1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
SOI MOSFETs

- Two separate gates
- Upper oxide thermal
- Lower gate oxide is the BOX (e.g. produced by SIMOX)
- Typically $t_{OF} \ll t_{OB}$

Goal: To understand the effect of the top and back gates on MOSFET operation
band diagram: PD SOI

- Maximum depletion width for bulk Si:
 \[W_{DM} = \sqrt{\frac{4\varepsilon_{Si}\psi_B}{qN_A}} \]
 \[\psi_B = \frac{k_B T}{q} \ln\left(\frac{N_A}{n_i}\right) \]

- Partially depleted (PD) SOI:
 \[t_{Si} > 2W_{DM} \]

- Front and back gates are decoupled electrostatically: \(\psi_{SF} \) independent of \(\psi_{SB} \)

- Device operation similar to a bulk MOSFET
band diagram: FD SOI

- Fully depleted (FD) SOI: \(t_{Si} < W_{DM} \)

- Front and back gates are electrostatically coupled: \(\psi_{SF} \) is a function of \(\psi_{SB} \)

- Back gate bias plays important role in device operation

- The rest of this lecture will focus on fully depleted SOI
FD SOI nMOSFET operating regions

Nine operating regions:

<table>
<thead>
<tr>
<th>Front gate:</th>
<th>Back gate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>depleted</td>
<td>depleted</td>
</tr>
<tr>
<td>inverted</td>
<td>inverted</td>
</tr>
<tr>
<td>accumulated</td>
<td>accumulated</td>
</tr>
</tbody>
</table>
FD SOI nMOSFET operating regions

\[V_{GF} \]

- Front Inversion
- Back Accumulation
- Front Depletion
- Back Accumulation
- Front Accumulation
- Back Accumulation
- Front Inversion
- Back Depletion
- Front Inversion
- Back Depletion
- Front Depletion
- Back Depletion
- Front Accumulation
- Back Depletion
- Front Accumulation
- Back Depletion
- Front Inversion
- Back Inversion
- Front Inversion
- Back Inversion
- Front Inversion
- Back Inversion
Key references for SOI 1D Electrostatics

1. Introduction
2. **General solution**
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
FD SOI band diagram

\[\rho(x) = -qN_A \]
objectives

for bulk MOSFETS, we know:

\[V'_G = \psi_S - Q_S / C_{ox} \]

for FDSOI MOSFETS, determine:

\[\psi_{SF} = f(V_{GF}, V_{GB}) \]
\[\psi_{SB} = f(V_{GF}, V_{GB}) \]
electric field in SOI

Delta-depletion Approximation: Assume that any mobile charge is at the Si surface in a delta function.

Apply Gauss’ Law to FD bulk:

\[
\frac{dE}{dx} = \frac{-qN_A}{\varepsilon_{Si}}
\]

\[
E(t_{Si}) - E(0^+) = \int_{E(0^+)}^{E(t_{Si})} dE = \frac{-qN_A}{\varepsilon_{Si}} \int_{0^+}^{t_{Si}} dx
\]

\[
E(t_{Si}^-) - E(0^+) = -qN_A t_{Si} / \varepsilon_{Si}
\]
electric field in SOI (ii)

from:

$$E(t_{Si}^-) - E(0^+) = -qN_At_{Si} / \varepsilon_{Si}$$

we get:

$$E(0^+) = E(t_{Si}^-) + qN_At_{Si} / \varepsilon_{Si} \quad \text{(1)}$$

also:

$$\Delta \psi = \psi_{SF} - \psi_{SB} = \frac{1}{2} \left[E(0^+) + E(t_{Si}^-) \right] t_{Si}$$

from which, we obtain:

$$E(0^+) = 2\left(\psi_{SF} - \psi_{SB} \right) / t_{Si} - E(t_{Si}^-) \quad \text{(2)}$$
electric field in SOI (iii)

solve (1) and (2) for:

\[E(0^+) = \left(\frac{\psi_{SF} - \psi_{SB}}{t_{Si}} \right) + \frac{qN_A t_{Si}}{2 \epsilon_{Si}} \]
\[
(3)
\]

\[E(t_{Si}^-) = \left(\frac{\psi_{SF} - \psi_{SB}}{t_{Si}} \right) - \frac{qN_A t_{Si}}{2 \epsilon_{Si}} \]
\[
(4)
\]

we can also relate:

\[E(0^+) \text{ to } V_{GF} \]

\[E(t_{Si}^-) \text{ to } V_{GB} \]
effect of front and back gate voltages

The field in the front gate oxide is:

\[E_{OF} = \left(V_{GF}' - \psi_{SF} \right) / t_{OF}, \quad \text{where} \quad V_{GF}' = V_{GF} - \phi_{msf} \]

