Support

Support Options

Submit a Support Ticket

 

Resources: All

Find a resource
  1. Lecture 1A: What and where is the resistance?

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Figure 1Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to...

  2. MOSFET - Theoretical Exercises

    03 Aug 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  3. Nanotechnology applications roadmap for the Forest Products Industry

    11 Aug 2008 | Downloads | Contributor(s): Steven L. Masia

    Shows a mapping of potential nanotechnology applications in the forest products industrySteven L. MasiaNIST

  4. Illinois Solid State Electronic Devices Classes Tools

    26 Jul 2008 | Tools | Contributor(s): Mohamed Mohamed, Nahil Sobh

    Tools to complement Illinois Solid State Electronic Devices Classes

  5. Summary of current status of industrial nanocomposite developments

    25 Jul 2008 | Papers | Contributor(s): Steven L. Masia

    This is a brief summary of the current nanocomposites developed and provided by industry as of July 2008. A variety of industrial references are provided.

  6. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

  7. BJT Problems and PADRE Exercise

    11 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    This set of problems makes the students familiar with h-parameters and they also teach them how to write the input deck for simulation of BJT device to obtain the Gummel plot, the output characteristics and to extract the h-parameters. Also here, students are taught how to treat current contacts...

  8. Slides: WKB Approximation 2

    09 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, David K. Ferry

    www.eas.asu.edu/~vasileskNSF

  9. Slides: WKB Approximation 1

    09 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, David K. Ferry

    www.eas.asu.edu/~vasileskNSF

  10. Reading Material: Time Independent Schrodinger Wave Equation (TISWE)

    07 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska

    www.eas.asu.edu/~vasileskNSF

  11. Quantum Mechanics for Engineers: Podcasts

    07 Jul 2008 | Series | Contributor(s): Dragica Vasileska, Gerhard Klimeck, David K. Ferry

    This course will introduce the students to the basic concepts and postulates of quantum mechanics. Examples will include simple systems such as particle in an infinite and finite well, 1D and 2D harmonic oscillator and tunneling. Numerous approximation techniques, such as WKB method,...

  12. Tutorial on Semi-empirical Band Structure Methods

    06 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska

    This tutorial explains in details the Empirical Pseudopotential Method for the electronic structure calculation, the tight-binding method and the k.p method. For more details on the Empirical Pseudopotential Method listen to the following presentation:Empirical Pseudopotential Method Described...

  13. Quantum Size Effects and the Need for Schred

    23 Jun 2008 | Downloads | Contributor(s): Dragica Vasileska

    In this paper, we provide a historical overview of the observation of quantum effects in both experimental and theoretical nanoscale devices. This overview puts into perspective the need for developing and using the Schred tool when modeling nanoscale devices. At the end of the document, we...

  14. Nanowire: First-Time User Guide

    05 May 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck, Saumitra Raj Mehrotra

    Nanowire is a simulation tool for silicon nanowire FET's in the nanometer regime (diameter

  15. NCN Nano-Devices for Medicine and Biology: Tutorials

    19 Jun 2008 | Series

    From among the many tutorial lectures available on the nanoHUB, we list a few that convey new approaches to the development of new kinds of devices for applications in medicine and biology.

  16. Metamaterials, Part 3: Cloaking and Transformation Optics

    01 May 2008 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    Part 3/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  17. Metamaterials, Part 2: Negative-Index, Nonlinear Optics and Super/Hyper-Lenses

    01 May 2008 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    Part 2/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  18. NCN NEMS: Tutorials

    19 Jun 2008 | Series

    From among the many tutorial lectures available on the nanoHUB, we list a few that convey new approaches to the development of new kinds of nano-electro-mechanical systems and devices.

  19. Metamaterials, Part 1: Electrical and Magnetic Metamaterials

    01 May 2008 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    Part 1/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  20. Introduction to Coulomb Blockade Lab

    31 Mar 2008 | Teaching Materials | Contributor(s): Bhaskaran Muralidharan, Xufeng Wang, Gerhard Klimeck

    The tutorial is based on the Coulomb Blockade Lab available online at Coulomb Blockade Lab. Students are introduced to the concepts of level broadening and charging energies in artificial atoms (single quantum dots) and molecules (coupled quantum dots).A tutorial level introduction to the...

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.