coefficient, T(E),
using a scattering matrix approach. The potential is discretized into a series of steps
and the plane-wave eigenstates of each step are matched at the step boundaries. Thus,
the dispersion relation is parabolic for all energies above the conduction band. The
KKB solver, uses finite-difference to solve (22.12) which is equivalent to tight binding

[72] so that the dispersion relation is E = —I—i—-,z—- [1—cos(ka)]. The inflection point of
ma

the tight-binding band, using the lattice constant and effective mass stated above,
occurs at E=4.5 eV. At high applied voltages, when the electrons come through the
resonance high into the tight-binding band of the collector, one would expect a
difference in the predictions of the two simulators.

2.4.3. Elastic Phase Breaking versus Inelastic Scattering

In Fig. 2.3, the effect of inelastic scattering is compared to elastic energy
broadening. For the solid line, both Debye and Einstein oscillators are present. The
strengths of the two scattering mechanisms are chosen such that at Skg T + h, above
the Fermi energy in the emitter, the scattering rate, associated with the retarded self-
energy, 1/t4, due to optical phonons is ~ 10'3 571 and the scattering rate due to the
Debye oscillators is ~ 10! s71. At non-degenerate energies, the rate 1/1, should be
similar to that calculated from Fermi’s Golden Rule. The rate 1/1, is calculated self-
consistently with G< and, therefore, is position and energy dependent and decreases
with decreasing energy.

At peak current, between the barriers, 1, varies with energy from 0.53 ps at the
bottom of the resonance to 0.07 ps one optical phonon energy above the bottom of the
resonance [92]. To compare with elastic phase breaking, using a constant 74, we have
calculated an average 7, using the energy distribution of the current density as a
weighting factor. That is
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Figure 2.3. Comparison of inelastic scattering, elastic phase-breaking scattering,
and phase coherent transport (SEQUAL). For the solid curve, both
Debye and Einstein oscillators are present. For the long-dashed curve,
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only elastic phase-breaking is present; in the well, Ty =.46ps.
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where z, is the point in the center of the well. The value for <T¢(z,) > is 0.46 ps. At
the node in the emitter contact at the contact-device interface, <ty >=0.8 ps

<Ty(z5) > =

For the long dashed line in Fig. 2.2, T, is set to a constant .46 ps in the resonance
region and 0.8 ps in the contacts. As described previously, this results in elastic phase
breaking. Thus, the energy broadening is roughly the same for the two different
simulations; however, in one case there is inelastic scattering present; in the other
case, there is not. Also, re-plotted from Fig. 2.2 is the result from SEQUAL, (dotted
line).

Comparing the inelastic and elastic I-V characteristics, the shape of the linear
and peak part of the I-V curves is the same for both cases. The difference between the
two curves lies in the magnitude of the valley current. When there is inelastic
scattering present, the valley current is slightly larger because electrons can enter the
well at high energy and inelastically scatter down into the resonance thus enhancing
the current. For both curves, the peak current is slightly less than and the valley
current is more than the result from SEQUAL.

2.4.4. Coherent versus Sequential Tunneling

Since Luryi first introduced the alternative explanation of the I-V characteristic
of a DBRTD based on the sequential tunneling picture [93], there has been interest in
determining the fraction of the total current that is coherent and incoherent [7, 94].
For the I-V curve of Fig. 2.3 with inelastic scattering present, we have plotted the
coherent and incoherent components (Fig. 2.4a). Initially, before the peak current is
reached, the coherent part is the larger. For the valley current, the incoherent
component is larger. This is due to electrons scattering down from their injected
energy into the resonance. Past the valley current, the coherent component again
becomes larger.

We compare this to Fig. 2.4b in which the elastic curve of Fig. 2.3 is re-plotted
along with its coherent and incoherent components. For this simulation, Ty is kept
fixed as described above so that it does not vary with voltage. The current is evenly
split between its coherent and incoherent components.

A Breit-Wigner analysis indicates that the ratios of the coherent and incoherent
components of the current are inversely related to the intrinsic time and the phase-
breaking scattering time, Icoherent / Iincoherent = To / Tinminsic [6]. We estimate the
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intrinsic time using the relation =AE where AE is the full width at half

Tintrinsic
maximum of Ny (zg:E) = —TlImGR(zo,zo;E) at the well center at a bias of 135 mV

(peak cumrent) with 1T,=10ps. At peak cument, for Fig. 2.4b,
Leoherent / Tincoherent = 0.99 and <ty>/ Tinyrinsic = 1.0. Thus, if we use a constant time
for 14, we find good agreement with the prediction of a Breit-Wigner analysis.

2.4.5. Scattering Rates: Energy and Bias Dependence

The energy and bias dependence of Ty, and the inter-relationship between the
non-equilibrium occupation factor, f, the 3-D density of states, N,, and the inelastic
scattering time, T, in the self-consistent first Born approximation are demonstrated in
Figures 2.5a and 2.5b. Figures 2.5a and 2.5b are overlays of cross-sections taken in
position at the well center for the above three quantities plotted versus fotal energy
occurring at the peak current and valley current, respectively, of Fig. 2.3. The
quantities correspond to the simulation with inelastic scattering present. The scale for
Ty is on the left axis. The scale for N, is the right axis. The scale for f is not shown
but runs linearly from 0 to 1. Note that N, is the 3-D density of states which contains
all transverse energies. We now discuss the inter-relationships between the three
quantities.

The feature in T4 at point B in Figs. 2.5a and 2.5b is due to the turn on of optical
phonon emission. Point B lies one optical phonon energy above the resonance
bottom. In Fig. 2.5a, there is a corresponding feature in f which will be studied more
closely in Fig. 2.6. At point A, one optical phonon energy below the resonance, there
are prominent features in all of the quantities. There is a peak and precipitous drop-
off in the occupation factor, f. This is the result of electrons scattering down from the
resonance to fill the exponentially-vanishing states below the resonance. A bump in
the density of states also occurs, and there is a sharp decrease in 14. In the KKB
theory, this decrease in Ty is formally associated with the emission of phonons by
holes (in the conduction band). The small features at points C and D in T, correspond
to one Debye cut-off energy, 20 meV, below and above the resonance.

In Fig. 2.5b, the conduction band in the emitter is above the level of the
resonance and the resonance is 24 kg T above the Fermi energy of the collector. Thus,
the small occupation of the resonance level, ~0.03, is due to inelastically scattered
electrons from the emitter. Since the occupation is negligible, Fermi’s Golden Rule
should be a good approximation to the scattering time T,. This is correct above the
resonance. Below the resonance, the scattering time is dominated by the hole
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Figure 2.5.  (a) Overlay of f(z,;E), No(zo;E) and 14(z,;E) at (a) peak current, 135
mYV and at (b) valley current 225 mV. z, is the fixed point in the center
of the well. The scale for f is not shown but runs linearly from 0 to 1.
E; is the energy of the bottom of the resonance.



scattering rate, 1/t as discussed below.

The sudden increase in 1/t4 at point A is not due to absorption of optical
phonons by electrons. 1/1y is the imaginary part of ZR and it is the sum of the

electron outscattering rate 1/t, and the hole outscattering rate 1/t,. This results from—

the proper treatment of the Pauli exclusion principle built into the KKB formalism
[48]. For dispersionless optical phonons, the calculation of 1/t, and 1/1, is
particularly simple.

1
, o - 2.32
= ®) N(@o)No(E +hay)[ 1 - f(E + hay) ] (2.322)
+ [N(op) +1]No(E~ha)[ 1 ~ f(E-hay)]
1
—— o< N(g)No (Bt )f(E-h 2.32b
%® (009)No (E~Ticag)f(E~hax) (2.32b)

+ [N(ap) + 1]No(E+hicn)f(E + fox)

N is the Bose-Einstein factor, Ny is the electron density of states, f is the electron
occupation factor, and hay is the optical phonon energy. The position coordinate, r,
has been suppressed. In (2.32), letting E be the energy of point A, one finds that the
second term of (2.32b) is the largest. This represents the emission of optical phonons
by holes which is identical to the emission of optical phonons by electrons one optical
phonon energy above point A. At point B, the second term in (2.32a) dominates
which represents the emission of optical phonons by electrons.

The slight increase in 7, after point A is due to the decrease in f(E) above the
resonance. Point C occurs one Debye cutoff energy below the resonance. The Debye
oscillators cannot start contributing to the rate 1/7, until the energy is within a Debye
cutoff of the resonance. The increase in 1/t between the points A and B is due to the
Debye oscillators. At energies higher than the resonant energy, the scattering due to
the Debye oscillators is dominated by emission by electrons. Above point B, Ty is
determined by the second term in (2.32a). N,(E-hw,) is constant, f(E-hw,) is
negligible; thus, T, becomes a constant. Contrasting with point B in Fig. 2.5a, 1, is
not constant, but decreasing since f(E-H, ) is not negligible.

Thus, at energies above resonance, when f(E-ha, ) can be ignored, 7 is given by
the same terms as found in Fermi’s Golden Rule. However, there is a difference.
Fermi’s Golden Rule treats the one phonon interaction to first order while the self-
consistent first Born approximation (SCFBA) treats the one phonon interaction to all
orders. Thus, in the SCFBA, the density of states is affected by the scattering rate.
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This effect is seen at point A in Fig. 2.5a and point B in Figs. 2.5a,b (there is a slight
decrease in N, (E) with increasing energy).

To summarize the above discussion of Fig. 2.5, below the resonance, Ty is
determined by a term in the KKB formalism that corresponds to the emission of
phonons by holes. This term would be absent in a one-electron picture. It affects the
shape of the tail of the resonance. Above the resonance bottom, Ty is dominated by
emission of phonons by electrons, and the terms in the expression are the same terms
that appear in Fermi’s Golden Rule when the occupation factor can be ignored. The
feedback between Ty and N,, in the SCFBA alters the density of states.

2.4.6. Non-Equilibrium Distribution Function

Inelastic scattering affects the equilibration of energy levels in the resonance.
We demonstrate this in Fig. 2.6. In Fig. 2.6, we plot the occupation factor in the
center of the well at peak current for the inelastic and elastic I-V curves of Fig. 2.3,
the KKB curve from Fig. 2.2, now labeled "Coherent", and the tail of a Fermi-Dirac
function with a Fermi-energy 4 meV below the resonance and a temperature of 205 K
labeled "Feq". The arrow represents the energy of the bottom of the resonance.

When only elastic phase-breaking is present, the sequential tunneling picture
predicts that the occupation of the well should be proportional to the occupation in the
emitter [95]. This is what we find. Above the bottom of the resonance, the occupation
in the well for both the elastic and coherent curve is a scaled version of the
equilibrium Fermi-Dirac factor in the emitter. For the elastic curve, T is set to a
constant value in the well of 0.46 ps and for the coherent curve, 1, is set to 10 ps.
There is essentially no difference in the occupation of the well for the two cases.
With only elastic phase-breaking processes, the different energies are in dis-
equilibrium, and the occupation factor cannot be fit to the tail of a Fermi-Dirac
function.