Taking the inversion charge into account:

\[\varepsilon_{ox} E_{OF} = \varepsilon_{Si} E(0^+) - Q_{IF} \]

\[E(0^+) = \frac{\varepsilon_{ox}}{\varepsilon_{Si}} E_{OF} + \frac{Q_{IF}}{\varepsilon_{Si}} \]

\[E(0^+) = \frac{\varepsilon_{ox}}{\varepsilon_{Si}} \frac{(V_{GF}' - \psi_{SF})}{t_{OF}} + \frac{Q_{IF}}{\varepsilon_{Si}} \quad (5) \]
effect of front and back gate voltages (ii)

after a similar analysis for the back gate:

\[E(0^+) = \frac{\varepsilon_{ox}}{\varepsilon_{Si}} \left(V_{GF}' - \psi_{SF} \right) + \frac{Q_{IF}}{\varepsilon_{Si}} \] \hspace{1cm} (5)

\[E(t_{Si}^-) = \frac{\varepsilon_{ox}}{\varepsilon_{Si}} \left(\psi_{SB} - V_{GB}' \right) - \frac{Q_{IB}}{\varepsilon_{Si}} \] \hspace{1cm} (6)

\[E(0^+) = \left(\frac{\psi_{SF} - \psi_{SB}}{t_{Si}} \right) + \frac{qN_A t_{Si}}{2 \varepsilon_{Si}} \] \hspace{1cm} (3)

\[E(t_{Si}^-) = \left(\frac{\psi_{SF} - \psi_{SB}}{t_{Si}} \right) - \frac{qN_A t_{Si}}{2 \varepsilon_{Si}} \] \hspace{1cm} (4)
general solution

\[V_{GF} = \phi_{msf} + \psi_{SF} - \frac{Q_{IF} + Q_{B}/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (\psi_{SF} - \psi_{SB}) \]

(7)

\[V_{GB} = \phi_{msb} + \psi_{SB} - \frac{Q_{IB} + Q_{B}/2}{C_{OB}} + \frac{C_{Si}}{C_{OB}} \times (\psi_{SB} - \psi_{SF}) \]

(8)

\[C_{Si} \equiv \frac{\varepsilon_{Si}}{t_{Si}} \quad Q_{B} \equiv -qN_{A}t_{Si} \]

extra volt drop across oxide due to different surface potentials

compare to: \[V'_{G} = \psi_{S} - Q_{S}/C_{ox} \]
extra term due to different surface potentials

For bulk silicon MOS structure, the gate voltage is given by:

\[
V_G = \psi_S - \left(Q_B + Q_I \right) / C_{ox}
\]

Comparing with the bulk, the DGSOI gate voltage has an extra term that accounts for the voltage drop across oxide due to different surface potentials.

\[
E_{Si} = (\psi_{SF} - \psi_{SB}) / t_{Si}
\]

\[
\varepsilon_{of} E_{OF} = \varepsilon_{Si} E_{Si} \quad \varepsilon_{of} E_{OF} = \varepsilon_{Si} (\psi_{SF} - \psi_{SB}) / t_{Si}
\]

\[
\Delta V_{OX} = t_{OF} E_{OF} = \frac{C_{Si}}{C_{OF}} (\psi_{SF} - \psi_{SB})
\]
front and back coupled electrostatics

for a fixed V_{GF}, increasing V_{GB} increases ψ_{SF} (lowers V_{TF})

eqn. (7)

eqn. (8)
outline

1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
V_{TF} vs. V_{GB}
Raising V_{GB} increases ψ_{SF}, so the front gate threshold voltage V_{TF} should decrease.

$$V_{GF} = \phi_{msf} + \psi_{SF} - \frac{Q_{IF} + Q_{B}/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (\psi_{SF} - \psi_{SB})$$

At threshold, $Q_{IF} = Q_{B}/2$ and $\psi_{SF} = 2\psi_{B}$

$$V_{TF} = \phi_{msf} + 2\psi_{B} - \frac{Q_{B}}{2C_{OF}} + \frac{C_{Si}}{C_{OF}}(2\psi_{B} - \psi_{SB})$$

