Support

Support Options

Submit a Support Ticket

 

Resources: All

Finding a resource

Use the sorting or filtering options to sort results and/or narrow down the list of resources.

Use the 'Search' to find specific resources by title or description.

Search for Courses
  1. Guidelines for Writing NEEDS-certified Verilog-A Compact Models

    19 Jun 2013 | Online Presentations | Contributor(s): Tianshi Wang, Jaijeet Roychowdhury

    This talk contains a brief introduction to Verilog-A and suggests some initial guidelines for writing Verilog-A versions of NEEDS models. For more about the history of Verilog-A and additional guidelines for writing Verilog-A models, see the presentation by Drs. Geoffrey Coram and Colin McAndrew.

  2. NEEDS Introduction

    19 Jun 2013 | Online Presentations | Contributor(s): Mark Lundstrom

    NEEDS is an initiative supported by the National Science Foundation and the Semiconductor Research Corporation with a mission to develop the critical missing link needed to transform nanoelectronic materials and device research into electronic systems – physics-based compact models for...

  3. NEEDS Workshop on Compact Modeling

    19 Jun 2013 | Workshops | Contributor(s): Mark Lundstrom, Jaijeet Roychowdhury

    Advanced inresearch promise a new era of electronics – one that harnesses the capabilities of novel nano-­‐engineered materials and devices either alone or in conjunction with powerful silicon platforms. Compact models connect basic work on materials and device physics to circuits and systems....

  4. [Illinois]: Avoidance Learn Simulation

    20 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance conditioning as reinforcement learning with two upper motoneurons (SUMO and FUMO).

  5. Big Data in Biology: From Genomics to Systems Biology and Medicine

    03 Jul 2013 | Online Presentations | Contributor(s): Kevin P. White

    Kevin P. White
    Kevin White, PhD, combines experimental and computational techniques to understand the networks of factors that control gene expression during development, evolution and disease. He is a Professor in Human Genetics, Ecology & Evolution and Medicine, Section of...

  6. Introduction to Compact Models and Circuit Simulation

    21 Jun 2013 | Online Presentations | Contributor(s): Jaijeet Roychowdhury

    With NEEDS introduction by Mark Lundstrom. This talk contains a brief introduction to Verilog-A and suggests some initial guidelines for writing Verilog-A versions of NEEDS models.

  7. [Illinois]: Midbrain dopamine neuron responses to temporal-difference learning

    21 Jun 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Simulates the responses of midbrain dopamine neurons using temporal difference learning

  8. Landauer Approach to Thermoelectrics

    23 Jun 2013 | Publications | Contributor(s): Changwook Jeong

    Many efforts have been made to search for materials that maximize the thermoelectric (TE) figure of merit, ZT, but for decades, the improvement has been limited because of the interdependent material parameters that determine ZT. Recently, several breakthroughs have been reported by applying...

  9. [Illinois]: Predictor-corrector simulation of parabigeminal nucleus neural responses

    24 Jun 2013 | Tools | Contributor(s): Lisa Sproat, NanoBio Node, Jessica S Johnson

    Implements a predictor-corrector simulation of the responses of neurons in the parabigeminal nucleus

  10. Optimize Connectivity Profile of Activity-Bubble Network

    25 Jun 2013 | Tools | Contributor(s): Jessica S Johnson, NanoBio Node

    Use genetic algorithm with binary chromosomes to optimize activity-bubble network.

  11. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    28 Jun 2013 | Publications | Contributor(s): Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V...

  12. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices

    28 Jun 2013 | Publications | Contributor(s): raseong kim

    For the past few decades, transistors have been continuously scaled. Dimensions are now at the nanoscale, and device performance has dramatically improved. Nanotechnology is also achieving breakthroughs in thermoelectrics, which have suffered from low efficiencies for decades. As the device...

  13. III-V Nanoscale MOSFETS: Physics, Modeling, and Design

    28 Jun 2013 | Publications | Contributor(s): Yang Liu

    As predicted by the International Roadmap for Semiconductors (ITRS), power consumption has been the bottleneck for future silicon CMOS technology scaling. To circumvent this limit, researchers are investigating alternative structures and materials, among which III-V compound semiconductor-based...

  14. [Illinois]: Avoidance Learn Simulation with 'Call' Neuron

    25 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance learning as a reinforcement learning with two upper motoneurons (sumo and fumo) and one "call" neuron.

  15. Semiconductor Device Fundamentals Testbook Module B: Diode Basics

    01 Jul 2013 | Teaching Materials | Contributor(s): Robert F. Pierret

    This is module B (part 2) of the Testbook for Semiconductor Device Fundamentals.

  16. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Jun 2013 | Publications | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  17. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    28 Jun 2013 | Publications | Contributor(s): Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  18. Modeling Quantum Transport i Nanoscale Transistors

    28 Jun 2013 | Publications | Contributor(s): Ramesh Venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quantum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new theory...

  19. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    28 Jun 2013 | Publications | Contributor(s): Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed thechannel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes new challenges on device simulation as the essential physics of carrier transport departs that of...

  20. Nanoscale MOSFETS: Physics, Simulation and Design

    28 Jun 2013 | Publications | Contributor(s): Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2)development of a new TCAD (technology computer aided...

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.