When inelastic scattering is present (solid line), the electron-state occupation is
shifted to lower energies as expected. Furthermore, the occupation above the
resonance can be fit fairly well to the tail of a Fermi-Dirac function (long-dashed
line). The fit is good for energies above the resonance and below the threshold for
optical phonon emission, E; <E <E +hw,. At energies above the optical phonon
energy, there is a depletion in the calculated occupation factor compared to the
equilibrium factor. This is precisely what is expected. As pointed out by Yang er al.
[96] and Hess [97], rapid optical-phonon scattering tends to deplete the distribution of
carriers with kinetic energies larger than the phonon energy. The phonons tend to cut
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Figure 2.6.  (a) f(E) at the well center at peak current (135 mV) for the three cases
of inelastic scattering, elastic phase-breaking scattering (from Fig. 2.3)
and coherent transport (from solid curve, Fig. 2.2). The tail of a
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off the high-energy part of the Boltzmann tail. This is what is shown by our
simulations. '

2.4.7. Energy Distribution of the Current

The energy distribution of the current density gives us information about the
inelastic scattering and power dissipation within the device. In the following plots,
Figs. 2.7 and 2.8, we consider the spatial variation of the inelastic scattering intensity
and power dissipation. We find a relatively high intensity of inelastic scattering and
power dissipation in the resonant regions.

The energy distribution of the current density, J(z; E), at the bottom of the valley
current (225 mV in Fig. 2.3) with inelastic scattering present is plotted versus position
and energy in Fig. 2.7a. The current enters at the high energy of the emitter, the right
side, and the energy distribution changes very little until the 5 nm region of the well.
Then there is a major shift in the distribution from the high incoming energy down to
the bottom of the resonance level where the distribution peaks sharply . This is shown
clearly in Fig. 2.7b where two cross-sections taken from Fig. 2.7a along lines of
constant position are plotted. Both curves are taken from a point 1 nm outside the
well in the adjacent barrier. The long-dashed curve is from the emitter barrier, and the
solid curve is from the collector barrier. The points on the energy axis labeled Eg,
Ec, and Ef are the energies of the resonance, the emitter conduction band, and the
emitter Fermi level, respectively. Exiting the well, there is little change in the
distribution in the collector barrier and lead. Thus, the well is a region of relatively
intense inelastic scattering compared to the leads.

This result seems reasonable on physical grounds. In the resonance, the group
velocity of the electrons is slow compared to the surrounding regions. If the inelastic
scattering time is roughly position independent, then the inelastic scattering length is
shorter in the resonance region than in the leads and a higher intensity of energy
relaxation results. Defining the power density as the power dissipated by the electrons
to the phonon bath, then a peak in the power density results in the region of the
resonance. :
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2.4.8. Power Density

The mean energy of the current density, iy, is plotted versus position in Fig. 2.8a
for the peak current, 135 mV, and the valley current, 225 mV, of Fig. 2.3 when

inelastic scattering is present. This shows clearly the relatively large drop in energy —

that occurs in the well. iy is defined such that the power density is proportional to its

derivative, P(z) = —Jy % ;. The power density, plotted in Fig. 2.8b, shows a large -

peak in the 5 nm region of the well.

Although most of the power loss seems to be occurring in the well, most of the
IxV loss is actually occurring in the contacts (not shown) as in the usual Landauer
picture [98]. Only the device region has been plotted in Figs. 2.8a and 2.8b. The total
integrated power, Idz P(z), in Fig. 2.8b (225 mV) is ~ 0.18 IV. In a real device, the
leads are metallic n* material and they are very long, microns instead of nanometers.
Very deep in the emitter and collector leads the current is distributed in energy as it
would be in an n* resistor. The mean energy of the current, iy, would lie a distance ©t
(the Peltier coefficient) above the quasi-Fermi energy p. Since the applied bias is
225 mV, py must drop by 225 meV across the real device. In Fig. 2.8a, the total drop
across the "device" is ~ 41 meV which gives the factor of 0.18. Thus, in a real device,
the majority of the power dissipation is taking place in the leads and contacts. There
is simply a peak in the power density in the resonance region.

The concept of the mean energy of the current density, Wy, provides a way of
qualitatively understanding the location and intensity of the power dissipation in
devices and placing upper limits on the amount of power dissipated in any one region.

In 1-D, when J=J z, P(z) =— % JE@)=-IN % Ky. The net power being dissipated

between points zg and z; is JN [ Hy(zo)—5(z1) ] where Jy is the particle current. Thus,
the net power dissipated in a region is proportional to the drop in Yy in that region.

As an example, consider the peak current of the device (135 mV). In the Luryi
picture [93], at zero temperature, Jy in the emitter lead equals Ef/2 where E; is the
Fermi energy of the emitter contact, and the energy of the bottom of the emitter
conduction band is taken to be zero. Since the bottom of the emitter conduction band
is aligned with the bottom of the resonance in the well, the maximum drop possible in
Ky between the barriers is E¢/2. Thus, the maximum power that can be dissipated
between the barriers is Jy Ef/2 where Jy is the particle current density. For Fig. 2.8,

b
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this estimate is a factor of 5 higher than the calculated power dissipated in the well.

2.5. Summary and Conclusion

The non-equilibrium Green’s function approach provides a powerful tool for
investigating the effect of energy broadening and inelastic scattering in quantum
transport. The effects of both constant and energy dependent self-energies calculated
in the self-consistent first Born approximation can be compared. Our approach allows
the energy spectrum of the phonons to be included, and it allows a self-consistent first
Born treatment of the electron-phonon interaction. It also allows the calculation of a
number of quantities which give insight into the effect of inelastic processes on
quantum electron transport throughout the device. The non-equilibrium occupation
factor, f(z;E), shows the effect of inelastic scattering on the equilibration of energy
levels. With inelastic scattering present, the occupation of the well of the simple
resonant tunneling structure at the peak current can be described by the tail of a
Fermi-Dirac factor up to the optical phonon energy at which point the calculated f is
depleted. With no inelastic scattering, the occupation of the well is a scaled version of
the occupation in the emitter. The local density of states, N,(zE), displays how
different resonances align with each other and with the conduction band. We have
shown that the enhanced valley current due to inelastic scattering is coincident with
enhanced occupation of the resonant state. The process of filling the state also is seen
in the energy dependent current density, J(z;E), which undergoes a sharp downward
shift in the resonance region. This shows up as a peak in the power density between
the barriers. Knowing J(zE), one can calculate the mean current energy, Wy, and
hence the power density throughout the device.

The concept of the mean current energy was introduced and shown to be a
valuable intuitive tool by which to understand the spatial variation and intensity of the
power dissipation. The mean energy of the current density, indicates where power is
being dissipated in a device. We have consistently found peaks in the power density
when current passes through a resonance; however, only a fraction of the total IV
power is actually dissipated there.

Thus, by including the energy coordinate explicitly and performing energy-
resolved computations, one can calculate the occupation of levels f(z; E), the local
density of states, N,(zE), the energy distribution of the current density, J(z; E), the
mean energy of the current, Yy, and the power density throughout the device. These
quantities provide a detailed picture of the effect of inelastic transitions on quantum
transport.
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CHAPTER 3
THE EFFECT OF EMITTER QUASI-BOUND STATES ON
THE I-V CHARACTERISTIC OF DBRTD’S

3.1. Introduction

The effect of emitter quasi-bound states in double barrier resonant tunneling is
studied numerically using an approach based on the non-equilibrium Green’s function
formalism of Keldysh, Kadanoff, and Baym (KKB). Our method is restricted to
steady-state. The electron-phonon interaction is treated in the self-consistent first
Born approximation. The phonons are modeled as a bath of independent oscillators
which interact with the electrons locally. When an Einstein spectrum is used, this
corresponds to a simple model of deformation potential dispersionless optical
phonons. In the device simulations, both Einstein and Debye oscillators are present.
The Debye oscillators allow for small energy transitions. The energy used for the
Einstein phonons, &g, is 36 meV. The phonon coordinates are traced out by assuming
that the phonons remain in equilibrium. The results from the KKB simulator are
compared with results from SEQUAL 2.1 which assumes phase coherent transport
[42,43] and recent experiment [99].

3.2. IV Characteristics and Density of States

Three double barrier devices are simulated. The difference between them lies in
the lengths of the emitter and collector leads. A sketch of the conduction band profile
is shown in Fig. 3.1. The temperature is 77K. A constant effective mass of .067 is
used. The barrier-well conduction band discontinuity is 220 meV. A simple linear
potential drop is used. The electrostatic potential is not calculated self-consistently.
The strength of the Einstein phonons and Debye oscillators is chosen such that at 5
kg T+¢&g above the emitter Fermi energy, the average scattering rate due to the Debye
oscillators is 1.0x10'2 57! and the average rate due to the Einstein phonons is
10.x10'%2 57!, The rates are calculated self consistently with G< and therefore are
position and energy dependent and decrease with decreasing energy. The difference
between the three devices simulated lies in the length L in Fig. 3.1. The I-V
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characteristics for lengths 10, 15, and 20 nm are shown in Figs. 3.2-3.4 respectively.
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Figure 3.1.  Conduction band of device simulated showing quasi-bound states and
schematic of inelastic transport process.

Fig. 2.3 shows a comparison of the I-V characteristics for a device with lead
lengths, L, of 5 nm calculated from the KKB simulator and SEQUAL. The peak
currents occur at the same bias and the peak current from the KKB simulation is
slightly less than the peak current from SEQUAL. No emitter quasi-bound state is
present.

Fig. 3.2 shows the I-V characteristic when the lead lengths, L, are 10 nm. The
peak current from the KKB simulator is now larger than the peak current from
SEQUAL and occurs at a slightly higher voltage. Corresponding to the peak bias in
the KKB simulation, 135 mV, Fig. 3.2b shows the 1-D density of states No(z;E) as a
shadow plot versus z and E with the conduction band super-imposed. The transverse
energies are ignored in the plot for clarity. Dark regions are high density of states.
The dark region between the barriers is the bottom of the quasi-bound state in the
well. Fig. 3.2b shows that an emitter quasi-bound state is beginning to form just below
the emitter conduction band and that the peak current in the KKB simulation occurs
when the resonant state in the well lines up with the quasi-bound state in the emitter
lead below the emitter conduction band.

For Fig. 3.3, the lead length L is 15 nm and the emitter quasi-bound state is well
defined (Fig. 3.3b). The 1-D DOS is plotted in Fig. 3.3b for the peak current at 170
mYV. The peak occurs when the two states align. The first peak in Fig. 3.3a is due to
the emitter conduction band passing through the resonance.

When the lead length L is 20 nm, two well defined peaks occur in the I-V
characteristic (Fig. 3.4a). The second peak occurs when the emitter quasi-bound state
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Figure 3.3. a) I-V of device with L = 15 nm. b) 1-D density of states versus
energy and position at peak current, 170 mV.

aligns with the bottom of the resonance in the well.

