Theory of high resolution TEM

Lecture 15

Outline

Introductory level theory

- Weak-phase object approximation
- Contrast transfer function
- Envelope functions

Some advanced concepts

- Delocalization
- Using pass bands
- Focal series reconstruction
- Variable C_s Imaging

general idea

How do we express this mathematically?

$$g(r) = \int f(r') \otimes h(r-r')dr'$$

- The ⊗ is a mathematical symbol indicating 'convolution'*
- h(r) is thus a 'blurring function'

Or: aberrations, etc. limit spatial frequencies in image

U Reciprocal space

^{*} http://mathworld.wolfram.com/Convolution.html

Scattering from a lattice

So scattered wave from an array of N atoms:

$$\Psi_{\text{scatt}}\left(\overset{\mathbf{r}}{\mathbf{K}}\right) = \sum_{i}^{N} f_{el}\left(\overset{\mathbf{r}}{\mathbf{R}}_{j}\right) \exp\left[-2\pi i \left(\overset{\mathbf{v}}{\mathbf{K}} \cdot \overset{\mathbf{r}}{\mathbf{R}}_{j}\right)\right]$$

Remember: ψ is thus the Fourier Transform of the scattering potential

general idea

So, can express $g(\vec{r})$ generally as:

$$g(r) = \sum_{u} G(u) \exp \left[2\pi i \left(u \cdot r \right) \right]$$

- ū are reciprocal lattice vectors
- G(u) is scattering potential at each site
- Thus:
 - g(r) is FT of G(u)

general idea

Similarly:

- F(u) is FT of f(r)
- H(u) is FT of h(r)

Key relation:

$$G(u) = H(u) \times F(u)$$

Convolution between functions in real space

equals

Multiplication of functions in reciprocal space

"Ideal" Specimen

General expression for specimen:

$$f(x,y) = A(x,y) \exp[-i\phi_t(x,y)]$$

Normalize to A(x,y) = 1

$$f(x,y) = exp[-i\phi_t(x,y)]$$

Phase change depends only on mean inner potential through sample thickness

$$d\phi = \sigma \int_{0}^{t} V(x,y,z) dz = \sigma V_{t}(x,y)$$

Note: σ related to, but not same as crosssections from earlier

Specimen transfer function

'weak phase object'

Can now have 'specimen transfer function'

- What's the wave look like as it exits sample 'exit wave'
- This is the 'signal' we want in the end
- Include effect of absorption μ(x,y)

$$f(x,y) = \exp[-i\sigma V_t(x,y) - \mu(x,y)]$$

- Called a 'phase object'

"Weak phase object approximation" (WPOA)

- Assume sample very thin - $V_t(x,y)$ << 1, neglect $\mu(x,y)$, expand above and neglect higher order terms:

 $f(x,y)=1-i\sigma V_t(x,y)$ This is the final "model" of the sample

general idea

How do we express this mathematically?

$$g(\vec{r}) = \int f(\vec{r}') \otimes h(\vec{r} - \vec{r}') d\vec{r}'$$

- The ⊗ is a mathematical symbol indicating 'convolution'*
- h(r) is thus a 'blurring function'

Or: aberrations, etc. limit spatial frequencies in image

O Reciprocal space

^{*} http://mathworld.wolfram.com/Convolution.html

Specimen transfer function

'weak phase object'

Can now have 'specimen transfer function'

- What's the wave look like as it exits sample 'exit wave'
- This is the 'signal' we want in the end
- Include effect of absorption μ(x,y)

$$f(x,y) = \exp[-i\sigma V_t(x,y) - \mu(x,y)]$$

- Called a 'phase object'

"Weak phase object approximation" (WPOA)

- Assume sample very thin - $V_t(x,y)$ << 1, neglect $\mu(x,y)$, expand above and neglect higher order terms:

 $f(x,y)=1-i\sigma V_t(x,y)$ This is the final "model" of the sample

general idea

How do we express this mathematically?

$$g(\vec{r}) = \int f(\vec{r}') \otimes h(\vec{r} - \vec{r}') d\vec{r}'$$

- The ⊗ is a mathematical symbol indicating 'convolution'*
- h(r) is thus a 'blurring function'

