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1. Introduction

Fermi-Dirac integrals appear frequently in semiconductor problems, so a an understanding of
their properties is essential. The purpose of these notes is to collect in one place, some basic
information about Fermi-Dirac integrals and their properties. To see how they arise, consider
computing the equilibrium electron concentration per unit volume in a three-dimensional

semiconductor with a parabolic conduction band from the expression,

n= j g(E)f,(E)dE = j

g(E )dE
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where g(E) is the density of states, f,(E) is the Fermi function, and E_ is the conduction band

edge. For three dimensional electrons,
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which can be used in (1) to write
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By making the substitution,
=(E—E.)/k,T

eqn. (3) becomes
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where we have defined
Ng = (EF —E. )/kBT . (6)

By collecting up parameters, we can express the electron concentration as

2
ny = Ns, ﬁFl/z (m) (7)
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is the so-called effective density-of-states and
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is the Fermi-Dirac integral of order 1/2. This integral can only be done numerically. Note that its
value depends on 7., which measures the location of the Fermi level with respect to the

conduction band edge. It is more convenient to define a related integral,
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so that eqn. (7) can be written as
n=N3D;:1/2(nF)' (11

It is important to recognize whether you are dealing with the “Roman” Fermi-Dirac integral or
the “script” Fermi-Dirac integral.

There are many kinds of Fermi-Dirac integrals. For example, in two dimensions, the density-of-
states is
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and by following a procedure like that one we used in three dimensions, one can show that the
electron density per unit area is



ng=N,,Fy(n,) (13)

where
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is the Fermi-Dirac integral of order 0, which can be integrated analytically.

Finally, in one dimension, the density-of-states is

i ()= = 16)

and the equilibrium electron density per unit length is

n,=N,F. (1) (17)
where
N, = % 2m;kBT (18)
and
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is the Fermi-Dirac integral of order —1/2, which must be integrated numerically.

2. General Definition

In the previous section, we saw three examples of Fermi-Dirac integrals. More generally, we
define



F.(n,)=
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where I' is the gamma function. The I" function is just the factorial when its argument is a
positive integer,

I'(n)=(n—1)! (for n apositive integer). (21a)
Also

r(1/2)=+r (21b)
and

I'(p+1D=pl(p) (21c)

As an example, let’s evaluate F

(n,.) from eqn. (20):
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so we need to evaluate I'(3/2). Using eqns. (21b) and (21c¢), we find,
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so F,,(n,) is evaluated as
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which agrees with eqn. (10). For more practice, use the general definition, eqn. (20) and eqns.
(21a-c) to show that the results for # (1,) and 7 (1,)agree with eqns. (15) and (19).

3. Derivatives of Fermi-Dirac Integrals

Fermi-Dirac integrals have the property that
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which often comes in useful. For example, we have an analytical expression for 7 (7,), which

means that we have an analytical expression for #_ (1,.),
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Similarly, we can show that there is an analytic expression for any Fermi-Dirac integral of
integer order, j, for j < -2,

e

F.n,)=——P "
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where B, is a polynomial of degree k, and the coefficients p, ; are generated from a recurrence

relation [1]

Pio=1 (26a)

P =+ p —(k+1=i)p, =L k. (26b)

4. Asymptotic Expansions for Fermi-Dirac Integrals

It is useful to examine Fermi-Dirac integrals in the non-degenerate (1, <<0) and degenerate
(n, >>0) limits. For the non-degenerate limit, the result is particularly simple,

Fm)—e" (27)

which means that for all orders, j, the function approaches the exponential in the non-degenerate
limit. To examine Fermi-Dirac integrals in the degenerate limit, we consider the complete
expansion for the Fermi-Dirac integral for j >—1 and 1, >0 [2, 3]
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where £, =1/2, ¢, = Z; -1y / u=(1-2" )§ (n), and { (n) is the Riemann zeta function.
The expressions for the Fermi-Dirac integrals in the degenerate limit (77, >>0) come from (28)
as ]-'j(nF)—>17j:'1 / F( j+2) [4]. Specific results for several Fermi-Dirac integrals are shown
below.
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Now we relate the complete expansion in (28) to the Sommerfeld expansion [5, 6]. The
Sommerfeld expansion for a function H (&) is expressed as

jH(s)fo(e)ds—JH(s)d8+2a 2an(g)( (30)

E=Np

where
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and it is noted that a, =2¢,,. Then the Sommerfeld expansion for the Fermi-Dirac integral of

order j can be evaluated by letting H (¢ )=¢€’ / I'(j+1), and the result is
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Equation (32) is the same as the (28) except that the second term in (28) is omitted [3]. In the
degenerate limit, however, the second term in (28) vanishes, so the (28) and (32) give the same
results as (29a-e).

5. Approximate Expressions for Common Fermi-Dirac Integrals
The Fermi-Dirac integral can be quickly evaluated by tabulation [2, 4, 7, 8] or analytic

approximation [9-11]. We briefly mention some of the analytic approximations and refer a
Matlab script. Bednarczyk et al. [9] proposed a single analytic approximation which evaluates



the Fermi-Dirac integral of order j=1/2 with errors less than 0.4 % [12]. Aymerich-Humet et

al. [10, 11] introduced an analytic approximation for a general j, and it gives an error of 1.2 %
for -1/2< j<1/2 and 0.7 % for 1/2< j<5/2, and the error increases with larger j. The

Matlab function, “FD_int_approx.m,” calculates the Fermi-Dirac integral defined in (10) with
orders j=>—1/2 using these analytic approximations.

If a better accuracy is required while keeping the calculation relatively simple, the
approximations proposed by Halen and Pulfrey [13, 14] may be used. In this model, several
approximate expressions are introduced based on the series expansion in (28), and the error is
less than 10” for —=1/2 < j<7/2 [13]. The Matlab function, “FDjx.m,” is the main function

which calculates the Fermi-Dirac integrals using this model.

6. Numerical Evaluation of Fermi-Dirac Integrals

The Fermi-Dirac integrals can be evaluated accurately by numerical integration. Here we briefly
review the approach by Press et al. for generalized Fermi-Dirac integrals with order j >—1 [15].

In this approach, the composite trapezoidal rule with variable transformation & = exp (t —e_’) is
used forn, <15, and the double exponential (DE) rule is used for larger n,.. The double

precision (eps, ~ 2.2x107'®) can be achieved after 60 to 500 iterations [15]. The Matlab
function, “FD_int_num.m,” evaluates the Fermi-Dirac integral numerically using the composite
trapezoidal rule following the approach in [15].
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