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1.
Introduction

The basis for discussing transport in semiconductors is the underlying electronic band structure of the material arising from the solution of the many body Schrödinger equation in the presence of the periodic potential of the lattice, which is discussed in a host of solid state physics textbooks. The electronic solutions in the presence of the periodic potential of the lattice are in the form of Bloch functions
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where k is the wavevector, and n labels the band index corresponding to different solutions for a given wavevector. The cell-periodic function, 
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, has the periodicity of the lattice and modulates the traveling wave solution associated with free electrons.


A brief look at the symmetry properties of the eigenfunctions would greatly enhance the understanding of the evolution of the bandstructure. First, one starts by looking at the energy eigenvalues of the individual atoms that constitute the semiconductor crystal. All semiconductors have tetrahedral bonds that have sp3 hybridization. However, the individual atoms have the outermost (valence) electrons in s- and p-type orbitals. The symmetry (or geometric) properties of these orbitals are made most clear by looking at their angular parts 
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Let’s denote these states by |S>, |X>, |Y> and |Z>. Once one puts the atoms in a crystal, the valence electrons hybridize into sp3 orbitals that lead to tetrahedral bonding. The crystal develops its own bandstructure with gaps and allowed bands. For semiconductors, one is typically worried about the bandstructure of the conduction and the valence bands only. It turns out that the states near the band-edges behave very much like the |S> and the three p-type states that they had when they were individual atoms.
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Figure 1: The typical bandstructure of semiconductors. For direct-gap semiconductors, the conduction band state at k=0 is s-like. The valence band states are linear combinations of p-like orbitals. For indirect-gap semiconductors on the other hand, even the conduction band minima states have some amount of p-like nature mixed into the s-like state.

Electronic band structure calculation methods can be grouped into two general categories [
].  The first category consists of ab initio methods, such as Hartree-Fock or Density Functional Theory (DFT), which calculate the electronic structure from first principles, i.e. without the need for empirical fitting parameters. In general, these methods utilize a variational approach to calculate the ground state energy of a many-body system, where the system is defined at the atomic level. The original calculations were performed on systems containing a few atoms. Today, calculations are performed using approximately 1000 atoms but are computationally expensive, sometimes requiring massively parallel computers.

In contrast to ab initio approaches, the second category consists of empirical methods, such as the Orthogonalized Plane Wave (OPW) [
], tight-binding [
] (also known as the Linear Combination of Atomic Orbitals (LCAO) method), the 
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 method [
], and the local [
], or the non-local [
] empirical pseudopotential method (EPM). These methods involve empirical parameters to fit experimental data such as the band-to-band transitions at specific high-symmetry points derived from optical absorption experiments.  The appeal of these methods is that the electronic structure can be calculated by solving a one-electron Schrödinger wave equation (SWE). Thus, empirical methods are computationally less expensive than ab initio calculations and provide a relatively easy means of generating the electronic band structure. 

2.
The Empirical Pseudopotential Method

The concept of pseudopotentials was introduced by Fermi [
] to study high-lying atomic states. Afterwards, Hellman proposed that pseudopotentials be used for calculating the energy levels of the alkali metals [
]. The wide spread usage of pseudopotentials did not occur until the late 1950s, when activity in the area of condensed matter physics began to accelerate. The main advantage of using pseudopotentials is that only valence electrons have to be considered. The core electrons are treated as if they are frozen in an atomic-like configuration. As a result, the valence electrons are thought to move in a weak one-electron potential.