A recent experiment has observed features in the I-V characteristic that could be
attributed to the prescence of quasi-bound states in the emitter lead [99]. To obtain a
deep well in the emitter lead, the intrinsic region was 200 nm long on either side of
the barriers. It was not feasible to simulate a device of that length with our present
computational resources. The Green’s function is calculated by a tight-binding
technique [72] with a node spacing of 5&. The calculation time increases as N2
where N is the number of nodes. Therefore, the linear potential was used so that well
defined emitter states could be formed in relatively short, 15-20 nm, leads. The effect
of a self-consistent simulation is to stretch out the I-V characteristic along the voltage
axis [42]. The experimental results are similar to Fig. 3.3. There is a small NDR
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and position at first peak current. c) 1-D density of states versus energy
and position at second peak current.

region associated with the first peak but the first peak is not well separated from the
second peak as in Fig. 3.4. The structure of Fig. 3.3 was also simulated at T = 150K.
The I-V characteristic became slightly more rounded but the change was minor. At
the peak current, the aligned states lie 12 meV below the emitter conduction band.
The effect of the Debye oscillators on the magnitude of the peak current was
investigated by reducing their strength by a factor of 16. This resulted in only a 10%
reduction in the peak current. Thus, if an emitter quasi-bound state exists in an
experimental device near the bottom of the emitter conduction band at 77K, it is likely

to be largely filled by inelastic scattering and contribute a large peak to the I-V
characteristic.
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3.3. Current Flow and Power Dissipation

The first peak in the I-V characteristic in Figs. 3.3 and 3.4 corresponds to the
conduction band in the emitter crossing the resonance level in the well (Fig. 3.4b).

The second peak occurs when the quasi-bound state in the emitter lead aligns with the —

resonance in the well (Fig. 3.4c). In Fig. 3.4c, all of the current is flowing through
inelastic channels. All of the current is coming from the emitter, inelastically
scattering down into the quasi-bound state and flowing out through the resonance. At
the first current peak (Fig. 3.4b), no current is flowing through the emitter quasi-bound
state. This is clearly shown in plots of the mean current energy.

The mean current energy, [y, corresponding to Fig. 3.4 is plotted in Fig. 3.5a.
For the first current peak, the slope of pj is smallest in the emitter lead, next largest in
the collector lead, and largest in the well. This ordering is expected since the power

density is proportional to % B;. The maximum power density is in the resonance

region. In the collector region, where there is plenty of phase space into which to
scatter, the power density is greater than in the emitter lead. The lack of drop in the
emitter lead indicates that no current is flowing through the emitter quasi-bound state.
At the second current peak, 245 mV, there is a large drop in pjy in the emitter lead.
This is what must occur if current is to flow through the emitter quasi-bound state.

The power density for the two current peaks is shown in Fig. 3.5b. At 150 mV,
there is a peak in the power density in the well only. At 245 mV, there are large peaks
both in the well and in the emitter lead corresponding to the two quasi-bound states.
Again, a cautionary word is in order. Fig. 3.5b does not imply that the majority of the
I-V power loss is occurring in the quasi-bound states. The drop in py in the emitter
lead at a bias of 245 mV is 39 meV. Thus, 39/245 (.16) of the I-V power is being
dissipated in the emitter quasi-bound state; 16/245 (0.065) of the I-V power is
dissipated between the barriers; the majority of the power is still being dissipated in
the contacts.

3.4. Conclusion

Numerical solutions of the coupled non-equilibrium Green’s function equations
are presented for different double barrier resonant tunneling devices in the presence of
optical phonons and Debye oscillators. Plots of the 1-D DOS show that when a
quasi-bound state in the emitter aligns with the state in the well, a large current peak
can occur, larger than that due to the emitter conduction band passing through the
resonant state. For the device with the I-V characteristic most similar to that observed
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experimentally (Fig. 3.3), two different temperatures were simulated, 77K and 150K,
showing little difference on the overall I-V characteristic. Also, the strength of the
Debye oscillators was reduced by a factor of 16 and resulted in a decrease of only
10% in the magnitude of the peak current. Thus, if such a state exists in an
experimental device, it will be largely populated by inelastic scattering and contribute
a peak to the I-V characteristic considerably larger than that predicted by the coherent
transport model.
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CHAPTER 4
' THE EFFECT OF BARRIER ASYMMETRY ON THE PHONON PEAK
IN DOUBLE BARRIER RESONANT TUNNELING DIODES

4.1. Abstract

The effect of barrier asymmetry on optical phonon enhanced tunneling through
double barrier resonant tunneling structures is investigated theoretically both
numerically and analytically, solving the coupled non-equilibrium Green function
equations for a model Hamiltonian. The trends from the numerical simulations are
matched well by the results of the analytical expressions. An analysis of the relative
effects of elastic dephasing versus optical phonon scattering on enhancing the valley
current is made. Within the local phonon model, the effect of barrier asymmetry on-
the I-V characteristic is to enhance the ratio of the phonon peak to the main resonant
peak not by enhancing the phonon peak but by reducing the main peak. The phonon
peak is found to be independent of the collector barrier over a wide range of
parameters. The effect of barrier asymmetry on the occupation of the resonance is
described.

4.2. Introduction

Double barrier resonant tunneling through semiconductor heterostructures has
been the subject of intense interest over the past decade, both experimentally and
theoretically [100]. Double barrier resonant tunneling diodes (DBRTD’s) are of
technological importance for high frequency applications. The investigation of the
frequency limits of DBRTDs led to a discussion of resonant versus sequential
tunneling [93,95] and investigations of the effect of dephasing on the transmission
coefficients [7] and I-V characteristic [101]. Inelastic and dephasing processes are
also of interest since they enhance the valley current and hence decrease the peak to
valley ratio, an indicator of device quality [11,38,40,51,102-108]. Interest in the
effect of inelastic processes in resonant tunneling, in particular the effect of optical
phonons, was enhanced by the observation of optical phonon assisted tunneling in
DBRTDs by Goldman, Tsui, and Cunningham [109]. The experimental observation
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led to a number of theoretical investigations, all of which confirmed that the
mechanism of optical phonon scattering could produce a small satellite peak or
shoulder to the main resonant peak in the I-V characteristic in the region of the valley
current [9,10,13,21,33,110-112]. The initial work of Goldman, Tsui, and
Cunningham was followed by several experimental studies of resonant tunneling in a
longitudinal, B||J, magnetic field [113-116] which showed evidence of phonon
assisted tunneling of magnetopolarons from quantized Landau levels in the emitter
[114-116]. A theoretical study followed which stressed the importance of phonon
assisted tunneling as opposed to phonon coupling in the well for correctly explaining
the magneto-tunneling data [18].

The experimental data shows evidence for both GaAs-like and AlAs-like LO
phonons. Goldman et al. concluded that the phonon peak in their structure was due
to electrons interacting with AlAs-like LO phonons in the Aly4Gag gAs barrier [109].
Leadbeater et al. found evidence for both types of phonons in structures with 5 and 6
nm GaAs wells and evidence for only GaAs-like phonons in the structure with a 11.7
nm GaAs well. They hypothesized that the wavefunctions in the narrow quantum
wells penetrated deeper into the Aly 4Gag g As barriers enhancing the coupling with the
AlAs-like modes [114]. Supporting data was provided by Boebinger et al. who found
only a slight contribution from AlAs-like modes in a magneto-tunneling study of an
AlAs - GaAs DBRTD with a 10 nm well [115].

Turley and Teitsworth [45-47,117] have provided a credible answer to the
question regarding the type of phonon responsible for the phonon peak by studying
the matrix elements of the phonon modes using the phonon model of Mori and Ando
[118] and the approach to transport of Chevoir and Vinter [13]. For narrow wells, the
symmetric interface modes, which have the frequency of the bulk AlAs LO phonon,
are the dominant scattering mechanism, while for wider wells, the confined modes in
the well, which have the frequency of the bulk GaAs LO phonon provide the
dominant scattering.

Experimental investigations of asymmetric DBRTDs have shown a strong effect
of barrier asymmetry on the feature in the I-V curve that could be associated with the
phonon peak. In fact, the feature is strongly enhanced with respect to the main peak
in one bias direction [4, 104, 119,120]. This observation has prompted our theoretical
investigation of the effect of barrier asymmetry on the phonon peak. The structure we
consider is shown in Fig. 4.1. We will analyze the effect of different collector barrier
heights both numerically and analytically. Expressions for the current and occupation
of the well are derived based on the non-equilibrium Green function approach of
Keldysh, Kadanoff, and Baym [25, 48,51, 69].
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Buttiker showed that dephasing enhanced the off-resonant transmission
coefficients and hence the off-resonant current [7, 101]. Jauho showed that coherent
inelastic transitions within the well enhanced the off resonant transmission [121]. Our
process is a dephasing inelastic transition. We will show the effect of the dephasing
and the inelastic transition on the off-resonant current enhancement.

4.3. Model

The microscopic model is described in Chapter 2. In these calculations, the
Einstein delta function spectrum has been replaced by a normalized spectrum with a
finite width of 4 meV. For simplicity of calculation, the shape of the spectrum was
chosen to be rectangular. This replacement was found to be necessary for the
following reason. Four different devices were modeled all with the same scattering
strength U. The peak in the density of states at the resonant energy varies several
orders of magnitude from the symmetric device to the most asymmetric device. For a
true Einstein spectrum, 1/t,(E) e N,(E-hw,). Thus, the scattering rates one optical
phonon energy above the resonance would vary by several orders of magnitude
between the symmetric device and the most asymmetric device. This behavior seems
unphysical and is due to the phonon spectrum being always sharper than the
resonance. For the structures considered here, the intrinsic linewidth of the resonance
ranges from 10 peV to 1 meV. By giving the phonon spectrum a finite width, the
maximum value of the scattering rates become relatively uniform from device to
device. |

Like Anda and Flores [33], the device we model is strictly one dimensional as
opposed to the devices with infinite cross-sectional area. The structures modeled in
refs. [9,10,21, 111, 112] are also effectively one dimensional since no attempt is made
to include momentum transfer in the direction parallel to the direction of transport.
There is one major reason for this choice. Since our scattering model is local, the
resulting scattering is isotropic; all transverse energies are equally coupled. For a
DBRTD of infinite cross section, the density of states in the well is a step function that
turns on at the resonance. Since 1/1, o< Ng(E~ha,), the scattering rate due to optical
phonon emission turns on one optical phonon energy above the resonance and stays
on as shown in Fig. 2.5. This would result in a phonon step occurring in the valley
current as opposed to a phonon peak. In narrow well structures, the dominant
scattering from the symmetric interface modes favors small angles (see Fig. 2 of ref.
[46] ). Thus, the scattering rate in the well of a DBRTD due to polar optical phonons
in a narrow well of infinite cross section more closely resembles the scattering rate
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determined from local Einstein phonons for a strictly 1-D structure. Several papers do
not neglect the momentum transfer in the direction parallel to the direction of
transport [13,45-47,110, 117]. The results of these papers do not appear qualitatively
different from the papers which do neglect the transverse momentum transfer -
9,10,21,111,112].

‘We have chosen the strength, U, of the scattering to give a maximum scattering

time of 7T, =0.12ps. This corresponds to an imaginary part of the retarded self-
energy, /21y, of 2.75 meV, slightly less than the value obtained by Anda and Flores
of 4.4 meV (see Fig. 4 of ref. [33] ).

