EE-612: Lecture 12: 2D Electrostatics

Mark Lundstrom
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA
Fall 2008

www.nanohub.org
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
\(I_D \) vs. \(V_{DS} \) (long channel)

1) square law

\[
I_D = \frac{W}{2L} \mu_{\text{eff}} C_{\text{ox}} \left(V_{GS} - V_T \right)^2 \frac{1}{m}
\]

2) low output conductance

\[
g_d = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_{V_{GS}}
\]
I_D vs. V_{DS} (short channel)

1) linear with V_{GS}

$$I_D = W \nu_{sat} C_{ox} (V_{GS} - V_T)$$

2) high output conductance

$$g_d = \left. \frac{\partial I_D}{\partial V_{DS}} \right|_{V_{GS}}$$

see Taur and Ning, pp. 154-158
channel length modulation

\[I_D = \mu_{\text{eff}} C_{ox} \frac{W}{2L'} (V_{GS} - V_T)^2 \]

\[V_{GS} > V_T \]
\[V_{DS} > V_{GS} - V_T \]

pinch-off region:
1) high lateral electric field \(E_y >> E_x \)
2) small carrier density
3) under control of drain, not gate (GCA does not apply)

\[L' = L - \Delta L < L \]
V_T roll-off

\[V_T = V_{FB} + 2\psi_B + \sqrt{2q\varepsilon_{Si} N_A (2\psi_B) / C_{ox}} \]

Lundstrom EE-612 F08
DIBL

\[(V_{GS} - V_T)^\alpha \]

\[e^{(V_{GS} - V_T)/mk_B T} \]

\[V_{DS} = 1.1 \text{V} \]

\[V_{DS} = 0.05 \text{V} \]

“Drain-Induced Barrier Lowering” (DIBL) mV/V
stronger short channel effects

\[(V_{GS} - V_T)^\alpha \]

\[e^{(V_{GS} - V_T) / m_BT} \]

\[V_{DS} = 1.1V \]
\[V_{DS} = 0.05V \]

\[S(V_{DS} = 1.1V) > S(V_{DS} = 0.05V) \]
severe short channel effects

\[V_{DS} = 1.1V \]
\[V_{DS} = 0.05V \]

\[\log I_D \]
\[e^{(V_{GS} - V_T)/mK_B T} \]

Current weakly dependent on \(V_{GS} \)

‘punch through’
punchthrough

\[N_A(\text{min}) : \text{punch through} \]

\[W_S + W_D < L \]
short channel effects

1) I_D linear not quadratic with gate voltage
2) high output conductance
3) threshold voltage roll-off
4) increased DIBL
5) increased S
6) punchthrough
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
2D Poisson equation

1) MOS Capacitor:
\[
\frac{\partial^2 \psi}{\partial x^2} = -\frac{\rho}{\varepsilon_{Si}} = \frac{qN_A}{\varepsilon_{Si}} \quad \text{(below } V_T \text{)}
\]

2) MOSFET:
\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{qN_A}{\varepsilon_{Si}} \quad \text{(below } V_T \text{)}
\]
2D Poisson equation (ii)

1) Long channel MOSFET below threshold:

\[
\frac{\partial^2 \psi}{\partial x^2} \gg \frac{\partial^2 \psi}{\partial y^2}
\]

gradual channel approximation (GCA):

\[
Q_I(y) = -C_G \left[V_G - V_T - mV(y) \right]
\]
2D Poisson equation (iii)

1) Short channel MOSFET below threshold:

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{qN_A}{\varepsilon_{Si}} \frac{\partial^2 \psi}{\partial y^2}
\]