V_{TF} is a function of ψ_{SB}, and hence can be varied using back gate bias (V_{GB})
1) back inverted

\[V_{TF} = \phi_{msf} + 2\psi_B - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} \left(2\psi_B - \psi_{SB} \right) \]

Back side inversion:

\[\psi_{SB} = 2\psi_B \]

\[V_{TF} \text{ (back inv)} = \phi_{msf} + 2\psi_B - \frac{Q_B}{2C_{OF}} \]

Current flows even when \(V_{GF} < V_{TF} \) because the back surface is inverted. Since the device doesn’t turn off, this mode of operation is not useful.
2) back accumulated

\[V_{TF} = \phi_{msf} + 2\psi_B - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} (2\psi_B - \psi_{SB}) \]

Back accumulation:

\[\psi_{SB} \approx 0 \]

\[V_{TF} (\text{back acc}) = \phi_{msf} + 2\psi_B - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} (2\psi_B) \]

Net \(V_{TF} \) shift:

\[\Delta V_{TF} = V_{TF} (\text{back acc}) - V_{TF} (\text{back inv}) \]

\[= \frac{C_{Si}}{C_{OF}} (2\psi_B) = \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \frac{t_{OF}}{t_{Si}} (2\psi_B) \]
3) back depleted

\[V_{GF} = \phi_{msf} + \psi_{SF} - \frac{Q_{IF} + Q_B/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (\psi_{SF} - \psi_{SB}) \] \hspace{1cm} (7)

\[V_{TF} = \phi_{msf} + 2\psi_{SB} - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (2\psi_B - \psi_{SB}) \] \hspace{1cm} (9)

We need to relate \(\psi_{SB} \) to \(V_{GB} \) …
3) back depleted (ii)

\[V_{GB} = \phi_{msb} + \psi_{SB} - \frac{Q_{IB} + Q_{B}/2}{C_{OB}} + \frac{C_{Si}}{C_{OB}} \times (\psi_{SB} - \psi_{SF}) \] \hspace{1cm} (8)

at front threshold:

\[V_{GB} = \phi_{msb} + \psi_{SB} - \frac{Q_{B}}{2C_{OB}} + \frac{C_{Si}}{C_{OB}} \times (\psi_{SB} - 2\psi_{B}) \] \hspace{1cm} (10)

at the start of back accumulation (\(\psi_{SB} = 0\)):

\[V_{GB}^{(acc)} = \phi_{msb} - \frac{Q_{B}}{2C_{OB}} - \frac{C_{Si}}{C_{OB}} 2\psi_{B} \] \hspace{1cm} (11)
3) back depleted (iii)

The back surface is depleted when $V_{GB} > V_{GB}(acc)$

From (10) and (11):

$$V_{GB} - V_{GB}(acc) = \left(1 + \frac{C_{Si}}{C_{OB}}\right)\psi_{SB}$$

$$\psi_{SB} = \frac{C_{ob}}{C_{OB} + C_{Si}} \left[V_{GB} - V_{GB}(acc) \right] \quad (12)$$
3) Back depleted (iv)

Recap:

\[V_{TF} = \phi_{msf} + 2\psi_{SB} - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} \times \left(2\psi_B - \psi_{SB} \right) \] \hspace{1cm} (9)

\[\psi_{SB} = \frac{C_{ob}}{C_{OB} + C_{Si}} \left[V_{GB} - V_{GB} \left(\text{acc} \right) \right] \] \hspace{1cm} (12)

\[V_{TF} = \phi_{msf} + 2\psi_B - \frac{Q_B}{2C_{OF}} + \frac{C_{Si}}{C_{OF}} 2\psi_B - \frac{C_{Si} C_{OB}}{C_{OF} \left(C_{OB} + C_{Si} \right)} \left[V_{GB} - V_{GB} \left(\text{acc} \right) \right] \]

\[\frac{dV_{TF}}{dV_{GB}} = - \frac{C_{Si} C_{OB}}{C_{OF} \left(C_{OB} + C_{Si} \right)} = - \left(\frac{t_{OF}}{t_{OB}} \right) \frac{1}{\left(1 + C_{OB} / C_{Si} \right)} \]
$\Delta V_{TF} = \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \frac{t_{OF}}{t_{Si}} (2\psi_B)$

\[
\frac{dV_{TF}}{dV_{GB}} = -\frac{t_{OF}/t_{OB}}{1 + C_{OB}/C_{Si}}
\]
1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. **Subthreshold slope**
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
subthreshold swing (bulk MOSFET review)