4.4 Analytical Analysis

Within the local phonon model, the equation for the current in the contacts and
the non-equilibrium occupation factor in the device can be combined into the
following expression.

I(ZE) = % [dz'T(z,2";E) [f(z;E) ~f° (z’;E)] 4.1)
where the quantities in (4.1) are defined as follows.
iy B2|GR@.2E) |2
T2 R = @B E) @2
_ Un(zE) -
£ = ThGD @3

In equilibrium, or if the scattering is elastic dephasing, f*(zE) = f(z;E). The current
into the left (right) contact at each energy is

ILgyEB) = [ dzIZE) (4.4)
Cw

where Cp(g) represents the region in the left (right) contact. In the device, I(z;E)=0
which gives an expression for the non-equilibrium occupation factor, f(z;E), identical
to eq. (2.13). In the contacts, f(z;E) is the Fermi-Dirac factor.

For the analytical analysis we consider a structure, Fig. 4.1, consisting of three
regions, the emitter contact, E, the collector contact, C, and the well, W, where, in
each region the occupation factor, f(z;E), is independent of position. Transmission
coefficients between the regions are defined as follows.
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Tew = [dz | d2'T(z,2E) @.7
z2eC  ZeW

Tww = [ dz | &2'T(z,2E) (4.8)
2cW  ZeW

Since we are not considering magnetic fields, the transmission coefficients are
symmetric. '

With the above definitions, the current per unit energy in the emitter contact is
£ [Tectfa—fe) + Taw(fe - i) “9
In the well, 1(z;E) is zero and (4.1) becomes

0 = Tgw(fw —fg) + Te,w(fw — fc ) + Tw,wfw — i)

which gives a general expression for the occupation of the well.

Ig =

Te,wik + Te,wfc + Tw,wfw
Tgw+Tew+Tww
Quantities in (4.9) and (4.10) are evaluated at a single energy. Equations (4.9) and

(4.10) will be used to analyze the current and the occupation of the resonance at the
bias of the phonon peak.

fw = (4.10)

First, consider the case of elastic phase-breaking scattering in the well. For this
case, 5, =f,,. Equations (4.9) and (4.10) yield

TgwTe,w

e
=2 | T c(fe—fc) + fr.—f, 4.11
Ig o E.c(fe—fc) TE,W+TC,W(E c) (4.11)
and
Te wie + Te wi
fu = EWIE + Icwic @.12)
TE.W+TC,W

the coherent component of the current is given by the first term in (4.11) and the
sequential component of the current is given by the second term.

For inelastic scattering, the emitter current per unit energy is given by (4.9). To
evaluate Iz, we must evaluate fiy at the incident energy. At the bias corresponding to
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the phonon peak, the incident energy, E;, is one optical phonon energy above the
resonant energy, E;. The quantity 1/7,(E;) in the well at a temperature of 4.2K is
given by the second term in (2.32b) which is proportional to the electron density one
optical phonon energy above the incident energy which is zero. 1/14(E;) is given by
the second term in (2.33a) which is proportional to the hole density at the resonance,
N, E;—hw,)[1-f(E;—hwy)], which is large. Thus, fiy(E;)=0. The equation for the
off-resonant emitter current per unit energy is then

g = ZITeclfe—fc) + Tewfe] 4.13)

The coherent component of the current is given by the first term in (4.13) and the
current in the optical phonon channel is given by the second term.

To obtain useful analytical expressions for the current in (4.11) and (4.13), we
must evaluate the transmission coefficients. We have done so solving a one
dimensional tight-binding model with the electron-phonon interaction at the n=0 site.
The central site is coupled to the emitter (collector) lead via the hopping matrix
element Wg(c). The hopping matrix elements in the leads are identical and equal to
W. The site energies in the emitter (collector) lead are Ugc) where Ug—Uc equals
the applied voltage, e| V|. This model is similar to the one investigated by Hershfield
et al. with the Hubbard U repulsion replaced by the electron phonon interaction [65].
In this model, the transmission coefficients are

Tec = [elc|GRE)|? (4.52)

Tew = FE‘%|GR(E)|2 (4.62)

Tew = Fc% IGR®)|? (4.7a)
B 2

Tww = [g] IGRE)|2 (4.82)

where I'g(c) is h times the rate of tunneling from the emitter (collector) lead to the
central site [122] and GR(E)=[(E-E,)+ -;-(rE+rc +W/1y)T! is the retarded
Green function on the resonant site where E; is the renormalized resonant energy.

Re-arranging (4.9) and using the transmission coefficients from the tight binding
model, we derive a general expression for the emitter current per unit energy and the
occupation of the central site.
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: Ie+1¢c +H/7
AE) = —2ImGR(E) = B+Ic+ig, (4.16)

E-E)? + %(I‘E +Tc +H/1y)?
is the spectral function of the central site and

e = o PE) _ nE)

VeJ(E) =e( LE W@ )

" is the divergence of the current density per unit energy at the central site [123]. The
energy dependence of I'g(c), T, and Ty is understood. The first term in (4.14) is the
component of the current that tunnels elastically, not necessarily coherently, through
the central site. The second term in (4.14) is the component of the current that suffers
inelastic transitions at the central site. This is the current in the optical-phonon
channel.

At resonance, the first term of (4.14) determines the current. Integrating over the
energy of the incident flux, assuming that the spectral function is sharply peaked
compared to the I'’s, the total resonant currentis

e 21!:1"EI‘C

= ——— 4.17
™ hTIg+Ic¢ @17
where the I"’s are evaluated at the resonant energy.

At the bias corresponding to the phonon peak, for elastic scattering, (4.14)
reduces to

e 1 e By TIEelc
IgE) = — Igle + = (4.18a)
sE) =y G © C h @)’ Te+Te
and for optical phonon scattering to
e
IgE) = — [Faf‘c +Ig ﬁ/'tq,] (4.18b)
7 h @)

where we have assumed that - (Cg +Tc + /g )P <(iw,)?, fg=1, and fo=0. Al
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quantities in (4.17) are evaluated at the incident energy, E;. The first term in (4.18a,b)
gives the coherent component of the current. The second term in (4.18a) gives the
sequential component of the current and the second term in (4.18b) gives the inelastic
component of the current.

The second term in (4.18b) shows that the current in the optical phonon channel
is independent of the coupling to the collector lead at the incident energy. The current
in the inelastic channel does depend, through the effect of the factor of [ 1-f(E;)] on
the value of 1/74(E;), on the coupling to the collector at the resonant energy.

To understand the effect of the various rates on the occupation of the central site,
we consider (4.15) at the incident energy and at the resonant energy. Since we are
interested in asymmetric barriers, let us assume that ['c<I'g. Furthermore, since we
are considering low temperature and high bias, we take fg=1 and fo=0. Then we find
that at the incident energy

1

fw(E;) = o) ~ (4.192)
Te(E)
and at the resonant energy
1
fwE;) = (4.19b)
TcE) .1
b/ty(E;)

where we have used 1/7,(E;)=0, 1/t,(E;)= 1/14(Ey), and I'g(E;)=0 (since the
resonant energy is below the emitter conduction band). In both (4.19a) and (4.19b),
the fraction in the denominator represents the ratio of the outscattering rate to the
inscattering rate at that energy.

As an example, assume the occupation of the central site is 1/2 at both the
incident and resonant energies. Then

TE(E:) = Wy(E;) = wUN,(E;)

and
Tc@E) = Wty(Er) = TUN,(E;)
~ Taking the ratio, we find
No(E;
Te(®) = g Te (E;) (4.20)

Since the ratio No(E;)/No(Ey is small, I'c(E;)<«<Ig(E;). The condition for
significant filling of the well to occur at the phonon peak is that the ratio



48

TcE,) _ No(E;) 4.21)
Fe@) NoE)

For structures we consider, the decrease in I'c from the incident energy to the
resonant energy is a factor of at most 2.0. At a bias, corresponding to the main
resonant peak, the condition for half-filling the resonance is I'g(E;) =I'c(E;). Thus,
(4.21) shows that to cause significant filling of the resonance at the bias corresponding
to the phonon peak considerably more asymmetry is necessary than that necessary to
cause filling at the bias corresponding to the main resonant peak.

4.5. Resqlts and Discussion

4.5.1. I-V Characteristics

In this section we present I-V characteristics calculated numerically using the
non-equilibrium Green function approach, for asymmetric devices, and we explain the
various attributes using the analytical results. The I-V characteristic of the DBRTD
with barriers of 220 meV and 500 meV is shown in Fig. 4.2. The coherent and
incoherent components of the total current are also shown. The coherent current is that
part of the current that traverses the device coherently. The incoherent current
component is the part of the current that has suffered a dephasing event in transit. The
method of separating the current into its coherent and incoherent parts is described in
section 2.3.4. Data points at the main peak, the phonon peak, and on either side of the
phonon peak are shown for the current calculated with elastic de-phasing scattering
instead of optical phonon scattering. The elastic-dephasing rate in each region,
contact, lead, barrier, and well, is chosen to be energy independent with a value given
by the maximum value of the optical phonon scattering rate in that region at that bias.
The method of introducing elastic dephasing is described in section 2.3.5. The left
barrier is 220 meV and the right barrier is 500 meV. Other parameters are given in
Fig. 4.1. Forward bias is such that the 500 meV barrier is the collector barrier as
shown in Fig. 4.1. The current is essentially totally coherent except at the phonon
peak.

To compare the results of the numerical simulations with the analytical
expressions derived from the tight binding model, we need expressions for I'gc) in
terms of parameters related to the actual tunnel barriers. We will use
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I-V characteristic of an asymmetric structure. The coherent and
incoherent components of the total current are also shown. Data points
at the main peak, the phonon peak, and on either side of the phonon
peak are shown for the current calculated with elastic de-phasing
scattering instead of optical phonon scattering. The elastic-dephasing
rate in each region, contact, lead, barrier, and well, is chosen to be
energy independent with a value given by the maximum value of the
optical phonon scattering rate in that region at that bias. The left
barrier is 220 meV and the right barrier is 500 meV. The temperature,

effective mass, and emitter Fermi energy are as described in Fig. 4.1.
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Tgcy = BVTg()
where v = (hk/m*)/2d is the attempt frequency in the well, d is the well width, and

Tg(c)y is the transmission coefficient through the emitter (collector) barrier. This =

relation arises naturally from an exact calculation of the transmission coefficient near
resonance of a DBRTD. To calculate the total off-resonant current from (4.18a,b) we
integrate the coherent and sequential components over the width of the emitter Fermi
sea, and we integrate the inelastic component over the width of the optical phonon
dispersion, 4 meV.

The ratio of the peak currents in forward and reverse bias for the main resonant
peak and the phonon peak are compared to the predictions from eqs. (4.17) and
(4.18b). First, consider the resonant peak current. The ratio from the simulation is 5.6
and from eq. (4.17), 5.2. The main impediment to current flow is the 500 meV
barrier. We rewrite (4.17) in terms of I'xgsop), the rate corresponding to the 220
(500) meV barrier.