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{qN_A}{\varepsilon_{Si}} < 0
\]

\[
N_A^{eff} < N_A
\]

\[
V_T < V_T^{(long \ channel)}
\]

explanys V_T roll-off

Increasing V_{DS}

$\frac{\partial^2 E_C}{\partial y^2} < 0$

$y \ (nm) \ ---\rightarrow$

Lundstrom EE-612 F08 15
2D potential contours

\[\psi = 1.0 \]

\[\psi = 0.5 \]

\[\psi = 0.4 \]

\[\psi = 0.3 \]

\[\psi = 0.2 \]

\[\psi = 0.1 \]

\[\psi = 0 \]

\[\psi_s = 1V \]

\[\psi = 0V \]

\[E_C \]

\[E_F \]

\[E_V \]

\[E(x) \]

p-Si
2D potential contours

\[\psi = V_{bi} \]

\[\psi = 0 \]

p-Si

n+
2D potential contours (long channel)

like 1D MOS capacitor
2D potential contours (short channel)

(See Fig. 3.18 of Taur and Ning)
field lines

\[\psi = V_{bi} \]

\[\psi = 0 \]

\[\psi = V_{bi} \]

p-Si

n+ n+

Lundstrom EE-612 F08
field lines (bulk)
field lines (SOI)
field lines (SOI)

‘gate all around’

FINFET

tri-gate
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
charge sharing model

\[\bar{Q}_D = (W W_{DM}) q N_A \]
charge sharing model (ii)
charge sharing model (ii)

\[\bar{Q}_D' = W \left(\frac{L + L'}{2} \right) W_{DM} qN_A \]
charge sharing model (iii)

\[V_T = V_{FB} + 2\psi_B - \gamma \frac{Q_D}{C_{OX}} < V_T \text{ (long channel)} \]

\[\gamma = \frac{L + L'}{2L} = 1 - \frac{x_j}{L} \left(\sqrt{1 + \frac{2W_{DM}}{x_j}} - 1 \right) \]

(prob. 3.6, Taur and Ning)

for \(\gamma \sim 1 \), need:

\[\begin{cases}
 x_j << L \\
 W_{DM} << x_j
\end{cases} \]

increase channel doping

\[\text{S/D extensions} \]

\[\text{p-Si} \]
Outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
barrier lowering

$E_C(y)$

$q(V_{bi} - \psi_S)$

gate controls barrier height

drain depletion layer expands

$I_D \sim e^{-E_B/k_bT}$

current does not change

low V_{DS}

high V_{DS}

Lundstrom EE-612 F08
barrier lowering (ii)

\[\log I_D = e^{(V_{GS} - V_T)/mk_BT} \]

- \(V_{DS} = 1.1V \)
- \(V_{DS} = 0.05V \)

no DIBL
barrier lowering (iii)

\[I_D \sim e^{-E_B/k_bT} \]

\[\Delta I_D = e^{\Delta E_B/k_bT} \]

\[q(V_{bi} - \psi_S) \]

\[\Delta E_B \]

\[y \]

\[E_C(y) \]

\[\text{drain-induced barrier lowering} \]

low \(V_{DS} \)

high \(V_{DS} \)
barrier lowering (iv)

\[V_{DS} = 1.1V \]
\[V_{DS} = 0.05V \]

\[\Delta I_D = e^{\Delta E_B / k_b T} \]
punchthrough

\[I_D \sim e^{-E_B/k_B T} \]

\[E_C(y) \]

\[q(V_{bi} - \psi_S) \]

\[y \]

low \(V_{DS} \)

decreasing \(N_A \)

high \(V_{DS} \)
punchthrough (ii)

\[I_D \sim e^{-E_B/k_B T} \]

\[E_C(y) \]

\[q(V_{bi} - \psi_S) \]

low \(V_{DS} \)

increasing \(V_{DS} \)
punchthrough (iii)

surface punchthrough

bulk punchthrough

\[\text{p-Si} \]

\[\text{n}^+ \quad \text{n}^+ \]

\[\text{p-Si} \]

\[\text{n}^+ \quad \text{n}^+ \]
punchthrough (iv)

\[V_{DS} = 0.05\text{V} \]

\[V_{DS} = 1.1\text{V} \]

\[\log I_D \]

\[e^{(V_{GS} - V_T)/mk_B T} \]

\[V_{GS} \]

\[I_D \]

\[V_{DS} \]
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
2D capacitor model
2D capacitor model \((V = 0)\)

