Resources:

Find a resource
  1. ECE 656: Electronic Transport in Semiconductors (Fall 2009)

    26 Aug 2009 | Courses | Contributor(s): Mark Lundstrom

    This course develops a basic understanding of the theory of charge carrier transport in semiconductors and semiconductor devices and an ability to apply it to the anslysis of experiments and devices.

  2. ECE 659 Quantum Transport: Atom to Transistor

    27 Jan 2009 | Courses | Contributor(s): Supriyo Datta

    Spring 2009 This is a newly produced version of the course that was formerly available. We would greatly appreciate your feedback regarding the new format and contents. Traditionally atomistic approaches have been used to model materials in terms of average parameters like the...

  3. ECE 612: Nanoscale Transistors (Fall 2008)

    27 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NT   Fall 2008 This course examines the device physics of advanced transistors and the process, device, circuit, and systems...

  4. Quantum Mechanics for Engineers

    07 Jul 2008 | Courses | Contributor(s): Dragica Vasileska, Gerhard Klimeck, David K. Ferry

    This course will introduce the students to the basic concepts and postulates of quantum mechanics. Examples will include simple systems such as particle in an infinite and finite well, 1D and 2D harmonic oscillator and tunneling. Numerous approximation techniques, such as WKB method,...

  5. MSE 640 Transmission Electron Microscopy and Crystalline Imperfections

    25 Feb 2008 | Courses | Contributor(s): Eric Stach

  6. Overview of Computational Nanoscience: a UC Berkeley Course

    01 Feb 2008 | Courses | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    This course will provide students with the fundamentals of computational problem-solving techniques that are used to understand and predict properties of nanoscale systems. Emphasis will be placed on how to use simulations effectively, intelligently, and cohesively to predict properties that...

  7. BME 695N: Engineering Nanomedical Systems (Fall 2007)

    03 Aug 2007 | Courses | Contributor(s): James Leary

    This course will cover the basic concepts of design of integrated nanomedical systems for diagnostics and therapeutics. Topics to be covered include: why nanomedical approaches are needed, cell targeting strategies, choice of core nanomaterials, technologies for testing composition and...

  8. Illinois MATSE 280: Introduction to Engineering Materials

    18 Aug 2008 | Courses | Contributor(s): Duane Douglas Johnson

    This course introduces you to the materials science and engineering of metals, ceramics, polymers, and electronic materials. Topics include: bonding, crystallography, imperfections, phase diagrams, properties and processing of materials. Case studies are used when...

  9. MSE 376 Nanomaterials

    24 Oct 2006 | Courses | Contributor(s): Mark C. Hersam

    "Nanomaterials," is an interdisciplinary introduction to processing, structure, and properties of materials at the nanometer length scale. The course will cover recent breakthroughs and assess the impact of this burgeoning field. Specific nanofabrication topics include epitaxy, beam...

  10. Fundamentals of Nanoelectronics (Fall 2004)

    01 Sep 2004 | Courses | Contributor(s): Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Welcome to the ECE 453 lectures. The development of "nanotechnology" has made it possible to engineer material and devices on a length...

  11. CQT: Concepts of Quantum Transport

    30 Nov 2006 | Courses | Contributor(s): Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations on Nanoelectronics and the Meaning of Resistance. How does the resistance of a conductor change as we shrink its length all the way down to a few atoms? This is a question that...

  12. ECE 695s Nanophotonics

    30 Aug 2006 | Courses | Contributor(s): Vladimir M. Shalaev

    Welcome to the ECE 695S lecturesThe course will cover nanoscale processes and devices and their applications for manipulating light on the nanoscale. The following topics will be covered:Fundamentals, Maxwell’s equations, light-matter interaction, dispersion, EM properties of nanostructures,...

  13. ECE 606: Principles of Semiconductor Devices

    12 Nov 2008 | Courses | Contributor(s): Muhammad A. Alam

    In the last 50 years, solid state devices like transistors have evolved from an interesting laboratory experiment to a technology with applications in all aspects of modern life. Making transistors is a complex process that requires unprecedented collaboration among material scientists, solid...

  14. ECE 495N: Fundamentals of Nanoelectronics

    28 Aug 2008 | Courses | Contributor(s): Supriyo Datta

    Fall 2008 This is a newly produced version of the course that was formerly available. We would greatly appreciate your feedback regarding the new format and contents. Objective: To convey the basic concepts of nanoelectronics to electrical engineering students with no background in...

  15. Quantum Transport: Atom to Transistor (Spring 2004)

    23 May 2006 | Courses | Contributor(s): Supriyo Datta

    Spring 2004 Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Course Information Website The development of "nanotechnology" has made it possible to engineer materials and devices...

  16. MSE 582 Transmission Electron Microscopy Skills

    28 Jan 2008 | Courses | Contributor(s): Eric Stach

    Practical introduction to the operation of transmission electron microscopes. Microscope design and function; imaging and diffraction modes and image content; instrument operation. Required of all students who use the TEM in their research.

  17. [Illinois] ECE 416: Biosensors

    07 Feb 2013 | Courses | Contributor(s): Brian Cunningham

      Learn the underlying engineering principles used to detect small molecules, DNA, proteins, and cells in the context of applications in diagnostic testing, pharmaceutical research, and environmental monitoring. Biosensor approaches including electrochemistry, fluorescence,...

  18. Colloquium on Graphene Physics and Devices

    22 Sep 2009 | Courses | Contributor(s): Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

  19. ECE 612 Nanoscale Transistors (Fall 2006)

    08 Aug 2006 | Courses | Contributor(s): Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NTNanoscale Transistors is a five-week online course that develops a unified framework for understanding essential physics of nanoscale transistors, their important...

  20. ECE 656: Electronic Transport in Semiconductors (Fall 2011)

    19 Aug 2011 | Courses | Contributor(s): Mark Lundstrom

    This course is about how charge flows in semiconductors with an emphasis on transport in nanoscale devices. The objective is to develop a broad understanding of basic concepts. The course is designed for those who work on electronic materials and devices – whether they are...