Support Options

Submit a Support Ticket


Carbon nanotube based fixed-fixed NEMS

By Pradeep Kumar Gudla1, Aswin Kannan1, Zhi Tang1, Narayan Aluru1

1. University of Illinois at Urbana-Champaign

Simulates pull-in behavior of Carbon nanotube based NEMS with fixed-fixed boundary conditions, with and without Vander Waal's effect

Launch Tool

This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.

Archive Version 1.0
Published on 14 Mar 2008, unpublished on 20 Oct 2009
Latest version: 1.0.1. All versions

doi:10.4231/D3FJ29C3J cite this

This tool is closed source.



Published on


Nanoelectromechanical systems (NEMS) are microelectromechanical systems (MEMS) with dimensions in the submicron region. Carbon nanotubes, whose dimensions can be several nanometers, are good examples of nanostructures that can be used in NEMS.

Electromechnical systems contain a structure and a substrate, and the structure is actuated by applying the potential difference or voltage between them. When the voltage is applied, opposite charges accumulate on the structure and substrate, and because of the electrostatic force the structure deflects. The deflection of the structure changes the electrostatic field and hence the charges redistribute themselves resulting in change in the electrostatic force and then the deflection of the structure. Equilibrium is obtained once the electrostatic force balances the elastic resistance of the structure. As the voltage is increased, the equilibrium deflection of the structure also increases. After a specific voltage, also called as pull-in voltage, the elastic resistance can no longer balance the increasing electrostatic force, the structure collapses and touches the substrate.

Van der Waals forces are the weak non-bonded interaction between atoms. These forces vanish rapidly as the distance between the atoms increases. The Van der Waals forces between nanostructure seperated by several nanometers can be significant and hence also needs to be accounted while modeling NEMS.

The present tool simulates the pull-in behavior of carbon nanotube based NEMS with fixed-fixed boundary conditions for various dimensions of the carbon nanotube, for different applied voltages, for different initial gaps between the substrate and the structure. It also helps one to study the effect of Van der Waals forces on the above studies.

Tags, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.