\[
\psi_S = \frac{Q}{C_\Sigma}
\]

\[
C_\Sigma = C_{GB} + C_{SB} + C_{DB} + C_D
\]
2D capacitor model \((Q = 0)\)

\[
V_S = V_D = 0
\]

\[
\psi_S = \frac{C_{GB}}{C_{\Sigma}} V_G
\]

\[
C_{ SB} + C_{DB} + C_D
\]
2D capacitor model (general solution)

\[\psi_S = \frac{C_{GB}}{C_{\Sigma}} V_G + \frac{C_{SB}}{C_{\Sigma}} V_S + \frac{C_{DB}}{C_{\Sigma}} V_D + \frac{Q}{C_{\Sigma}} \]

\[C_{\Sigma} = C_{GB} + C_{SB} + C_{DB} + C_D \]

\[C_{GB} = C_{ox} WL \quad C_D = \text{depletion layer capacitance} \]

Recall:

\[V_G = \psi_S - \frac{Q}{C_{ox}} \]
2D capacitor model \((V_S = Q = 0)\)

\[
\psi_S = \frac{C_{GB}}{C_\Sigma} V_G + \frac{C_{DB}}{C_\Sigma} V_D
\]

\[
\frac{\partial \psi_S}{\partial V_G} = \frac{C_{GB}}{C_\Sigma} \quad \frac{\partial \psi_S}{\partial V_D} = \frac{C_{DB}}{C_\Sigma}
\]

\[
\frac{\partial \psi_S}{\partial V_G} \gg \frac{\partial \psi_S}{\partial V_D} \Rightarrow C_{GB} \gg C_{DB}
\]

need \(t_{ox} \ll L\)
2D capacitor model

\[
\psi_s = \frac{C_{GB}}{C_\Sigma} V_G + \frac{C_{DB}}{C_\Sigma} V_D \quad \left(V_s = Q = 0 \quad C_\Sigma = C_{DB} + C_D \right)
\]

\[
I_D \propto e^{q\psi_s/k_B T} = e^{qV_{GS}/mk_B T}
\]

\[
m = C_\Sigma / C_{GB}
\]

\[
m = \left(C_{GB} + C_{DB} + C_D \right) / C_{GB}
\]

\[
= \left[1 + \left(C_{DB} + C_D \right) / C_{GB} \right]
\]

2D electrostatics: \(C_{DB} \) not negligible \(S \) increases.
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
screening by free carriers

\[\psi(r) = \frac{q}{4\pi \varepsilon_{Si} r} e^{-r/L_D} \]

\[L_D = \sqrt{\frac{\varepsilon_{Si} k_B T}{q^2 N_D}} \]
geometric screening

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{qN_A}{\varepsilon_{Si}} \quad \text{(below } V_T \text{)} \]

‘convert’ this to a 1D equation
recall 1D

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{qN_A}{\varepsilon_{Si}}
\]

\[
\frac{\partial^2 \psi}{\partial x^2} \approx \frac{(V_G - \psi_S)}{\Lambda^2}
\]

\[\Lambda = ?\]
geometric screening length

in 1D:

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{qN_A}{\varepsilon_{Si}}
\]

we will write this as:

\[
\frac{\partial^2 \psi}{\partial x^2} \approx \left(V_G - \psi_S \right) \frac{\Lambda^2}{\varepsilon_{Si}} = \frac{qN_A}{\varepsilon_{Si}}
\]

the solution to the 1D Poisson equation gives:

\[
V_G = \psi_S - \frac{Q_S}{C_{ox}} = \psi_S + qN_A W_{DM} / C_{ox}
\]

use (3) in (2) to find \(\Lambda \)
The geometric screening length (Λ) is given by:

$$\Lambda = \sqrt{\frac{\varepsilon_{Si} W_{DM} t_{OX}}{\varepsilon_{OX}}}$$

where ε_{Si} is the permittivity of silicon, W_{DM} is the effective width, t_{OX} is the oxide thickness, ε_{OX} is the permittivity of the oxide, V_G is the gate voltage, ψ_S is the surface potential, $\partial^2 \psi / \partial y^2$ is the second derivative of the potential with respect to position, qN_A is the charge density, and ε_{Si} is the permittivity of silicon.