subthreshold current: \[I_D \sim e^{q\psi_S/k_BT} \]
\[\ln I_D = q\psi_S / k_BT \]
\[2.303\log I_D = q\psi_S / k_BT \]

subthreshold slope: \[\frac{\partial \log I_D}{\partial V_{GS}} = \frac{1}{2.3(k_BT/q) \partial V_{GS}} = S^{-1} \]

subthreshold swing: \[S = 2.3(k_BT/q)^{-1} \left(\frac{\partial \psi_S}{\partial V_{GS}} \right)^{-1} = 2.3m(k_BT/q) \]
\[m = \left(\frac{\partial \psi_S}{\partial V_{GS}} \right)^{-1} \]
subthreshold swing (SOI MOSFET)

subthreshold current: \[I_D \sim e^{q\psi_{SF}/k_BT} \]

subthreshold swing: \[S = 2.3(k_B T / q)\left(\frac{\partial \psi_{SF}}{\partial V_{GF}}\right)^{-1} = 2.3m(k_B T / q) \]

‘body effect parameter’: \[m = \left(\frac{\partial \psi_{SF}}{\partial V_{GF}}\right)^{-1} \]
SOI subthreshold swing derivation

return to general solution:

\[V_{GF} = \phi_{msf} + \psi_{SF} \frac{Q_{IF} + Q_B/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (\psi_{SF} - \psi_{SB}) \]

\[V_{GB} = \phi_{msb} + \psi_{SB} \frac{Q_{IB} + Q_B/2}{C_{OB}} + \frac{C_{Si}}{C_{OB}} \times (\psi_{SB} - \psi_{SF}) \]

compute \(dV_{GF} / d\psi_{SF} \) from (7)

assume \(Q_B \) is constant (FD)
SOI subthreshold swing derivation (ii)

\[
\frac{\partial V_{GF}}{\partial \psi_{SF}} = 1 + \frac{C_{Si}}{C_{OF}} \left(1 - \frac{\partial \psi_{SB}}{\partial \psi_{SF}} \right) \tag{10}
\]

To get \(\frac{\partial \psi_{SB}}{\partial \psi_{SF}} \), differentiate (8) assuming \(V_{GB} \) is constant

\[
0 = \frac{\partial \psi_{SB}}{\partial \psi_{SF}} + \frac{C_{Si}}{C_{OB}} \left(\frac{\partial \psi_{SB}}{\partial \psi_{SF}} - 1 \right)
\]

\[
\frac{\partial \psi_{SB}}{\partial \psi_{SF}} = \frac{C_{Si}/C_{OB}}{1 + C_{Si}/C_{OB}} = \frac{C_{Si}}{C_{Si} + C_{OB}} \quad \text{insert in (10)}
\]
SOI subthreshold swing derivation (iii)

\[
\frac{dV_{GF}}{d\psi_{SF}} = m = 1 + \frac{C_{Si}C_{OB}}{C_{OF}(C_{Si} + C_{OB})}
\]

\[
m = 1 + \frac{C_D}{C_{ox}} \quad \text{bulk}
\]

\[
C_D(\text{eff}) = \frac{C_{Si}C_{OB}}{(C_{Si} + C_{OB})}
\]

\[
m = 1 + \frac{C_D(\text{eff})}{C_{OF}}
\]

if the bottom oxide is thick, \(C_{OB} \ll C_{Si}, C_{OF} \) \(m \to 1 \)
SOI summary

1) front and back gates are coupled electrostatically

2) front threshold voltage can be tuned by the back gate

3) for a thick BOX, the subthreshold swing is nearly ideal
1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
symmetrical double gate

\[t_{OF} = t_{OX} \]

\[t_{OB} = t_{OX} \]

\[V_{GF} = V_G \]

\[V_{GB} = V_G \]

\[\rho(x) = -qN_A \]

\[E_F \]

\[\psi_S \]

\[V_G \]