The pseudopotential method is based on the orthogonalized plane wave (OPW) method due to Herring [2]. In this method, the crystal wavefuntion 
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 is constructed to be orthogonal to the core states. This is accomplished by expanding 
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 as a smooth part of symmetrized combinations of Bloch functions 
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, augmented with a linear combination of core states. This is expressed as
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where 
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 are orthogonalization coefficients and 
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 are core wave functions. For Si-14, the summation over t in Eq. (3) is a sum over the core states 1s2 2s2 2p6. Since the crystal wave function is constructed to be orthogonal to the core wave functions, the orthogonalization coefficients can be calculated, thus yielding the final expression
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To obtain a wave equation for 
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, the Hamiltonian operator 



[image: image14.wmf]C

V

m

p

H

+

=

2

2

 ,                                                
(5)

is applied to Eq. (4), where VC is the attractive core potential, and the following wave equation results
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where VR  represents a short-range, non-Hermitian repulsion potential, of the form
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Et in Eq. (7) represents the atomic energy eigenvalue, and the summation over t represents a summation over the core states.  The result given in Eq. (6) can be thought of as wave equation for the pseudo-wave function, 
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, but the energy eigenvalue E corresponds to the true energy of the crystal wave function 
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. Furthermore, as a result of the orthogonalization procedure, the repulsive potential VR, which serves to cancel the attractive potential VC, is introduced into the pseudo-wave function Hamiltonian. The result is a smoothly varying pseudopotential VP = VC + VR.  This result is known as the Phillips-Kleinman cancellation theorem [
] which provides justification why the electronic structure of strongly-bound valence electrons can be described using a nearly-free electron model and weak potentials. To simplify the problem further, model pseudopotenials are used in place of the actual pseudopotential. 
Figure 2
 summarizes the various models employed. Note that the 3D Fourier transforms (for bulk systems) of each of the above-described model potentials are of the following general form
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This q-dependent pseudopotential is then used to calculate the energy band structure along different crystallographic directions, using the procedure outlined in the following section.
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Model potential due to Heine and Abarenkov:
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Lin and Kleinman model potentials:
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Figure 2. Various model potentials.

2.1 Description of the Empirical Pseudopotential Method

Recall from the previous section that the Phillips-Kleinman cancellation theorem provides a means for the energy band problem to be simplified into a one-electron-like problem. For this purpose, Eq. (6) can be re-written as
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where VP is the smoothly varying crystal pseudopotential. In general, VP is a linear combination of atomic potentials, Va, which can be expressed as summation over lattice translation vectors R and atomic basis vectors  to arrive at the following expression
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To simplify further, the inner summation over  can be expressed as the total potential, V0, in the unit cell located at R. Eq. (10) then becomes
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Because the crystal potential is periodic, the pseudopotential is also a periodic function and can be expanded into a Fourier series over the reciprocal lattice to obtain
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where the expansion coefficient is given by
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and  is the volume of the unit cell.

To apply this formalism to the zincblende lattice, it is convenient to choose a two-atom basis centered at the origin (R = 0).  If the atomic basis vectors are given by 1 =  = -2, where , the atomic basis vector, is defined in terms of the lattice constant a0 as  = a0(1/8,1/8,1/8), V0(r) can be expressed as
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where V1 and V2 are the atomic potentials of the cation and anion. 
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Figure 3. Diamond vs. zincblende lattice and definition of  as the distance between two atoms in a basis of the interpenetrating face centered cubic lattices. If the atoms in the basis are the same one talks about diamond lattice. When the two atoms in the basis are not the same then we have zincblende structure. 

Substituting Eq. (14) into Eq. (13), and using the displacement property of Fourier transforms, V0(r) can be recast as
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Writing the Fourier coefficients of the atomic potentials in terms of symmetric (VS(G)=V1+V2)) and antisymmetric (VA(G)=V1-V2)) form factors, V0(G) is given by
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where the prefactors are referred to as the symmetric and antisymmetric structure factors. The form factors above are treated as adjustable parameters that can be fit to experimental data, hence the name empirical pseudopotential method. For diamond-lattice materials, with two identical atoms per unit cell, the VA=0 and the structure factor is simply 
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. For zinc-blende lattice, like the one in GaAs material system, VA(0 and the structure factor is more complicated.

