Support

Support Options

Submit a Support Ticket

 

Resources: All

Search for Courses
  1. negf x
  1. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are less than a page of code, and yet they reproduce much of the fundamental physics observed in...

  2. SURI 2003 Conference

    07 Aug 2003 | Workshops

    2003 SURI Conference Proceedings

  3. Numerical Aspects of NEGF: The Recursive Green Function Algorithm

    14 Jun 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Numerical Aspects of NEGF: The Recursive Green Function Algorithm

  4. Notes on the Ballistic MOSFET

    08 Oct 2005 | Publications | Contributor(s): Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the so-called mean-free-path, λ) is much shorter than the device. When...

  5. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I will describe a simple analysis of the ballistic MOSFET. No MOSFET is truly ballistic, but approaching this...

  6. Fundamentals of Nanoelectronics (Fall 2004)

    01 Sep 2004 | Courses | Contributor(s): Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now availableand we would greatly appreciate your feedback regarding the new format and contents.Welcome to the ECE 453 lectures.The development of "nanotechnology" has made it possible to engineer material and devices on a length scale as small as...

  7. Understanding Phonon Dynamics via 1D Atomic Chains

    04 Apr 2006 | Online Presentations | Contributor(s): Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

  8. Nanowire

    19 May 2006 | Tools | Contributor(s): Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

  9. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | Publications | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  10. Quantum Transport for Nanostructures

    17 Sep 2006 | Publications | Contributor(s): Mathieu Luisier

    Nonequilibrium Green's function techniques, initiated by Schwinger and Kadanoff and Baym allow ones to study the time evolution of a many-particle quantum sys- tem. Knowing the 1-particle Green's functions of a given system, one may evaluate 1-particle quantities like carrier density or current....

  11. Nanoscale Device Modeling: From MOSFETs to Molecules

    20 Sep 2006 | Publications | Contributor(s): Prashant Subhash Damle

    This thesis presents a rigorous yet practical approach to model quantum transport in nanoscale electronic devices.As convetional metal oxide semiconductor devices shrink below the one hundred nanometer regime, quantum mechanical effects are beginning to play an increasingly important role in...

  12. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    20 Sep 2006 | Publications | Contributor(s): Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube...

  13. McCoy Lecture: Nanodevices and Maxwell's Demon

    04 Oct 2006 | Online Presentations | Contributor(s): Supriyo Datta

    This is a video taped live lecture covering roughly the same material as lecture 1 of "Concepts of Quantum Transport". Video only.

  14. Introduction to the Keldysh Nonequilibrium Green Function Technique

    06 Oct 2006 | Publications | Contributor(s): A. P. Jauho

    Keldysh nonequilibrium Green function technique is used very widely to describe transport phenomena in mesoscopic systems.The technique is somewhat subtle, and a rigorous treatment would require much more than we have at our disposal, see, for example, the text-bookk by Haug and Jauho [1].The...

  15. Nanoscale MOSFETs: Physics, Simulation and Design

    26 Oct 2006 | Publications | Contributor(s): Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2) development of a new TCAD (technology computer...

  16. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | Publications | Contributor(s): Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-κ gate...

  17. Modeling Quantum Transport in Nanoscale Transistors

    30 Oct 2006 | Publications | Contributor(s): Ramesh Venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quan- tum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new...

  18. CQT: Concepts of Quantum Transport

    30 Nov 2006 | Courses | Contributor(s): Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations onNanoelectronics and the Meaning of Resistance.How does the resistance of a conductor change as we shrink its length all the way down to a few atoms? This is a question that has intrigued...

  19. CQT Introduction

    30 Nov 2006 | Online Presentations | Contributor(s): Supriyo Datta

    A short overview of this series of four lectures is given.

  20. CQT Lecture 1: Nanodevices and Maxwell's Demon

    30 Nov 2006 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To illustrate the subtle interplay of dynamics and thermodynamicsthat distinguishes transport physics.

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.