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Review
00:05

• In the last few lectures we’ve been 
discussing coherent transport where 
electrons go through the channel without 
loosing energy or dissipating heat. For such 
a condition we calculated the current (please 
see left). That in turn requires calculating the 
transmission T. IN the last session we 
computed this for a simple case of a uniform 
wire with one delta function potential at x=0: 
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Overview
06:45

( )xUδ0

(x)
t: Transmission amplitude
T: Transmission Probability

2tT =

Incident wave 
from left

• There is another approach to the simple example that we did last time. In this method, 
we view electrons as waves incident on the delta function potential (located at x=0) from 
left (right). We then use the Schrödinger equation calculate the transmission amplitude. 
Transmission probability is the squared module of transmission amplitude. Although this 
method gives us good physical insight about the problem, it won’t be convenient for real 
practical problems.

From last time:
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Incident Wave From Left
08:55
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• Schrödinger Equation 0)( =xU 0≠x(               for           )
With this potential, the wire is uniform 

and solutions to the Schrödinger 
equation can be written in the form of 

plane waves.(          )ikxe ±

• Note that since both          and            satisfy Schrödinger equation which is linear, any 
linear combination of them also satisfies the equation given that the following holds:

• Dispersion Relation:                                           

• Now that we have the solution on the left and right, the challenge is to find the solution at 
x=0. Note that the Schrödinger equation must be satisfied everywhere.
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Can The Wave Function Be 
Discontinuous? 

14:16

• Here is the key point for solution at x=0:

is always continuous.

( )xU δ0
ikxteikxre−

ikxe
(x)

x=0• The requirement is that Schrödinger 
equation must be satisfied every 
where. What happens if the wave 

function is not continuous? See the 
right side: )(xψ
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• When       is discontinuous, its first 
derivative is a delta function and its second 
derivative is a doublet function.                  

• If the second derivative is a doublet 
function and the rest of quantities in the 
Schrödinger Equation are normal functions, 
then there is no way for the Schrödinger 
Equation to be satisfied at that point 

ψ

Discontinuous 

(x)

ψψ
:0−=x :0+=x1+r t

ψ



Discontinuity Of dΨ/dx
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• Since the wave function is continuous 
across the point x=0, we have: 1+ r = t

ψψ
:0−=x :0+=x1+r t

• But what happens to the derivative of      ?

And does it have to be continuous at x=0?
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• Notice that a discontinuous              will 
result in a delta function for the second 
derivative which is infinite at x=0. Now if 
U(x) was a normal function, Schrödinger 
equation would not be satisfied; hence we 
would conclude that             has to be 
continuous at x=0. And therefore we would 
set ik(1-r) equal to ikt. However,

• U(x) is not a normal function in our 
example. It is a delta function. So in the 
case of discontinuous           ,Schrödinger 
Equation would have two delta functions in 
it, which  would cancel each other and thus 
the equation would be satisfied. 
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Strength of the delta 

function is proportional 
to the height of the 

discontinuity. 

• Height of the discontinuity must 
be such that it results in a delta 
function with a strength exactly 
equal to the scatterer so that they 
would cancel each other out. 
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2 Equations, 2 Unknowns
24:30

• Schrödinger equation for our problem:
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• So,

• We also have  1 + r = t.
• Having 2 equations and 2 unknowns, we 
can solve for r & t.

• r = t - 1
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• For an electron with a large velocity, U is 
negligible and  t = 1. Low velocity will 
result in a small transmission.   
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Arbitrary Potentials
32:45

• For a potential barrier like the figure, again we 
have an incident wave from left. Parts of it 
transmits and parts of gets reflected. Since the 
potentials in the 3 different regions are constant, 
the solution can be written as plane waves in each 
region. Then by matching the boundary conditions 
at each boundary we can find the proper constants 
that multiply plane waves. Note that the boundary 
conditions at each boundary are that the wave 
function and its derivative must be continuous.

• For a complicated potential like the figure on the 
right, we first approximate it as piecewise constant 
potentials. Then it is the same story as above: the 
solutions at each region can be written as plane 
waves multiplied by unknown constants. The 
constants can be determined from the proper 
boundary conditions at each boundary.

ikxre−
ikxe ikxte

xkie ′

1A
2A

UmkE += 222
In each region



Importance Of 
Transmission

38:51

• Finally calculating the current for coherent 
transport boils down to calculating the 
transmission function. Once we have the 
transmission we can calculate the current 
form the equation on the left.
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Two Different Conventions
40:28

• How do we figure put which plane wave 
goes to the right and which one goes to the 
left?
• Associates with each plane wave there is 
a time dependent part. If we represent the 
time dependent part as
then the traveling wave functions can be 
written as:
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In this course, we use physics convention.
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Negative Differential 
Resistance

45:42

• Why does negative differential resistance happen?
• A voltage is applied to the two barrier device, the 
barrier and the Fermi level on the right start going 
down. Initially current increases for higher voltages. 
But there comes a point where the allowed energy 
levels in between the two barriers falls under the 
bottom edge of the allowed energy levels in the left 
contact. In this case since there is no energy level 
available for the electron coming from the left contact, 
current will drop to 0.
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