Now with the potential energy term specified, the next task is to recast the Schrödinger equation in a matrix form.  Recall that the solution to the Schrödinger wave equation in a periodic lattice is a Bloch function, which is composed of a plane wave component and a cell periodic part that has the periodicity of the lattice, i.e.
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By expanding the cell periodic part uk(r) of the Bloch function appearing in Eq. (17) into Fourier components, and substituting the pseudo-wave function 
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 and potential V0 into the Schrödinger wave equation, the following matrix equation results
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The expression given in Eq. (18) is zero when each term in the sum is identically zero, which implies the following condition
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In this way, the band structure calculation is reduced to solving the eigenvalue problem specified by Eq. (19) for the energy E. As obvious from Eq. (17), 
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 is the Fourier component of the cell periodic part of the Bloch function.  The number of reciprocal lattice vectors used determines both the matrix size and calculation accuracy.

The eigenvalue problem of Eq. (19) can be written in the more familiar form 
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, where H is a matrix, U is a column vector representing the eigenvectors, and E is the energy eigenvalue corresponding to its respective eigenvector. For the diamond lattice, the diagonal matrix elements of H are then given by
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for i = j, and the off-diagonal matrix elements of H are given by
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for i j. Note that the term VS(0) is neglected in arriving at Eq. (20), because it will only give a rigid shift in energy to the bands. The solution to the energy eigenvalues and corresponding eigenvectors can then be found by diagonalizing matrix H.

2.2 Implementation of the Empirical Pseudopotential Method for Si and Ge

For a typical semiconductor system, 137 plane waves are sufficient, each corresponding to vectors in the reciprocal lattice, to expand the pseudopotential. The reciprocal lattice of a face-centered cubic (FCC), i.e. diamond or zinc-blende structure, is a body-centered cubic (BCC) structure.  So these reciprocal lattice vectors correspond to a body centered cubic lattice. Reciprocal lattice vectors up to and including the 10th-nearest neighbor from the origin are usually considered which results in 137 plane waves for the zinc-blende structure.  Smaller number of nearest neighbors (in other words plane waves) gives less accurate results.
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Figure 3. Reciprocal lattice vectors up to 8th nearest neighbor that need to be entered in the code to get first order approximation of the bandstructure. (1,1,1) has eight permutations since there are eight possible G-vectors: (1,1,1), (1,1,-1), (1,-1,1), (-1,1,1), (1,-1,-1), (-1,-1,1), (-1,1,-1), (-1,-1,-1). 

The square of the distance from the origin to each equivalent set of reciprocal lattice sites is an integer in the set |G2| = 0, 3, 4, 8, 11, 12, … where |G2| is expressed in units of (2/ao)2.  Note that the argument of the pseudopotential term VS in Eq. (21) is the difference between reciprocal lattice vectors.  It can be shown that the square of the difference between reciprocal lattice vectors will also form the set of integers previously described.  This means that VS is only needed at discrete points corresponding to nearest-neighbor sites.  The pseudopotential, on the other hand, is a continuous quantity.  Therefore, its Fourier transform VS(q) is also a continuous function that is shown in Figure 4.  The points corresponding to the first three nearest neighbors are also indicated on this figure. 
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Figure 4. Fourier transform of the pseudopotential. (Note that 
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Recall that the pseudopotential is only needed at a few discrete points along the V(q) curve.  The discrete points correspond to the q2-values that match the integer set described previously.  
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Table 1:  Local Pseudopotential Form Factors.
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For q2 = 4, the cosine term in Eq. (21) will always vanish.  Furthermore, for values of q2 greater than 11, V(q) quickly approaches zero.  This comes from the fact that the pseudopotential is a smoothly varying function, and only few plane waves are needed to represent it. If a function is rapidly varying in space, then many more plane waves would be required. Another advantage of the empirical pseudopotential method is that only three parameters are needed to describe the band structure of non-polar materials.
Using the form factors listed in Table 1, where the Si form factors are taken from [
] and the Ge form factors are taken from [
], the band structures for Si and Ge are plotted in Figure  [
].  Note that spin-orbit interaction is not included in these simulations. The lattice constants specified for Si and Ge are 5.43Å and 5.65Å, respectively.  This band-structure is obtained in the following manner.
[image: image44.emf]start