_ e 2mI0T500

Tes T 31‘220+I‘500

I'sgo is an order of magnitude less than I'y5g. Thus, I =el'sgp. In the forward bias
configuration, the effective height of the 500 meV barrier is less than it is in the
reverse bias direction. Since transmission goes as exp(—2xd) where x is proportional
to the square root of the effective barrier height, a larger forward bias peak current is
indicated.

The ratio of the phonon peak in forward bias to the phonon peak in reverse bias
is 65 from the numerical simulation and 51 from eq. (4.18b). Considering the optical
phonon channel, the second term in (4.18b), /1, is the same at forward and reverse
bias. The difference arises from I'g. In forward bias, I'g =I'259. In reverse bias,
I'g =T'sgp. Thus, the ratio of the forward bias to reverse bias current in the optical
phonon channel is ~I"599/T"'sgg Which is large.

We note that in forward bias, the current at the phonon peak due to optical
phonon scattering is greater than that due to elastic dephasing scattering. This point
will be explored further in the discussion of Fig. 4.4b below. ‘

I-V curves of four different devices of varying degrees of asymmetry are shown
in Fig. 4.3. The corresponding structures are shown in Fig. 4.1. The solid line is from
a symmetric structure. The short dotted line is for the 220/500 structure, the same
structure as in Fig. 4.2. There are a number of interesting effects of barrier asymmetry
displayed in Fig. 4.3.
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The first trend to consider is the effect of asymmetry on the magnitude of the
main peak current. The physics is the same as described above for Fig. 4.2. A plot of
the peak current, normalized to the value of the peak current for the symmetric
structure, is shown in Fig. 4.4a. The ratio of the normalization factors for the curve
resulting from the numerical simulation and the curve resulting from Eq. (4.17)is 1.2.
The results of Eq. (4.17) run parallel to those from the simulation but are a factor of
1.2 lower. ' :

The most interesting trend is the effect of asymmetry on the phonon peak current
in forward bias. A plot of the phonon peak current normalized to the value of the
symmetric structure is shown in Fig. 4.4b. In forward bias, the magnitude of the peak
is unaffected by the collector barrier height. This is expected from Eq. (4.18b).
Except for the symmetric structure, the coherent component of the current at the
phonon peak is negligible. Since h/, is essentially independent of the barrier heights
for the range of parameters used here, (filling of the resonance at the phonon peak
current is negligible) and I'g is fixed to I'ypg in the forward bias direction, the optical
phonon channel is independent of the collector barrier height. Thus, the apparent
enhancement of the phonon peak in forward bias in asymmetric structures is due to a
reduction of the main peak combined with an insensitivity of the phonon peak to the
size of the collector barrier.

Fig. 4.4b also shows the effect of barrier asymmetry on enhanced off-resonant
transmission due to elastic dephasing scattering. The elastic de-phasing rate in the
well is energy independent and set equal to the maximum optical phonon scattering
rate in the well for the corresponding device and bias. Eq. (4.18a) is compared with
the numerical results. Sequential tunneling does depend strongly on the collector
barrier. In reverse bias, transmission is determined by I'g «I'¢ so both (4.18a) and

b/t
(4.18b) reduce t0 Iyres = % = ¢)2 I'e so that the four bottom lines in Fig. 4.4b lie
[

together.

The normalized ratio of the phonon peak current to the main peak current is
shown in Fig. 4.4c. In forward bias, the ratio is enhanced as the collector barrier
becomes larger as discussed above. In reverse bias, the ratio is only slightly affected
by increasing the emitter barrier height since I, =e/h 2nl'g for I'g «I'c.

The effect of the right barrier height in forward bias on the filling of the
resonance at the main resonant peak current and the phonon peak current is shown in
Fig. 4.5. The occupation has been calculated numerically for the structures described
above and also for structures with left barriers of 220 meV and right barriers of 600,
700, and 1000 meV. The occupation at resonance is plotted versus the ratio
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I'e(E;)Tc(E;) and the occupation at the phonon peak is plotted versus the ratio
I'e(E;)Tc(E;). At resonance, the occupation becomes significant (.45) for the
220/300 structure. At the phonon peak, the occupation only becomes significant (.31)
for the 220/700 structure. The difference between the filling at resonance and at the
phonon peak is in agreement with the discussion of eq. (4.20).

4.5.2. Microscopic Quantities

In this section, we present cross-sections taken from the center of the well at the
forward bias phonon peak for the most asymmetric structure of Fig. 4.1 of the
density-of-states (N, (z;E) =—1/n ImGR (z,z;E) ), the occupation, f(z;E), of N,, and the
optical phonon scattering time, T4(z;E), where, in the above quantities, z is the spatial
point at the well center. We also show, on a gray scale plot superposed over the
conduction band profile, the energy distribution of the current density, J(z;E), which
shows the current "flow" [98] through space and energy.

The density of states at the well center is plotted in Fig. 4.6a. The main peak is
the resonance. The peak at 0 meV occurs at the incident energy one optical phonon
energy above the resonance. The peak is caused by an enhancement of the imaginary
part of the retarded self energy, 1/27y. The enhancement is due to optical phonon
emission by electrons corresponding to the second term in Eq. (2.32a). The step that
also occurs in N, at 0 meV is not due to an effect of the self energy but is due to
coupling through the small emitter barrier of the well to the continuum states in the
emitter. The peak 36 meV below the resonance is caused by an enhancement of /27,
due to optical phonon emission by holes corresponding to the second term in Eq.
(2.32b).

The scattering time, Ty, is plotted in Fig. 4.6b. The peak at 0 meV corresponds
to the incident energy. The peak at 40 meV lies two optical phonon energies above the
resonance. The peaks near -70 and -100 meV lie one and two optical phonon energies
below the resonance respectively. The small structure around the resonance, at
~~35meV, is due to the Debye phonon scattering.

The occupation, f(E), is shown in Fig. 4.6¢c. At the incident energy, 0 meV,
where the scattering rate, 1/74, is large, the occupation is depleted. The occupation in
the depleted region between the two spikes is ~0.08. Electrons are being removed
from the incident energy and scattered down to the resonant energy. The occupation
of the resonance due to electrons being scattered down from the incident energy is
~0.05. Further optical phonon emission causes filling of the exponentially vamshmg
states below the resonance.
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Figure 4.6.  Cross sections taken from the center of the well at the forward bias

phonon peak of the most asymmetric structure (corresponding to Fig.
4.3) of (a) density of states, (b) optical phonon scattering time, and (c)
occupation of states. Fig. 4.6d is the occupation of the well for the case
of elastic dephasing.
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The occupation, f(E), for the case of elastic de-phasing for the same bias and
structure of Fig. 4.6¢ is shown in Fig. 4.6d. Since the scattering is elastic, all energies
below the incident energy are unoccupied. The occupation of the incident energy is
~0.9.

A conduction band profile of the most asymmetric structure with optical phonon
scattering superposed on a gray-scale plot of the energy distribution of the current
density, J(z;E), is shown in Fig. 4.7. This is the same structure from which the values
of N,, f, and 1 are extracted in Figs. 4.6a-c, and it is the same structure for which the
I-V characteristic is shown in Fig. 4.2. Fig. 4.7a corresponds to the forward bias point
immediately before the onset of the phonon peak; Fig. 4.7b corresponds to the
forward bias point at the center of the phonon peak; and Fig. 4.7c corresponds to the
reverse bias point at the center of the phonon peak. Dark regions of the shadow plot
correspond to regions of high current density. Immediately before the phonon peak,
current comes off of the emitter conduction band and tunnels through the double
barrier structure at the incident energy. At the forward bias phonon peak, none of the
current crosses the collector barrier at the incident energy. All of the current is
flowing through the optical phonon channel and tunneling out through the collector
barrier at the resonant energy. Note that the optical phonon emission begins before
the well region. At the reverse bias phonon peak, half of the current is passing through
the collector barrier at the incident energy and half of the current is passing through
the collector barrier at the resonant energy. We note that in these simulations, current
is conserved across the entire device at all bias points to within 0.5%.

Since we have electron-phonon coupling throughout our device-contact system,
and Fig. 4.7 shows that the optical phonon emission begins before the emitter barrier,
the question is again raised of the relative effects of phonon assisted tunneling versus
phonon coupling in the well. In our local interaction model, the scattering rate at any
spatial point is proportional to the final density of states. Thus, the scattering is
greatest in the well, and greatly suppressed in the barriers. Most of the scattering is
occurring in the well. When using a local interaction for the electron-phonon
coupling, the scattering in the well is dominant.

4.6. Summary and Conclusion

The effect of barrier asymmetry on the phonon peak is investigated numerically,
solving a model Hamiltonian using the non-equilibrium Green function formalism.
The electron-phonon interaction is modeled using dispersionless Einstein phonons
which interact with the electrons locally. Phonons are present throughout the
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A conduction band profile of the most asymmetric structure
(corresponding to Figs. 4.2 and 4.6a-c) with optical phonon scattering
superposed on a gray-scale plot of the energy distribution of the current
density, J(z,E). (a) Forward bias immediately prior to the phonon peak,
(b) Forward bias at the phonon peak. (c) Reverse bias at the phonon
peak.
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contacts, leads, and device. The numerical results are analyzed using analytical
expressions derived from the Keldysh formalism in a tight binding model. All of the
trends from the numerical simulations are matched well by the results of the analytical
expressions. An analysis of the relative effects of elastic dephasing versus optical
phonon scattering on enhancing the valley current is made both numerically and
analytically. For equal scattering rates, the optical phonon scattering is found to give
greater current enhancement. It is shown that considerably more barrier asymmetry is
necessary to cause significant filling of the resonance at the phonon peak bias than at
the resonant peak bias. Within our local phonon model, the phonon peak is only
affected by a larger collector barrier via the exclusion principle in the calculation of
the scattering rate. The ratio of the phonon peak to the main peak is enhanced due to
a reduction of the main peak with increasing collector barrier height.



CHAPTER 5
ENERGY BALANCE AND HEAT EXCHANGE IN
MESOSCOPIC SYSTEMS

5.1. Abstract

The spatial distribution of the power transferred from the electrons to the phonon
bath is cdlculated for several mesoscopic structures using the non-equilibrium Green’s
function formalism. At low bias, the local power transfer between the electrons and
the phonon bath can be separated into a component that is linear in the applied bias
and a component that goes quadratically with bias. The linear component represents
the thermoelectric heat which can be locally positive or negative while the quadratic
component represents the Joule heating which is positive everywhere. The numerical

“calculations presented in this paper are based on a local phonon model. However, the
basic formulation is quite general. Energy balance equations are derived in the
absence of magnetic fields for systems with local or non-local electron-phonon
interactions.

