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1.  Introduction 
 
Fermi-Dirac integrals appear frequently in semiconductor problems, so a an understanding of 
their properties is essential. The purpose of these notes is to collect in one place, some basic 
information about Fermi-Dirac integrals and their properties. To see how they arise, consider 
computing the equilibrium electron concentration per unit volume in a three-dimensional 
semiconductor with a parabolic conduction band from the expression, 
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where g(E)  is the density of states, f

0
(E)  is the Fermi function, and 
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E  is the conduction band 

edge. For three dimensional electrons, 
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which can be used in (1) to write 
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By making the substitution,  
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eqn. (3) becomes 
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where we have defined 
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By collecting up parameters, we can express the electron concentration as 
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is the so-called effective density-of-states and  
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is the Fermi-Dirac integral of order 1/2. This integral can only be done numerically. Note that its 
value depends on !

F
, which measures the location of the Fermi level with respect to the 

conduction band edge. It is more convenient to define a related integral, 
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so that eqn. (7) can be written as 
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It is important to recognize whether you are dealing with the “Roman” Fermi-Dirac integral or 
the “script” Fermi-Dirac integral. 
 
There are many kinds of Fermi-Dirac integrals. For example, in two dimensions, the density-of-
states is 
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and by following a procedure like that one we used in three dimensions, one can show that the 
electron density per unit area is 
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is the Fermi-Dirac integral of order 0, which can be integrated analytically. 
 
Finally, in one dimension, the density-of-states is 
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and the equilibrium electron density per unit length is 
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and  
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is the Fermi-Dirac integral of order 1/ 2! , which must be integrated numerically. 
 
 
2.  General Definition 
 
In the previous section, we saw three examples of Fermi-Dirac integrals.  More generally, we 
define 
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where Γ is the gamma function. The Γ function is just the factorial when its argument is a 
positive integer, 
 
 ( )( ) 1 ! (for  a positive integer)n n n! = " . (21a) 
Also 
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As an example, let’s evaluate 
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so we need to evaluate !(3 / 2) . Using eqns. (21b) and (21c), we find, 
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which agrees with eqn. (10).  For more practice, use the general definition, eqn. (20) and eqns. 
(21a-c) to show that the results for 
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3.  Derivatives of Fermi-Dirac Integrals 
 
Fermi-Dirac integrals have the property that 
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which often comes in useful. For example, we have an analytical expression for
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Similarly, we can show that there is an analytic expression for any Fermi-Dirac integral of 
integer order, j, for 2j ! " , 
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where 

k
P  is a polynomial of degree k, and the coefficients 

,k ip  are generated from a recurrence 
relation [1] 
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4.  Asymptotic Expansions for Fermi-Dirac Integrals 
 
It is useful to examine Fermi-Dirac integrals in the non-degenerate (!

F
<< 0 ) and degenerate 

(!
F
>> 0 ) limits. For the non-degenerate limit, the result is particularly simple, 
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which means that for all orders, j, the function approaches the exponential in the non-degenerate 
limit. To examine Fermi-Dirac integrals in the degenerate limit, we consider the complete 
expansion for the Fermi-Dirac integral for 1j > !  and 0

F
! >  [2, 3] 
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The expressions for the Fermi-Dirac integrals in the degenerate limit (!
F
>> 0 ) come from (28) 
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# j + 2( )  [4]. Specific results for several Fermi-Dirac integrals are shown 

below. 
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Now we relate the complete expansion in (28) to the Sommerfeld expansion [5, 6]. The 
Sommerfeld expansion for a function ( )H !  is expressed as 
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and it is noted that 

2
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n n
a t= . Then the Sommerfeld expansion for the Fermi-Dirac integral of 

order j can be evaluated by letting ( ) ( )1j
H j! != " + , and the result is 
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Equation (32) is the same as the (28) except that the second term in (28) is omitted [3]. In the 
degenerate limit, however, the second term in (28) vanishes, so the (28) and (32) give the same 
results as (29a-e). 
 
 
5.  Approximate Expressions for Common Fermi-Dirac Integrals 
 
The Fermi-Dirac integral can be quickly evaluated by tabulation [2, 4, 7, 8] or analytic 
approximation [9-11]. We briefly mention some of the analytic approximations and refer a 
Matlab script. Bednarczyk et al. [9] proposed a single analytic approximation which evaluates 
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the Fermi-Dirac integral of order 1/ 2j =  with errors less than 0.4 % [12]. Aymerich-Humet et 
al. [10, 11] introduced an analytic approximation for a general j, and it gives an error of 1.2 % 
for 1/ 2 1/ 2j! < <  and 0.7 % for 1/ 2 5 / 2j< < , and the error increases with larger j. The 
Matlab function, “FD_int_approx.m,” calculates the Fermi-Dirac integral defined in (10) with 
orders 1/ 2j ! "  using these analytic approximations. 
 
If a better accuracy is required while keeping the calculation relatively simple, the 
approximations proposed by Halen and Pulfrey [13, 14] may be used. In this model, several 
approximate expressions are introduced based on the series expansion in (28), and the error is 
less than 10-5 for 1/ 2 7 / 2j! " "  [13]. The Matlab function, “FDjx.m,” is the main function 
which calculates the Fermi-Dirac integrals using this model. 
 
 
6.  Numerical Evaluation of Fermi-Dirac Integrals 
 
The Fermi-Dirac integrals can be evaluated accurately by numerical integration. Here we briefly 
review the approach by Press et al. for generalized Fermi-Dirac integrals with order 1j > !  [15]. 
In this approach, the composite trapezoidal rule with variable transformation ( )exp

t
t e!

"
= "  is 

used for 15
F

! " , and the double exponential (DE) rule is used for larger 
F

! . The double 
precision (eps, 16

~ 2.2 10
!

" ) can be achieved after 60 to 500 iterations [15]. The Matlab 
function, “FD_int_num.m,” evaluates the Fermi-Dirac integral numerically using the composite 
trapezoidal rule following the approach in [15]. 
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