Define k-vector

Calculate elements of H

ij

Solve the eigenvalue problem

Store results

Calculate new k along high symmetry points

Process completed?

end

no

yes


Figure 5. Flow chart for the implementation of the Empirical Pseudopotential Method.

At the beginning of the simulation, the reciprocal lattice vectors G have to be generated using the information given in Figure 3. The reciprocal lattice vectors given in Fig. 3 lead to 89 G-vectors. These are labeled as follows: G1=(0,0,0), G2=(1,1,1), G3=(1,1,-1), G4=(1,-1,1), G5=(-1,1,1), G6=(1,-1,-1), G7=(-1,-1,1), G8=(-1,1,-1), G9=(-1,-1,-1) … G89=(-3,-3,-1). Once the G-vectors are being generated, one is ready with the calculation of the bandstructure. In this procedure, illustrated in Figure 5, first one defines a k-vector based on the information along which high-symmetry line we want to plot the bandstructure. The high symmetry points and the corresponding high symmetry lines are given in Figure 6. Then, the elements of Hij are calculated where i=1,2, … 89 and j=1,2, … 89 according to the formulas (17-18). After the matrix H is constructed, the eigenvalue solver in MATLAB is called using eigen(H). 89 eigenvalues will be the solution and these are sorted in ascending order and the first 8 (lowest 8) are kept and stored. Then, if all high-symmetry directions have been visited the process is terminated and one plots the eigenvalues as a function of k. If not, k is incremented along the same high symmetry direction and the process is repeated until complete. The high symmetry points for zinc-blende materials are given in Figure 6.
[image: image45.emf]
Figure 6. First Brillouin zone of FCC lattice that corresponds to the first Brillouin zone for all diamond and Zinc-blende materials (C, Si, Ge, GaAs, InAs, CdTe, etc.). There are 8 hexagonal faces (normal to [111]) and 6 square faces (normal to [100]).  The sides of each hexagon and square are equal.
Si is an indirect band gap semiconductor.  Its primary gap, i.e. minimum gap, is calculated from the valence band maximum at the -point to the conduction band minimum along the  direction, 85% of the distance from  to X.  The band gap of Si, using the parameters from Ref. [6], is calculated to be EgSi = 1.08 eV, in agreement with experimental findings.  Ge is also an indirect band gap semiconductor.  Its band gap is defined from the top of the valence band at  to the conduction band minimum at L.  The band gap of Ge is calculated to be EgGe = 0.73 eV.  The direct gap, which is defined from the valence band maximum at  to the conduction band minimum at , is calculated to be 3.27 eV and 0.82 eV for Si and Ge, respectively.  Note that the curvature of the top valence band of Ge is larger than that of Si.  This corresponds to the fact that the effective hole mass of Si is larger than that of Ge.  Note that the inclusion of the spin-orbit interaction will lift the triple degeneracy of the bands at the ( point, leaving doubly-degenerate heavy and light-hole bands and a split-off band moved downward in energy by few 10's of meV (depending upon the material under consideration).
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Figure 7. Left panel: band structures of silicon. Right panel: band structure of germanium.

In summary, the local empirical pseudopotential method described in this section is rather good for an accurate description of the optical gaps. However, as noted by Chelikowsky and Cohen [
], when these local calculations are extended to yield the valence-band electronic density of states, the results obtained are far from satisfactory. The reason for this discrepancy arises from the omission of the low cores in the derivation of the pseudopotential in the previous section.  This, as previously noted, allowed the usage of a simple plane wave basis. To correct for the errors introduced, an energy-dependent non-local correction term is added to the local atomic potential. This increases the number of parameters needed but leads to better convergence and more exact band-structure results [
,
].