5.2. Introduction

The spatial variation of the electrochemical and electrostatic potentials in
mesoscopic systems has been discussed by several authors [72, 84, 86, 124-130]. The
electrochemical potential is not a well defined thermodynamic concept on a
mesoscopic length scale, but the energy distribution of the electrons has nearly a
Fermi-Dirac form if the bias is small and one can define a local electrochemical
potential |, at least approximately, from the energy distribution of the carriers [72]. It
has been shown that the electrochemical potential, p, drops sharply across an obstacle
while the electrostatic potential changes more gradually over a screening length.
Although du/dz is large at the location of the obstacle, energy is not necessarily
dissipated at the obstacle. This is apparent since a scatterer may not have the internal
degree of freedom essential for dissipating energy. A natural question to ask is,
"Where does the power loss occur?’ [51, 98, 131]
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Our objective in this paper is to study this question using several numerical
examples. The numerical calculations are based on the non-equilibrium Green’s
Function formalism [25,48] using a local phonon model [51,69]. Although the
details could change with extended phonons, the basic physics seems more general.
The examples presented in this paper mainly involve one dimensional structures under
low bias. However, we also discuss a resonant tunneling diode of infinite cross
section under high bias. N

5.3. Energy Current and Power Density

We solve for the particle current density per unit energy, JN(z;E), as described in
chapter 2.

B [(V-V)G (. Z:E) ]

;E) =
INGE) 4nm* 7z

and calculate the energy current
Jg(@) = [dEEIn(zE), (5.1)
and the power transferred,

P(z)=—%rg(z) 5.2)

from the electrons to the phonon bath throughout the device. P(z) contains the self-
energy terms representing the transfer of energy due to electron-phonon scattering. In
our local scattering model, P(z) can be written in a physically transparent form (with
the position coordinate suppressed)

P = —2x[dE[d(ho) o {F(ﬁm)No(E) N, (E +h) f(E) [ 1-f(E + ho)] } (5.3)

which can be understood as follows. The quantity in curly brackets tells us the rate of
transitions from E to E+hw. Each such transition leads to an exchange of energy ho.
Egs. (5.1)-(5.3) seem physically reasonable. However, one might question the limits
of their validity. For this reason we have included a formal derivation for arbitrary
electron-phonon interactions (see Appendix D). We have not considered electron-
electron interactions.

It will be noted that E is the fotal energy, kinetic plus potential, and (5.3) is
identical to the usual expression for power density derived from the Boltzmann
equation (cf. eq. (7.39) of [91] ),
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P(z) = - éz‘— Is, () + €2) * J(2)

where Jg_ is the kinetic energy current, € is the electric field, and J is the current

density. The power density can also be written as
P(z) = =Jn dyy/dz (5.4
where the average energy of the current density, py is
Jg@ _ [EEEIZE)
IN [eEI=ZE)

Hi(2) = (5.5)
and the particle current density, Jn, is independent of position due to current
conservation. Equation (5.4) provides an intuitive way of understanding the spatial
distribution of power transfer. To calculate the net power transferred from the
electronic system to the phonon bath in a given region, simply multiply the net drop in
Ky across the region by the electron current, J.

In the low bias examples discussed in this chapter, we find that the occupation
factor, f(z;E), calculated from (2.13) is well described by a Fermi-Dirac function with
a local Wz). We deduce a value for u(z) from the expression
I(z) = [dEE (- ZE)RE).

Note that while the electrochemical potential, W, is related to the average energy
of the carriers, the ’current potential,” 15, defined above, tells us the average energy of
the current. In a homogeneous resistor, the two are parallel, that is, duy/dz=dp/dz.
Consequently, the power dissipation can be deduced from the slope of either y or pj.
But in mesoscopic systems, iy can deviate significantly from p, and the total power

dissipation is related directly to %J—; however, it has no simple relation to dut/dz.

5.4. Thermoelectric and Joule Components

Under low bias conditions, we expect P(z) to have a component linear in the
applied bias, Aj, which is the thermoelectric component, Ptg, and a component
quadratic in the applied bias which is the Joule component, P;.

P(z) = a(z)(Aw) + B(2)(Ap)? = Pre(z) + Py(2) (5.6)

We identify the two components by separating the calculated P(z) into a part that is
anti-symmetric, Py (z), and a part that is symmetric, Ps(z), in the applied bias,
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Pa(2) = {P(Z) | +ap — P(2) |—Ap.}/ 2 - (5.7a)

Ps(z) = {P(Z) | +ap + P(2) I-Au}/ 2 (5.7b)

At low bias, we find that P, e Ay while Pg o (Ap)? in agreement with (11).

5.5. Homogeneous Resistor

For a strictly one dimensional homogeneous resistor, we can calculate the
difference py — p analytically starting from the Boltzmann equation in the relaxation
time approximation. Assuming a relaxation time which varies slowly on the order of
of,/dE, we obtain

Hy—H = oL, K
J’ dE Elfz —_—
0 JoE
where all energies are measured from the bottom of the conduction band, and f, is the
Fermi-Dirac factor. The quantity =&, is simply the Peltier coefficient (see section
2.3.7). Using the Sommerfeld expansion, (5.8) can be simplified to yield

_ 2 GpT)’
1;0_.__.._
6 u

5.9

In Fig. 5.1, we show the numerical results for a homogeneous 1-D resistor at a
temperature of 100K and an electrochemical potential 50 meV above E.. A bias of
one kpT is applied across the resistor. Both W and py are plotted as a function of
position. The difference, py— is found to be 2.5 meV in agreement with Eq. (14).
We have performed calculations with different values of the temperature and the
electrochemical potential and we find that the values of m, obtained from the
simulations compare well with (5.9).

Fig. 5.1 shows a a downward slope in iy near the contacts; we feel that there is
no physical significance to this. As described in section 2.3.1, the equilibrium
boundary condition imposed on f(zE) in (2.13) imply zero current flow deep inside
the contacts, so that j is undefined within the contacts giving rise to unphysical
behavior near the contact regions. For this reason, we have ignored the regions near
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the contacts in Figs. 5.2-5.5.

5.6. Tunneling Current Through a Thin Tall Barrier

In Fig. 5.2a, we show iy and p calculated for a tunneling barrier of width 5 nm
and height 190 meV (22 kg T) above the Fermi energy of the emitter. Discussions of
the potential drop and power dissipation in this structure have been given by Landauer
[84,98,124]. On the emitter side, there is a slight rise in Ly, indicating that the
average energy of the current is slightly increasing. This is because the higher
energies can tunnel more easily. The spatial distribution of the power density is
plotted in Fig. 5.2b. The power loss occurs primarily on the collector side of the
barrier.

More insight can be obtained by separating the components of the power density
as explained earlier (see Eq. (5.7)). In Fig. 5.3a we have plotted the antisymmetric
component of the power density divided by the applied bias for biases of 9 and 18
mV. In Fig. 5.3b, the symmetric component of the power density divided by the
square of the applied bias is plotted for the same two biases. Clearly, the
antisymmetric part, P, is linear in Ap while the symmetric part, Pg, is quadratic in
Au. Pp represents the thermoelectric heat, Prg, which is negative on the collector
side and positive on the emitter side of the barrier. Pg represents the Joule heat, Py,
which is positive everywhere. We can show that J'dz P, (z) =0, which confirms the
thermodynamic consistency of our approach. Thus, the total power dissipated arises
solely from Pg and is positive definite.

5.7. Thermionic Current Over a Long Shallow Barrier

The thermoelectric effect can be illustrated more clearly by looking at a long
shallow barrier such that the positive and negative components of Pyg are well
separated spatially. Fig. 5.4 shows a 200nm long barrier with a height 1 kgT above
the Fermi-level of the emitter with an applied bias of 1 kg T. The electro-chemical
potential drops linearly across the barrier. However, Ly rises approaching the emitter
side of the barrier, runs parallel to the electro-chemical potential in the barrier region,
and then falls sharply on the collector side of the barrier. The lattice is being cooled
by the electron current on the emitter side and heated on the collector side.

. This can be viewed as a classic Peltier effect which occurs when current is
passed through materials with dissimilar Peltier coefficients placed in intimate contact
[91]. The Peltier coefficient in the leads, 7y, is different from the Peltier coefficient in
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the barrier, ng. Thus, far from the barrier, pj lies at an energy 7y, above the quasi-
Fermi level in the leads, while in the barrier region, it is tg above the quasi-Fermi
level. The numerical result (Fig. 5.4a) gives a value for iy of 10.4 meV above the
conduction band of the barrier in reasonable agreement with the value of 13 meV
obtained from (5.8). This example also illustrates the role of vertical flow when the
transmission characteristics show significant variation over the energy range where
transport occurs [98, 132-135].

5.8. Double Barrier Resonant Tunneling

The previous examples have been of strictly 1-D structures under low bias,
V. ~kpT. However, the concepts are more general. In the final figure, Fig. 5.5, we
show how iy drops and where the power is dissipated in a double barrier resonant
tunneling device of infinite cross section under high bias. The bias is 135 mV, the
chemical potential of the contacts is 50 meV, and the resonant level is 18.5 meV on
the energy scale of Fig. 5.5a. A large peak in the power density occurs in the well due
to electrons losing their transverse energy. However, the majority of the power
density is distributed in the collector lead. The percent of the total IxV power
dissipated between the barriers is the ratio of the drop in iy in the well to the total
drop, 135 meV. Thus, it is clear from the figure that only a small fraction, 6%, of the
total IxV loss occurs in the well. We note that due to computational limitations, the
leads in this simulation are not long enough to allow lj to achieve its asymptotic
value in the leads. Deep inside the emitter lead, using (14), iy must be ~51.4 meV,
while deep in the collector lead py must be ~—83.6meV as indicated by the arrows in
Fig. 5.5a.

5.9. Conclusion

We have demonstrated that the current potential, Wy, is a useful quantity for
understanding the spatial distribution of the power transfer from the electrons to the
phonon bath, at least for devices with one interesting dimension. For inhomogeneous
structures under low bias, we find a linear component to the power, Prg, due to
thermoelectric effects which can be either positive or negative and a quadratic
component, Py, due to Joule power loss which is positive. The numerical calculations
presented in this paper are based on a local phonon model. However, the basic
formulation is quite general. Energy balance equations are derived (see Appendix D)
in the absence of magnetic fields for systems with local or non-local electron-phonon
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CHAPTER 6
SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

6.1. Summary

The non-equilibrium Green function formalism of Keldysh, Kadanoff and Baym
(KKB) provides the starting point for the investigation of high-bias, quantum electron
transport’ in semiconductor nanostructures just as the Boltzmann transport equation
provides the starting point for the investigation of semi-classical electron transport. In
general, self-energies for electron-phonon and electron-electron scattering are non-
local. By using a local model for the electron-phonon interaction in the self-consistent
first Born approximation, the general equations, (2.1)-(2.5), simplify to (2.12)-(2.15).
A general solution of equations (2.12)-(2.15) for arbitrary potential profiles varying in
one direction has been implemented for devices of strictly one dimension or for
devices of infinite cross-sectional area with translational invariance in the transverse
direction.

The device simulator calculates a number of quantities which are useful for
understanding the dynamics of a complex quantum device. The quantities calculated
are the spectral function, A(zE), the non-equilibrium occupation factor, f(z;E), the
electron density, n(z), the current density per unit energy, J(z;E), the energy current,
Je(2), and the power density, P(z). The above quantities give a detailed picture of the
effect of inelastic transitions on the electron transport.