Or: aberrations, etc. limit spatial frequencies in image

U Reciprocal space

^{*} http://mathworld.wolfram.com/Convolution.html

WPOA & the Blurring Function

Electron exit wave is now modified by blurring function

$$\Psi(x,y) = \left[1 - i\sigma V_{t}(x,y)\right] \otimes h(x,y)$$

Represent h(x,y) as general wave:

$$h(x,y) = cos(x,y) + isin(x,y)$$

$$\Psi(x,y) = \left[1 - i\sigma V_{t}(x,y)\right] \otimes sin(x,y) + icos(x,y)$$

$$\Psi(x,y) = 1 + \sigma V_{t}(x,y) \otimes sin(x,y) - icos(x,y)$$

Intensity:

$$I = \Psi \Psi^* = 1 + 2\sigma V_t(x,y) \otimes \sin(x,y)$$

general idea

How do we express this mathematically?

$$g(\vec{r}) = \int f(\vec{r}') \otimes h(\vec{r} - \vec{r}') d\vec{r}'$$

- The ⊗ is a mathematical symbol indicating 'convolution'*
- h(r) is thus a 'blurring function'

Or: aberrations, etc. limit spatial frequencies in image

O Reciprocal space

^{*} http://mathworld.wolfram.com/Convolution.html

WPOA & the Blurring Function

Electron exit wave is now modified by blurring function

$$\Psi(x,y) = \left[1 - i\sigma V_{t}(x,y)\right] \otimes h(x,y)$$

Represent h(x,y) as general wave:

$$h(x,y) = cos(x,y) + isin(x,y)$$

$$\Psi(x,y) = \left[1 - i\sigma V_{t}(x,y)\right] \otimes sin(x,y) + icos(x,y)$$

$$\Psi(x,y) = 1 + \sigma V_{t}(x,y) \otimes sin(x,y) - icos(x,y)$$

Intensity:

$$I = \Psi \Psi^* = 1 + 2\sigma V_t(x,y) \otimes \sin(x,y)$$

Objective lens transfer function

What is internal to H(u)?

- Aperture function: A(u)
- Coherence function: E(u)
- Aberration function: B(u)

$$H(u) = A(u)E(u)B(u)$$

Let's dissect these terms ...

Aperture function: A(u)

- Determined by size of objective aperture
- Objective aperture (or column liner if no OA used) limits spatial frequencies

Objective lens transfer function

Aberration function: B(u)

- Consider only spherical aberration & defocus
- Point in object becomes disc of diameter $\delta(\theta)$ in image:

$$\delta(\theta) = C_s \theta^3 + \Delta f \theta$$

- Integrate over all θ:

$$\mathbf{D}(\theta) = \int_0^{\theta} \delta(\theta) d\theta = \frac{\mathbf{C}_s \theta^4}{4} + \frac{\Delta \mathbf{f} \theta^2}{2}$$

- Replace θ w/ λ u (Braggs law, small angles Ω 2 θ = λ u)

$$D(u) = C_s \frac{\lambda^4 u^4}{4} + \Delta f \frac{\lambda^2 u^2}{2}$$

Objective lens transfer function

Interested in phase only: $\chi(u)$

$$\chi(\mathbf{u}) = \frac{2\pi}{\lambda} \mathbf{D}(\mathbf{u})$$

$$= \frac{2\pi}{\lambda} \left[\mathbf{C}_{s} \frac{\lambda^{4} \mathbf{u}^{4}}{4} + \Delta \mathbf{f} \frac{\lambda^{2} \mathbf{u}^{2}}{2} \right]$$

$$\chi(\mathbf{u}) = \frac{1}{2} \pi \mathbf{C}_{s} \lambda^{3} \mathbf{u}^{4} + \pi \Delta \mathbf{f} \lambda \mathbf{u}^{2}$$

Aberration function $\chi(u)$ is a complicated function of Cs and Δf

Equivalence between real and reciprocal space

So - why did we do all of this?

Well, recall that in real space:

$$I = \Psi \Psi^* = 1 + 2\sigma V_t(x,y) \otimes sin(x,y)$$

We make an equivalence in reciprocal space:

$$H(u) = 2A(u)E(u)\sin \chi(u)$$

Which means that our image - G(u) - is:

$$G(u) = H(u)F(u) = 2A(u)E(u)\sin\chi(u)F(u)$$

H(u) is thus a spatial frequency filter

Contrast Transfer Function

Ideal transfer function passes all frequencies up to a given u

Real transfer functions modify frequencies

Example to right is close to ideal (Scherzer defocus)

Contrast Transfer Function

Vary Cs

Vary defocus

Contrast Transfer Function

Ideal transfer function passes all frequencies up to a given u

Real transfer functions modify frequencies

Example to right is close to ideal (Scherzer defocus)