3.
Source Code of the Local Empirical Pseudopotential Method

This code has been created by Ph.D. Santhosh Krishnan (Micron) who was a Ph.D. student of Prof. Vasileska.

epm.m
clc;
clear;
load str_fac.txt;
load a0.txt;
Ry2eV=13.6056981d0;
hb=1.054D-34;
 h=6.625D-34;
q=1.602d-19;
mo=9.11D-31;
t=hb*hb/2.0d0/mo/q;
Num_semi=14; 
NN_neighbours=10;
N_pw=137;
N_bands=12;
N_ek=40;
ig2_mag(1:NN_neighbours)=[0, 3, 4, 8, 11, 12, 16, 19, 20, 24];
Lwork=2*N_pw-1;
sprintf('%s','This program calculates the bandstructure of semiconductors based on the Empirical Pseudopotential Method (EPM)')
sprintf('%s','The following semiconductors are included')
sprintf('1 -> Si 2 -> Ge 3 -> Sn 4 -> GaP 5 -> GaAs 6 -> AlSb 7 -> InP')
sprintf('8 -> GaSb 9 -> InAs 10 -> InSb 11 -> ZnS 12 -> ZnSe 13 -> ZnTe 14 -> CdTe')
ichoose=input('Enter the semiconductor of your choice: ');
ao=a0(ichoose);
Vs3=str_fac(ichoose,1);
Vs8=str_fac(ichoose,2);
Vs11=str_fac(ichoose,3);
Va3=str_fac(ichoose,4);
Va8=str_fac(ichoose,5);
Va11=str_fac(ichoose,6);
ao=ao*1.0d-10;
Vs3=Vs3*Ry2eV;
Vs8=Vs8*Ry2eV;
Vs11=Vs11*Ry2eV;
Va3=Va3*Ry2eV;
Va8=Va8*Ry2eV;
Va11=Va11*Ry2eV;
icount=0;
for i=1:NN_neighbours
ig2=ig2_mag(i);
a=sqrt(double(ig2));
ia=floor(a);
ic=0;
for igx=-ia:ia
   igx2=igx*igx;
   for jgy=-ia:ia
      jgy2=jgy*jgy;
      igxy2=igx2+jgy2;
      for kgz=-ia:ia
         kgz2=kgz*kgz;
         igxyz2=igxy2+kgz2;
         if (igxyz2==ig2) 
            ic=ic+1;
            igx_vec(ic+icount)=igx;
            igy_vec(ic+icount)=jgy;
            igz_vec(ic+icount)=kgz;
        end
      end
   end
end
%call gen_gvecs(i,ia,ig2,ic)
icount=icount+ic;
sprintf('%d %d %d',ig2,ic,icount);
end
ik_curr=0;
sumx=0.0d0;
X0=0.5d0;
Y0=0.5d0;
Z0=0.5d0;
% print*
% print*,'L -> Gamma'
% print*
for ik=1:N_ek+1
ik+ik_curr
dkx=0.50d0*(1.0d0-double(ik-1)/double(N_ek));
dky=0.50d0*(1.0d0-double(ik-1)/double(N_ek));
dkz=0.50d0*(1.0d0-double(ik-1)/double(N_ek));
generate_Hamil;
sumx=sqrt((X0-dkx)*(X0-dkx)+(Y0-dky)*(Y0-dky)+(Z0-dkz)*(Z0-dkz));
k_vec(ik+ik_curr)=sumx;
end
ik_curr=ik;
% ! Gamma -> X
sumx0=sumx;
X0=0.0d0;
Y0=0.0d0;
Z0=0.0d0;
% print*
% print*,'Gamma -> X'
% print*
for ik=1:N_ek
%print*,ik
ik+ik_curr
dkx=double(ik)/double(N_ek);
dky=0.0d0;
dkz=0.0d0;
generate_Hamil;
sumx=sqrt((X0-dkx)*(X0-dkx)+(Y0-dky)*(Y0-dky)+(Z0-dkz)*(Z0-dkz));
k_vec(ik+ik_curr)=sumx+sumx0;
end
ik_curr=ik+ik_curr;
% ! X -> U
sumx1=sumx;
X0=1.0d0;
Y0=0.0d0;
Z0=0.0d0;
% print*
% print*,'X -> U'
% print*
for ik=1:N_ek
%print*,ik
ik+ik_curr
dkx=1.0d0;
dky=double(ik)/double(N_ek)*1.0d0/4.0d0;
dkz=double(ik)/double(N_ek)*1.0d0/4.0d0;
generate_Hamil;
sumx=sqrt((X0-dkx)*(X0-dkx)+(Y0-dky)*(Y0-dky)+(Z0-dkz)*(Z0-dkz));
k_vec(ik+ik_curr)=sumx+sumx1+sumx0;
end
ik_curr=ik+ik_curr;
% ! K -> Gamma
sumx2=sumx;
X0=0.75d0;
Y0=0.75d0;
Z0=0.0d0;
% print*
% print*,'K -> Gamma'
% print*
for ik=1:N_ek
%print*,ik
ik+ik_curr
dkx=0.75d0*(1.0d0-double(ik)/double(N_ek));
dky=0.75d0*(1.0d0-double(ik)/double(N_ek));
dkz=0.0d0;
generate_Hamil;
sumx=sqrt((X0-dkx)*(X0-dkx)+(Y0-dky)*(Y0-dky)+(Z0-dkz)*(Z0-dkz));
k_vec(ik+ik_curr)=sumx+sumx2++sumx1+sumx0;
end
plot(k_vec,ek);