The simulator also has the capability of calculating a self-consistent electrostatic
potential by solving a 1-D Poisson equation although the capability is not used in this
work. A simulation which calculates a self-consistent electrostatic potential requires
considerably more cpu time than a simulation which does not calculate a self-
consistent electrostatic potential. The cpu time requirements are large. The simulation
corresponding to Fig. 5.5 required 5.5 hours of cpu time running at an average rate of
50 Mflops on a Cray Y-MP.

The effect of electron-phonon scattering on electron transport through double
barrier resonant tunneling diodes has been considered. The first calculation of the
effect of phonon scattering on the occupation of the resonance, the energy distribution
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of the current density, and the power density are presented in chapters 3-5. Emitter
quasi-bound states give rise to a large peak in the I-V characteristic when the emitter
quasi-bound state aligns with the resonance in the well. Decreasing the transparency

of the collector barrier affects the phonon peak only through the Pauli exclusion -

principle which enters into the calculation of the scattering rate as the factor of (1-f,)
where f; is the occupation of the resonance.

6.2. Future Work

This work can be pursued in a number of directions. The numerical efficacy of
the code can be enhanced. Presently, attention is being given to obtaining a good
energy grid. Mesoscopic structures, such as a DBRTD, have narrow resonances on the
order of a few tenths meV that need to be well resolved. Under high bias such that the
Fermi-energies of the contacts are split by many KgT, and with inelastic scattering,
the current from the emitter flows through the device at energies above (Fig. 5.4) and
below (Fig. 4.7) the injection energies. Furthermore A good energy grid is essential to
obtaining the comrect, current-conserving solution. Details of the energy grid
optimization scheme are given in Appendix E. While progress has been made, the
energy grid optimization procedure for a complex structure is not robust.

The program can be used to model quantum structures of greater complexity than
considered here. An example is shown in Fig. 6.1 of the spectral function of a
superlattice and the energy distribution of the current density flowing through the
device. Fig. 6.1a shows the beginning of the formation of a mini-band in the nine
period superlattice. An individual well alone would contain one resonance. That one
resonance is now split into nine resonances in each well. Fig. 6.2b displays the effect
of emission of optical phonons on the current density. Initially, the current flows at
the energy of the emitter conduction band. As it crosses the superlattice, optical
phonons are emitted and bands of current appear at integral multiples of the optical
phonon energy below the incident energy. This is a good example of the usefulness of
the simulator for obtaining insight into the internal structure and dynamics of a
complex quantum device.

A number of directions can be pursued of varying degrees of theoretical and
computational difficulty. The above simulations of the superlattice show the
importance of mono-layer fluctuations in real devices. Monolayer fluctuations break
the translational invariance and give rise to an effective broadening of levels on the
order of 10 meV, which is considerably larger than broadening from inelastic
scattering. Thus, the discreteness of the levels seen in Fig. 6.1a would not be
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Figure 6.1.  (a) Density of states of a superlattice. (b) Current flow through the
superlattice.

observed experimentally. It is not clear how to include the effect of monolayer
fluctuations in our simulator.

A more realistic treatment of electron-phonon scattering and a treatment of
electron-electron scattering would be of interest. For example, it is believed that the
dominant de-phasing mechanism in the well of a DBRTD at resonance is electron-
electron scattering [96]. Non-local self-energies are required. For strictly one-
dimensional structures, the inclusion of non-local self-energies is straight-forward.
For structures of infinite cross-section with translational invariance, the
implementation needs to be worked out and it may be found that it is computationally
prohibitive. ,

The inclusion of ac potentials and the interaction with light would be highly
desirable. There are a number of device structures that have been proposed or tested
[136-138] which are of technological interest to the field of optoelectronics. The
nonequilibrium Green function approach has been used to model photocurrent effects
in STM tunneling [139] and double barrier resonant tunneling with infrared radiation
[140].
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Appendix A: Infinite Cross Section

To simulate a device with translational invariance, we wish to only compute one
dimensional quantities. We achieve this by averaging Egs. (2.13), (2.17), and (2.23)
over the transverse plane. The derivation that follows is identical in spirit to a simpler
derivation by Mclennan in which only the case of a constant T4, independent of
position and energy, was considered [141]. We assume a separable Hamiltonian.
Furthermore, since the system is translationally invariant, we assume that the
occupation factor, f(r;E), and the phase relaxation time, 74(r;E), are not functions of
the transverse coordinates. Thus, the transverse eigenfunctions of the Hamiltonian,

Hi(rE) = Ho(r) — iR/ t(r;E) (A1)
are plane waves.

We will take Eq. (2.13) as an example. The transverse coordinates are x and vy,
and the longitudinal coordinate is z. We begin by multiplying both sides of (13) by
No(r;E) and then averaging both sides over the cross section. Considering the left
hand side first, we have

1

fZE) 3w
xWy

fdxdy No(x,y,2;E) (A2)

Next, we write N, as -ImGR (r,r;E) /n and expand GR in terms of the eigenfunctions
of (A.1). Since we have assumed that 14 is only a function of z, the transverse part of
H, is Hermitian with plane wave eigenfunctions. The z-component is non-Hermitian
and is expanded in terms of the eigenfunctions X,,(z) and N, (z) of the adjoint operators

H.(z) and H; (z) [142]. Eq. (A.2) becomes
(XWm $)%n (20 ()0 (V)0 (2)

- Jaxdy Zoim 3 L A3)

f(z;E)
W, W, Lmn E-g—-g,—¢,

¢, and ¢, are plane wave eigenstates, ¢;(x) = exp(ik x)/ \/VTX . § and &, are the
corresponding eigenenergies. €, is the complex eigenvalue corresponding to X; and
Na. Since the plane-waves appear with their complex conjugates, they disappear from
(A.3), and (A.3) becomes

S Xn(DMn (@)

f(z;E) —
way R Lm'nE_el_sm-en

(A4)

We re-write the term -’1-:— Im ¥ in(A4)as

1l,m,n



83

Y NI Pz E—g—£p) (A.5)
Lm

where N1 P is the density of states obtained from only considering the z-component
of H;. Defining a quantity <N, > as

<N,@E)> = wlwy X NP (EE-a e
o
= 21:52 j dE'N; Pz E) (A.6)
(A.4) becomes
f(z;E) <N, (z;E) > (A7)

Now we consider the right hand side of (13). We substitute (2.14a) into (2.13)
and average over the cross section to obtain.

1 H ’ ’ ’3.’ ’, A=l (=14
Wow, 2x [ o faxdy ax'ay {IG“(r, r'iB)|I’No(iE)f(2E )F(E—E')}(A.S)

The integral

dx’dy’|GR(r, r;E) | 2No(r';E) (A.9)

WW

is evaluated by expanding |GR |2 and Np in terms of the eigenfunctions of Hj.
Writing out the expansion, (A.9) becomes

5 B0 (VX201 K)o (Y IMn(@)
Lm,n E—€—€,-¢€,

WW

&1 b (¥ X @)y K)ry (¥ )Tln (2)

¥,m',n’ E"'el'_em "en
Ty SO 60 (y')nkm} 10
Tk E-&-¢—&

The third term in the integrand of (A.10) is <N,(zE) >. The integrals over x” and y’

give factors of 8,y and 3y, .y, respectively. times the integral of the first two

1
terms in the integrand of (A.10) becomes
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Xa@Ma (@) _ Xy (@M (@)
g1
E-g-€n—€, § Z E-g1—€n—€p a.11)

1
pX
WXWy l.zﬂl n

The quantity in (A.11) is

Y | GRp(z, 2" E-€1-€y) |2 (A.12)
W WY Lm

where Gk 1-D is the retarded Green’s function of the z-component of H;. We define the
quantity <|GR %> as

<|Gr(z,2E)|%>= Y |G p(z,2;E~g—em) |2

Ww}' Lm

t

mz J dE’|GYp(z,23E)|? (A.13)

Putting this all back together, Eq. (2.13) becomes
2y 12
1 Idz,<|GR(z,z,E)| >

f(zE) = m NG o (A.14)
where
E+ —H—z——-qz——V(zH———iE—— GRp@zE)=8(z-2z) (A.15)
4o 2<ty(zE)> | 1DHEET '
1 _2 [dE' FE~E)<No(ZE)>f(ZE) (A.16)
<'tp(z;E)> h 0% ’ '
1 _2n faE’ F(ﬁ’—E)<N (zE")> [1—f(z°E')] (A.17)
<t (zZE)> & 0% ’ '
and
1 1 1

- <t(zE)> <t (zE)> + <, GEp (A.18)

Equations (2.12) through (2.15) become equations (A.14) through (A.18) which are
the coupled set of equations that we have numerically solved to provide the results
shown in this paper.

The equations for the current density, eq. (2.17), and the terminal current, eq.
(2.23), are treated the same way.
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Appendix B: Solution Procedure

Fig. 12 is a flow chart of the solution procedure when inelastic, energy-
dependent scattering is present. To save on notation, all quantities such as the t’s, Ny,

|GR |2, and J represent their bracketed counterparts due to averaging over the cross

section as described in Appendix A. Note that a Poisson solver for self-consistent
electrostatic solutions exists in the loop although it has not been used in the
simulations presented in this paper.



Guess initial To(Z:E), f(z:E)

2
Caicuiate No(z;E) V z,E

"y

y
» Loop through all energies E;

Y
Update 14(z;E), Tp(Z:E), ™(ZiE)

\J
Update |GR(z,2';E) 2, No(2:E})

| Update (z;E) and J(z;E) |

A J
Check convergence
Compare updated f(z; E;) and J(z;E))
to previous {(z;E;) and J(z;E)

r—--"-"=-""-"~"-"="“="§¢~-~"~"“"=-"="=-"=-°= A
: Y I Poisson
i | Electron Density: n(z) = f dE f(z,E) No(z:E) 3;’2’:; d in
1 I this work.
| l
| . .o d - l
| | Electrostatic Potential: dzs(z)adz-¢(2) en(z) |
i 1
I Y |
l Check Convergence ]
i Compare updated ¢(2z) with previous $(z) I
J

Figure B.1  Flow chart for numerical solution.



