On Monday July 6th, the nanoHUB will be intermittently unavailable due to scheduled maintenance. All tool sessions will be shut down early in the morning. Home directories and tools will be unavailable most of the day. We apologize for any inconvenience this may cause. close


Support Options

Submit a Support Ticket


Illinois ECE 440 Solid State Electronic Devices, Lecture 16-17: Diffusion

By Eric Pop

Stanford University

Published on


So far:
• Energy bands, Doping, Fermi levels
• Drift (~n*v), diffusion (~dn/dx)
• Einstein relationship (D/μ = kT/q)
• “Boring” semiconductor resistors (either n- or p-type)
• Majority/minority carriers with illumination

Today, our first “useful” device:
• The P-N junction diode in equilibrium (external V=0)
• Remember, in equilibrium Fermi level must be flat


University of Illinois at Urbana-Champaign ECE 440: Solid State Electronic Devices

Cite this work

Researchers should cite this work as follows:

  • Eric Pop (2009), "Illinois ECE 440 Solid State Electronic Devices, Lecture 16-17: Diffusion," http://nanohub.org/resources/7605.

    BibTex | EndNote


nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.