clear all;

generate_Hamil.m
pi=4.0d0*atan(1.0d0);
k0=2.0d0*pi/ao;
H_EPM(1:N_pw,1:N_pw)=complex(0.0d0,0.0d0);
for i=1:N_pw
  gx_i=double(igx_vec(i));
  gy_i=double(igy_vec(i));
  gz_i=double(igz_vec(i));
   for j=1:N_pw
      gx_j=double(igx_vec(j));
      gy_j=double(igy_vec(j));
      gz_j=double(igz_vec(j));
      if (i==j) 
          gkx2=(gx_i+dkx)*(gx_i+dkx);
          gky2=(gy_i+dky)*(gy_i+dky);
          gkz2=(gz_i+dkz)*(gz_i+dkz);
          Hreal= t*k0*k0*(gkx2+gky2+gkz2);
          H_EPM(i,j)=complex(Hreal,0.0d0);
      else
          dgx=gx_i-gx_j;
          dgy=gy_i-gy_j;
          dgz=gz_i-gz_j;
          idgx=round(dgx);
          idgy=round(dgy);
          idgz=round(dgz);
          id2=idgx*idgx+idgy*idgy+idgz*idgz;
          tau_fac=2.0d0*pi/8.0d0;
          if ((id2==3)) 
                  V_s=Vs3;
                  V_a=Va3;
          elseif ((id2==8)) 
                  V_s=Vs8;
                  V_a=Va8;
          elseif ((id2==11)) 
                  V_s=Vs11;
                  V_a=Va11;
          else
                  V_s=0.0d0;
                  V_a=0.0d0;
          end
          ct=cos((dgx+dgy+dgz)*tau_fac);
          st=sin((dgx+dgy+dgz)*tau_fac);
          Hreal= V_s*ct;
          Himag= V_a*st;
          H_EPM(i,j)=complex(Hreal,Himag);
      end
  end
end
E=sort(eig(H_EPM));
ek(ik_curr+ik,1:8)=E(1:8)';
semiconductors.txt
Si