The equation to obtain the correct 1D result is:

$$\frac{\partial^2 \psi}{\partial y^2} + \frac{(V_G - \psi_S)}{\Lambda^2} = \frac{qN_A}{\varepsilon_{Si}}$$

when

$$\frac{\partial^2 \psi}{\partial y^2} \ll \frac{\partial^2 \psi}{\partial y^2}$$

we get the correct 1D result.

How do we interpret Λ?
geometric screening length (iii)

\[\frac{\partial^2 \psi}{\partial y^2} + \left(\frac{V_G - \psi_S}{\Lambda^2} \right) = \frac{qN_A}{\varepsilon_{Si}} \]

\[\phi = \psi_S - V_G + \frac{qN_A}{\varepsilon_{Si}} \Lambda^2 \]

\[\frac{d^2 \phi}{dy^2} - \frac{\phi}{\Lambda^2} = 0 \]

source
\[\phi = \phi(0) \]

drain
\[\phi = \phi(L) \]
geometric screening length (iv)

\[\phi(y) = A \cosh(y / \Lambda) + B \sinh(y / \Lambda) \]

\[L \gg \Lambda \quad \text{(long channel)} \]

\[L \approx (1.5 - 2)\Lambda \quad \text{(typical)} \]
analytical solutions

\[\Delta V_T \approx 8(m - 1) \sqrt{V_{bi} (V_{bi} + V_{DS})} e^{-L/\lambda} \]

\[S \approx \frac{2.3mk_BT}{q} \left(1 + \frac{11t_{ox}}{W_{DM}} e^{-L/\lambda} \right) \]

\[\lambda = 2mW_{DM}/\pi \]

See Taur and Ning, Appendix 6
geometric screening length vs. device geometry

\[\Lambda_{BULK} \approx \sqrt{\frac{\varepsilon_{Si}}{\varepsilon_{OX}}} W_{DM} t_{OX} \]

\[\Lambda_{SOI} \approx \sqrt{\frac{\varepsilon_{Si}}{\varepsilon_{OX}}} t_{Si} t_{OX} < \Lambda_{BULK} \]

\[\Lambda_{DG SOI} \approx \sqrt{\frac{\varepsilon_{Si}}{2 \varepsilon_{OX}}} t_{Si} t_{OX} < \Lambda_{SOI} \]

\[\Lambda_{CYL} < \Lambda_{DG SOI} \]

see:

The objective in MOSFET design is to make \(L > \Lambda \)

\(L \approx (1.5 - 2)\Lambda \) (typical)
outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
controlling 2D electrostatics

1) \(t_{ox} \ll L \)
2) shallow \(x_j \)
3) thin \(W_{DM} \)
4) non-uniform doping

n+ \(\rightarrow \) \(\rightarrow \) n+

p-Si

‘halos’
reverse short channel effect

\[V_T \]

'\text{reverse}' short channel effect

\[V_T \text{ roll-off} \]

'n+ n+ n+

'halos'

p-Si
double gate transistors

\[\Lambda << L \]

geometric screening length \[\Lambda \]

channel length scaling \[L >> \Lambda \]

\[\Lambda_{DG\, SOI} < \Lambda_{BULK} \]

nanoMOS simulations by Himadri Pal and Raseong Kim (Purdue)
nonplanar MOSFETS

Intel Tri-Gate

nanowire transistors

\[\Lambda \]

\[L \gg \Lambda \]

\[\Lambda_{CYL} < \Lambda_{DG\ SOI} < \Lambda_{BULK} \]

outline

1) Consequences of 2D electrostatics
2) 2D Poisson equation
3) Charge sharing model
4) Barrier lowering
5) 2D capacitor model
6) Geometric screening length
7) Discussion
8) Summary
summary

1) 2D electrostatics is a critical issue in device scaling

2) Understanding 2D electrostatics is essential for transistor designers