0 \quad t_{Si} \quad t_{OX} \quad t_{Si} \quad x
DG electrostatics

\[
V_{GF} = \phi_{msf} + \psi_{SF} - \frac{Q_{IF} + Q_B/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times (\psi_{SF} - \psi_{SB}) \tag{7}
\]

\[
V_{GB} = \phi_{msb} + \psi_{SB} - \frac{Q_{IB} + Q_B/2}{C_{OB}} + \frac{C_{Si}}{C_{OB}} \times (\psi_{SB} - \psi_{SF}) \tag{8}
\]

for double gate SOI:

\[
V_{GF} = V_{GB} \quad \psi_{SF} = \psi_{SB} \quad C_{OF} = C_{OB} = C_{ox} \quad Q_{IF} = Q_{IB} = Q_{I}/2
\]

then either (7) or (8) gives:

\[
V_G = \phi_{ms} + \psi_S - \frac{Q_I + Q_B}{2C_{ox}}
\]
DG subthreshold swing

\[V_G = \phi_{ms} + \psi_S - \frac{Q_I + Q_B}{2C_{ox}} \quad Q_I \approx 0 \]

\[\frac{dV_G}{d\psi_S} = m = 1 \quad \text{(fully depleted, } Q_B \text{ independent of } \psi_S) \]

ideal subthreshold characteristics
DG above threshold

\[V_G = \phi_{ms} + \psi_S - \frac{Q_B}{2C_{ox}} - \frac{Q_I}{2C_{ox}} \]

\[V_T = \phi_{ms} + 2\psi_B - \frac{Q_B}{2C_{ox}} \]

for \(V_G > V_T \):

\[V_G - V_T = -\frac{Q_I}{2C_{ox}} \]

\[Q_I = -2C_{ox}(V_G - V_T) \]

twice as much charge \(\Rightarrow \) twice as much current
asymmetric gates

\[V_{GF} = V_{GB} = V_g \]

\[t_{OF} = t_{OB} = t_{OX} \]

\[\phi_{msf} \neq \phi_{msb} \]

how should \(Q_I = -2C_{ox} (V_g - V_T) \) be modified?
outline

1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
review: SOI MOSFET general solution

$$C_{Si} \equiv \frac{\varepsilon_{Si}}{t_{Si}} \quad Q_{B} \equiv -qN_{A}t_{Si}$$

back gate - substrate

$$V_{GF} = \phi_{msf} + \psi_{SF} - \frac{Q_{IF} + Q_{B}/2}{C_{OF}} + \frac{C_{Si}}{C_{OF}} \times \left(\psi_{SF} - \psi_{SB}\right) \quad (7)$$

$$V_{GB} = \phi_{msb} + \psi_{SB} - \frac{Q_{IB} + Q_{B}/2}{C_{OB}} + \frac{C_{Si}}{C_{OB}} \times \left(\psi_{SB} - \psi_{SF}\right) \quad (8)$$
review: SOI MOSFETs key results

\[\Delta V_{TF} = \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \frac{t_{OF}}{t_{Si}} (2\psi_B) \]

\[\frac{dV_{TF}}{dV_{GB}} = -\frac{t_{OF}}{t_{OB}} \frac{1}{1 + \frac{C_{OB}}{C_{Si}}} \]

\[m = 1 + \frac{C_D(\text{eff})}{C_{OF}} \]

\[C_D(\text{eff}) = \frac{C_{Si}C_{OB}}{C_{Si} + C_{OB}} \]

\[S = 2.3m \left(\frac{k_B T}{q} \right) \]
symmetrical double gate (SDG)

\[V_{GF} = V_G \]
\[V_{GB} = V_G \]
\[t_{OF} = t_{OX} \]
\[t_{OB} = t_{OX} \]
\[\rho(x) = -qN_A \]

\[V_G \]
\[E_F \]
\[t_{OX} \]
\[t_{Si} \]
\[t_{OX} \]
\[\psi_S \]
\[0 \]
\[t_{Si} \]
\[x \]
symmetrical double gate: key results

\[V_{GF} = V_G \]
\[t_{OF} = t_{OX} \]
\[t_{OB} = t_{OX} \]

\[V_{GB} = V_G \]

\[V_G = \phi_{ms} + \psi_S - \frac{Q_I + Q_B}{2C_{ox}} \]

\[V_T = \phi_{ms} + 2\psi_B - \frac{Q_B}{2C_{ox}} \]

\[Q_I = -2C_{ox}(V_G - V_T) \]

\[S = 2.3\left(\frac{k_B T}{q}\right) \text{ (ideal)} \]
If T_{Si} is very thin, then the device is called an ultra-thin-body SOI MOSFET
why UTB DG MOSFETs?