Ge

Sn

GaP

GaAs

AlSb

InP

GaSb

InAs

InSb

ZnS

ZnSe

ZnTe

CdTe

a0.txt

5.43d0

5.66d0

6.49d0

5.44d0

5.64d0

6.13d0

5.86d0

6.12d0

6.04d0

6.48d0

5.41d0

5.65d0

6.07d0

6.41d0

str_fac.txt

-0.21d0 0.04d0 0.08d0 0.00d0 0.00d0 0.00d0

-0.23d0 0.01d0 0.06d0 0.00d0 0.00d0 0.00d0

-0.20d0 0.00d0 0.04d0 0.00d0 0.00d0 0.00d0

-0.22d0 0.03d0 0.07d0 0.12d0 0.07d0 0.02d0

-0.23d0 0.01d0 0.06d0 0.07d0 0.05d0 0.01d0

-0.21d0 0.02d0 0.06d0 0.06d0 0.04d0 0.02d0

-0.23d0 0.01d0 0.06d0 0.07d0 0.05d0 0.01d0

-0.22d0 0.00d0 0.05d0 0.06d0 0.05d0 0.01d0

-0.22d0 0.00d0 0.05d0 0.08d0 0.05d0 0.03d0

-0.20d0 0.00d0 0.04d0 0.06d0 0.05d0 0.01d0

-0.22d0 0.03d0 0.07d0 0.24d0 0.14d0 0.04d0

-0.23d0 0.01d0 0.06d0 0.18d0 0.12d0 0.03d0

-0.22d0 0.00d0 0.05d0 0.13d0 0.10d0 0.01d0

-0.20d0 0.00d0 0.04d0 0.15d0 0.09d0 0.04d0

plot_bs.m
load k_vec
load Si
load Ge
load Sn
load GaP
load GaAs
load AlSb
load InP
load GaSb
load InAs
load InSb
load ZnS
load ZnSe
load ZnTe
load CdTe
figure
Si=Si-Si(251,6);   
plot(k_vec,Si)
axis([0 3.28 -5.5 6.5])
figure
Ge=Ge-Ge(251,6);   
plot(k_vec,Ge)
axis([0 3.28 -5 7])
figure
Sn=Sn-Sn(251,6);   
plot(k_vec,Sn)
axis([0 3.28 -4 6])
figure
GaP=GaP-GaP(251,6);   
plot(k_vec,GaP)
axis([0 3.28 -4 7])
figure
GaAs=GaAs-GaAs(251,6);   
plot(k_vec,GaAs)
axis([0 3.28 -4 7])
figure
AlSb=AlSb-AlSb(251,6);   
plot(k_vec,AlSb)
axis([0 3.28 -4 7])
figure
InP=InP-InP(251,6);   
plot(k_vec,InP)
axis([0 3.28 -4 7])
figure
GaSb=GaSb-GaSb(251,6);   
plot(k_vec,GaSb)
axis([0 3.28 -3 6.5])
figure
InAs=InAs-InAs(251,6);   
plot(k_vec,InAs)
axis([0 3.28 -4 7])
figure
InSb=InSb-InSb(251,6);   
plot(k_vec,InSb)
axis([0 3.28 -3 6])
figure
ZnS=ZnS-ZnS(251,6);   
plot(k_vec,ZnS)
axis([0 3.28 -3 10])
figure
ZnSe=ZnSe-ZnSe(251,6);   
plot(k_vec,ZnSe)
axis([0 3.28 -3 9])
figure
ZnTe=ZnTe-ZnTe(251,6);   
plot(k_vec,ZnTe)
axis([0 3.28 -3 9])
figure
CdTe=CdTe-CdTe(251,6);   
plot(k_vec,CdTe)
axis([0 3.28 -3 8])
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Constant effective potential in the core region:
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(b)  







Empty core model:
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(c) 







Model potential due to Heine and Abarenkov:
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(d) 







Lin and Kleinman model potentials:
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