87

Appendix C: Fisher-Lee Transmission Coefficient

For a strictly 1-D (one transverse energy) device, the Fisher-Lee transmission
coefficient is [90]

TE) = B v; vp |GR(z,25;B) |2 (C.1)

To show that Eq. (2.25) reduces to (C.1), we consider a 1-D device with the
contact-device interface of contact 1 at point z; and the contact-device interface of
contact 2 at point zy. The contacts are far enough away from the disordered region so
that the self-energies are independent of position in the contacts. Then, the Green’s
function connecting point z in contact 1 and point z’ in contact 2 is

GR(z,2:E) = M@ =2 GR(z;,22E) e~ 2) (C.2)
where
i}
. = [2m* (E-V;+i 12 /g C.3

In (C.3) j stands for either 1 or 2 for 'y in contact 1 or 2, respectively. The integral in
(25) becomes

1 |GR(z;,zpE) 12 % =

“' dz I dZ’ C—ZIIII'YI(ZI—Z) e—ZIm'Yz(z' ~2,) (C. 4)
To, To, =~ oz
Performing the integral in (C.4) gives
n? |GR(z ,Z2:E 2
TE) = |G (z1,22;E) | 1 1 C5)
T¢l 174,2 .2Im T 21m72
In terms of E and To>
12
2 172
Imy = _‘/f_n—: (E-V)2 + B -(E-V) (C.6a)
‘R 21y

and
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5 2
—';— ] +E-V (C.6b)

If we follow Khondker [143] and define the group velocity, v(E), as

AR
v(E) = 1
m
we evaluate Imy by multiplying by :((g; , expanding out all the quantities using (C.6)
and find _
1
Imy = vy C7
2
If (E-V) >> -—H—, v(E) reduces to the usual quantity, v= _[_Z_niE_;_’)]__ Thus, the

217¢
coherent component of the current is given by the usual tunneling formula (2.26) with
the Fisher-Lee form for the transmission coefficient. For devices with infinite cross
section with translational invariance across the cross-section, the contribution from
the transverse energies is included as described in Appendix A. For devices very
short compared to Ly, the coherent current is essentially the total current and the our
quantum-kinetic equation reduces to the tunneling formula (2.26).
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Appendix D: Derivation of the Energy Balance Equation (5.2)

In this appendix, our notation for the Green functions and self energies
corresponds to that used by Danielewicz [56]. We write our Hamiltonian as (i=1)
-Vv2
2m*

H() = [dry'(r,0) [ +U(r) ]\v(r,t) + [dryt @, 09, 00,1 + Hg(® ®d1)
where the y’s are the electron field operators, Hp is the Hamiltonian of the phonon
bath, and ¢ is the phonon field operator which includes the coupling constant.
Evaluating the equation of motion for y and \Vf as described by Kadanoff and Baym
[48] leading to their eq. (2-8), we find

~

1./ 0
fdr 5 19 5? - atl }WT (r, tﬁ‘l’(r,t) =

\ -t

2m*

1 V2+V'2 T (e’ t
far+ =5 |7 | YU (V0w + faryt @, 0wa, 0o, HD2)

r—r

The right hand side of (D2) is the electronic energy, H. =H-Hg. Fourier
transforming the time difference coordinate to energy, we obtain

[dr[dEEn(rE,T) = <H(T)> (D3)

n(r;E,T) = %G< (r,r:E,T), and

_ t+t’
2 ’
G(ruriE,T) =[S B iyt . wte, 0>

where T

We must define a local electronic energy density to derive a local energy balance
equation. From (D2), we define the local electronic energy density as

<h.(r,t)> = 'l}ln’r -% [!;%v;—] +U(r)} <y (v, 0>t + <yt Owr, 0o, 0> (D4)

From (D2) and (D3), this can be written as <h.(r,T)>=[dEEn(r;E,T). This
definition of the local electronic energy density appears reasonable if we view
n(r,E,T) as the number of electrons with energy E at position r and time T. Of
course, this viewpoint has to be used with caution since n(r,E,T) is not positive
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definite.
To derive a balance equation for <h,(r,T)>, we start with Eq. (4) written in its
most general form [17]
G*(1,2) = [d3d4G(1,3)2°(3,4)GA (4,2) (D5)

where the integers stand for both the space and time variable, eg. 1=(r;,t;).
2

Operating on (D5) from the left with (i-2— — H,(1)) where Hy(1)= —Vi
atl 2m*

+U(ry)
gives
[13?7 -H,(1)]G*(1,2) = [a3 {z“(l,s) G(3,2)+ Z(1,3) GA(s,Z)} (D6)

Similarly, hitting (D5)-on the left with (—ig— —H,(2)) results in
2

[—i% -H,(2)]G(1,2) = [a3 {GR(1,3) 2<(3,2) + G(1,3) zA(s,z)} D7)
To obtain (D6) and (D7), we have used the relations
[i—é% —Ho(l)] GR(1,2) = §(1-2)+ [d32R(1,3)GR(3,2)
and
[—ija% = Ho(Z)] GA(1,2) = 8(1-2)+ [d3GA(1,3)2A(3,2)

Equations (D6) and (D7) are identical to equations (8-27a) and (8-28a) of Kadanoff
and Baym [48], and (D6) is identical to equation (60) of Keldysh [25].

Now, we subtract (D7) from (D6) to obtain

v  V}

i 9 +i 9 o
oY oty 2m* 2m*

=U(ry) + U(l‘z)] G*(1,2)

= Ja3 { 2*(1,3)6°(3,2) + E°(1,3)G* (3,2 GR(1,3)£°(3,2) - G(1,3)EA(3,2) } (D8)
This is identical to equation (9-3) of Kadanoff and Baym [48]. To obtain the energy
balance equation we operate on (D8) with —_2-1—(alat1 ~0/dty ) and take the limit as

ra,t—ry,t; to obtain




91

—if. (8, a)[a o
2 ' [atl * atz} [atl ot, ] GS(ry,ty,r1,1)

-t
—i _Q__ - i V% - V% <
+ —i— [atl at2 ] [—'————2m* G (l']_ »t1,T] 9t2)

il § FACANNCR R A
= TG -3 [B (366D + 1,364 3,2)

2,5,

-GR(1,3)2°3,2) - G*(1,3)223.2) } L1 ©9)

where, on the right hand side, the integers stand for both the space and time variable,
eg. 1=(r;,t). Since we are concerned with steady-state, we have let the single-
particle potential U be time independent.

Changing to center-of-mass and relative coordinates and Fourier transforming
the time-difference coordinate, (D9) becomes

a%;he(R,T» + [EEEV-JNRET) = —P®R,T) (D10)

ri4ra
2
rate of change of the energy density. The second term is the divergence of the energy

current, VeJe (R, T), where Jg(R,T) = IdEEJN(R,E,T) and JN(R,E,T) is the particle
current per unit energy. The right hand side represents the power transferred from the
phonons to the electrons due to scattering. In steady-state, we can write (cf. Eq. (7))

V-JeR) = -P(R) (D11a)

where the energy current Jg(R) = IdE E JN(R,E) and the local power transfer P(R) is
given by

P(R) = [dEE [dr'{ZR R,r";E)G*(r",R;E) + Z°R,r;E)GA (", R.E)
-G*R, B, RE) - G*R,r;E)SA(r’,R:E) ) (D11b)

where, since the limit ry—r; has been taken, R= =r;. The first term is the time

It is interesting to check that in equilibrium, in the absence of magnetic fields,
such that detailed balance exists, P(R)=0. Matrix notation will be used to represent
the spatial integrations. The energy coordinate will be suppressed. In this notation,
_fdr’Z(R,r’;E)G(r’,R;E)=ZG. Thus, the integration over space in (D11) is written as
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SRG< 4+ 2°GA - GRE<-G<zA = ifo{ZRA+l"GA -GRr-AzA} =0 D12)

where we have used the definitions I'=—i[ZR —=XA] and A=-i[GR-G”] and the

equilibrium relations

Z5(ry.r:E) = if,(B)I'(ry,ry:E) (D13)
and

G*(r1,r2:E) = if,(E) A(ry,ro:E) (D14)

f, (E) being the Fermi-Dirac factor. Also, we have used the fact that, in the absence of
magnetic fields, SR GR, T, and A are symmetric, eg. A(r;,rg;E) = A(r,r1;E). Eq.
(D12) shows that the energy exchange with the bath is zero at each point R as we
would expect under conditions of detailed balance.

In our local scattering model, (D11) can be simplified since the self-energies are
proportional to delta functions in space. Using Eq. (2.19) we have

_ nR;E)  p(RE)
PR = deE{m(R;E) tp(R;E)}

1 » (D11) can be cast into a particularly transparent form

(D15)

Using the definitions of
N1
(cf. eq. (22) of [51] ) (with the position coordinate suppressed),

P= 2njd1_«:jdmm{F(m)Nom)No@m)f(E)[1-—f(E+m)1} ®16)

The physical meaning of (D16) is discussed in the text (see Eq. (5.3)).
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Appendix E: Optimization of the Energy Grid

. Mesoscopic structures, such as a DBRTD, have narrow resonances on the order
of a few tenths meV that need to be well resolved. The essential physics of the device
may be contained within one or more energy windows of a few tenths meV.
However, the the entire energy range corresponding to the applied bias, on the order
of hundreds of meV’s must also be adequately resolved. A good energy grid is
essential to obtaining the correct, current-conserving solution.

The quantities which need to be resolved in energy are the following: (1) the
density of states (resonances), (2) df/dE in the contacts - the sharp cut-off at the
Fermi-energy at low temperatures, (3) the scattering rate, 1/ty, and (4) the current
density per unit energy, J(z;E). The scattering rate, 1/ty, is a functional of the density
of states, No(z;E), and their occupation, f(z;E). For Einstein phonons, the relation is
given by (3.11). The scattering rate at energy E is determined by Ny(Ethw,) and
f(Ethw,). Also, since No=-1/r ImGR (z,zE), is calculated self-consistently with Ty,
N, sill be enhanced at each nhw, above and below a resonance. The enhancement
dies off exponentially with n, and for realistic scattering times, 0.1 - 1.0 ps, we have
only seen echo peaks in N, one hw, above and below a resonance. In such instances
we see enhancements in 1/t at one and two optical phonon energies above and below
the resonance. Thus, the resonant energy plus one and two optical phonon energies
above and below the resonance must be well resolved. If the energy grid is well
resolved for the above quantities, then it will generally be well resolved for the
energies at which the current is flowing since the majority of the current will be
flowing through the main resonance or one or two optical phonon energies above or
below the main resonance. However, if the current is flowing off resonance, then we
need to resolve the energies of the Fermi-sea in the emitter and energies integer
optical phonon energies above and below the energies of the emitter Fermi sea.

The optimization of the energy grid begins with a Romberg integration of
No(z;E) to create a monotonically increasing function of energy, M(z;E).

E
M(zE) = [ dE'Ny(zE") (E.D)
Epw
A constant value for 1, of ~0.1-1.0 ps is used when evaluating GR (z,z,E). Thus, the
Np that is integrated contains the main resonances but not the phonon echoes. A
second function, Mn(z;E), is created
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2

MN(ZE) = 3, a, M(z;E—nha,) (E.2)
_ n=-2
where a,, are scaling factors < 1. A third monotonically increasing function of energy
is created, M¢(z;E), defined by
E

M(zE) = | dE’(-Df(zE")/adE) E3)

Exin

M; and My are normalized to their maximum values, weighted, added, and integrated
over position to form the function that is used to optimize the energy grid, Mo (E).

Mo(E) = ¥, [dz[c; Mn(ZE) + Mi(ZE)] E4)
iR,

where R; represents user specified spatial regions of integration. The vertical Mo
axis is divided into equally spaced nodes whose number corresponds to the desired
number of energy grid points. The nodes are projected horizontally across to the
function My, (E) and then vertically down to the energy axis. The intersections with
the energy axis are the optimized energy grid points. If necessary, after several
iterations, a similar type of optimization can be done based on the energy distribution
of the current density.