- good 2D electrostatics

 \[
 \Lambda_{DG\,SOI} \approx \sqrt{\varepsilon_{Si} t_{Si} t_{OX}} \frac{1}{2 \varepsilon_{OX}} = \Lambda_{BULK} / \sqrt{2}
 \]

- undoped body

 (no random dopant fluctuations of \(V_T\))

- ideal subthreshold swing

issues:

 - \(V_T\) must be tuned with workfunctions
 - \(2\psi_B\) loses relevance
 - mobility degradation for very thin bodies
1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
thick vs. thin body

\[\rho(x) = -qN_A \]

\[n(x) \]

\[E_F \]

\[\psi_S \]

\[V_G \]

\[t_{OX} \]

\[t_{Si} \]

\[x \]
definition of UTB

1) fully depleted

\[t_{Si} < W_{DM} \quad \frac{dE}{dx} = \frac{-qN_A}{\varepsilon_{Si}} \]

2) little band bending across the body

\[\Delta \psi < k_B T / q \]

(requires a numerical solution in general)
numerical (Schred) simulation

Fig. 14. Band-diagram of DGMOS capacitors of different body thickness at same V_G. Also shown the band diagram of bulk MOSC (red-dashed line). $t_{ox} = 10$nm, $N_A = 1.1E17$ cm$^{-3}$, $V_G = 1.5$V. Classical mode calculation.

Sayed Hasan, Schred 2.1 Tutorial, April 28, 2003
threshold voltage for an undoped body

\[V_G = \phi_{ms} + \psi_S \]

how to specify \(\psi_S \) ?

\[\psi_S \neq 2\psi_B \]

\[\psi_S < \psi_C \]

\[\frac{d\psi_S}{dV_{GS}} \approx 1 \]

\[\psi_S > \psi_C \]

\[\frac{d\psi_S}{dV_{GS}} \to 0 \]
how to specify ψ_C?

1) according to Trivedi, Fossum, and Zhang:

$$n_i e^{q\psi_C/k_B T} t_{Si} \approx 10^{11} \text{ cm}^2$$

2) also could say:

$$\psi_C = E_G / 2q$$

3) another possibility:

$$d\psi_S / dV_{GS} \bigg|_{\psi = \psi_C} = 1/2$$

$$\psi_C = \left(k_B T / q\right) \ln \left(2C_{ox} k_B T / n_i t_{Si} q^2\right)$$
threshold voltage (iii)

\[V_G = \phi_{ms} + \psi_S - \frac{Q_I}{2C_{ox}} \]

\[V_T = \phi_{ms} + \psi_C \]

\[Q_I = -2C_{ox} \left(V_G - V_T \right) \]
1) below threshold:
- *bands are flat*

2) weak / moderate inversion:
- *bands are nearly flat*
 - *volume inversion*

3) strong inversion:
- *strong band bending may develop*
 - *volume inversion may be lost*
‘exact’ UTB electrostatics

\[
\frac{d^2 \psi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_{Si}} = \frac{q n_i}{\varepsilon_{Si}} e^{q \psi(x)/k_B T}
\]

can solve exactly, see:

quantum confinement

FD (thick)

FD (UTB)

Lundstrom EE-612 F08
numerical (Schred) simulation

Fig. 20. Inversion carrier distribution inside the DGMOSC, for various body thickness, with $t_{ox}=10\text{nm}$, $N_a=1.1E17\text{cm}^{-3}$, $V_G = 0.5\text{v}$.

Sayed Hasan, Schred 2.1 Tutorial, April 28, 2003
numerical (Schred) simulation

Fig. 22. Quantum calculation, $t_{ox}=5\text{nm}$, $t_{sl}=10\text{nm}$, $N_A=1.e17\text{cm}^{-3}$. (a) variation of centroid with gate voltage, rest three are electron distribution inside silicon film at gate voltage: (b) -0.4v, (c) 0.1v, (d) 1.2v.

Sayed Hasan, Schred 2.1 Tutorial, April 28, 2003
quantum effects...

1) important when only a few subbands are occupied
 ultra-ultra-thin body (5 nm or less)

2) increase V_T

3) lower C_S

4) increase ΔV_T because of body thickness variations

5) lower mobility because of increased surface roughness
 scattering
1. Introduction
2. General solution
3. V_{TF} vs. V_{GB}
4. Subthreshold slope
5. Double gate (DG) SOI
6. Recap
7. Discussion
8. Summary
SOI summary

1. SOI offers several advantages:
 - no latch-up
 - radiation hard
 - lower junction capacitance
 - good electrostatics (scaling, SS)
 - high drive current (DG)

2. But there are some trade-offs:
 - a more complex process
 - floating body effects
 - thermal issues