Support

Support Options

Submit a Support Ticket

 

Resources: All

Search for Courses
  1. Numerical Aspects of NEGF: The Recursive Green Function Algorithm

    14 Jun 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Numerical Aspects of NEGF: The Recursive Green Function Algorithm

  2. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL (2004). The workshop has been an informal and open venue for discussing new results, key challenges, and...

  3. Notes on the Ballistic MOSFET

    08 Oct 2005 | Papers | Contributor(s): Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the so-called mean-free-path, λ) is much shorter than the device. When...

  4. Homework for PN Junctions: Depletion Approximation (ECE 606)

    09 Jan 2006 | Teaching Materials | Contributor(s): Muhammad A. Alam

    This homework assignment is part of ECE 606 "Solid State Devices" (Purdue University). It contains 5 problems which lead students through a comparison of the depletion approximation and an exact solution of PN junction diodes.Students compute the exact solution by using the PN Junction Lab...

  5. Homework for PN Junctions: Depletion Approximation (ECE 305)

    06 Jan 2006 | Teaching Materials | Contributor(s): Mark Lundstrom, David Janes

    This homework assignment is part of ECE 305 "Semiconductor Device Fundamentals" (Purdue University). It contains 7 problems which lead students through a comparison of the depletion approximation and the exact analysis of a PN junction diode.

  6. Piezoelectric Transducers: Strain Sensing and Energy Harvesting (and Frequency Tuning)

    15 Jun 2007 | Online Presentations | Contributor(s): Toshikazu Nishida

    Acoustic pressure or mechanical force sensing via piezoelectric coupling is closely related to the harvesting of electrical energy from acoustical and mechanical energy sources. In this talk, mesoscale and microscale piezoelectric transducers for acoustic and vibrational sensing and energy...

  7. SURI 2003 Conference

    07 Aug 2003 | Workshops

    2003 SURI Conference Proceedings

  8. Periodic Potential

    21 Feb 2007 | Tools | Contributor(s): Heng Li, Alexander Gavrilenko

    Calculation of the allowed and forbidden states in a periodic potential

  9. ECE 695s Lecture 4: Electromagnetic Properties of Molecules, Nano- and Microscopic Particles

    05 Sep 2006 | Online Presentations | Contributor(s): Vladimir M. Shalaev

  10. Nanosphere Optics Lab

    19 May 2006 | Tools | Contributor(s): Jon Camden, George C. Schatz

    Optical properties of nanospheres suspended in water, air, or other solutions

  11. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are less than a page of code, and yet they reproduce much of the fundamental physics observed in...

  12. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I will describe a simple analysis of the ballistic MOSFET. No MOSFET is truly ballistic, but approaching this...

  13. Scientific Computing with Python

    24 Oct 2004 | Online Presentations | Contributor(s): Eric Jones, Travis Oliphant

    INSTRUCTORS: Eric Jones and Travis Oliphant.Sunday, October 24, 9:00 a.m. - 5:00 p.m.Room 322, Stewart CenterPython has emerged as an excellent choice for scientific computing because of its simple syntax, ease of use, and elegant multi-dimensional array arithmetic. Its interpreted evaluation...

  14. Nano-Scale Device Simulations Using PROPHET-Lab Exercise 1

    08 Feb 2006 | Teaching Materials | Contributor(s): Yang Liu

    Companion exercises for "Nano-Scale Device Simulations Using PROPHET".

  15. Schred Tutorial Version 2.1

    23 Jun 2008 | Downloads | Contributor(s): Dragica Vasileska

    This Schred tutorial [or User's Manual] is intended to help users of the Schred tool with the Rappture interface. Readers will find various examples for modeling single-gate and dual-gate capacitors with either metal or polysilicon gates. The models also use either semi-classical or...

  16. ECE 659 Lecture 30: Coherent Transport: Overview

    05 Apr 2004 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 9.1

  17. Computational Nanoscience, Lecture 9: Hard-Sphere Monte Carlo In-Class Simulation

    19 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the HSMC tool (within the nanoHUB simulation toolkit for this course). The hard sphere system is one of the simplest systems which exhibits an order-disorder phase transition, which we will explore with...

  18. Slides: Kronig-Penney Model Explained

    08 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  19. ECE 495N Lecture 36: Spin

    10 Dec 2008 | Online Presentations | Contributor(s): Supriyo Datta

  20. PASI Lecture: Nanodevices and Maxwell's Demon, Part 2

    14 Jun 2007 | Online Presentations | Contributor(s): Supriyo Datta

    Pan AmericanAdvanced Study Institute (PASI) Lectures.This is part 2 of a video taped set of two one-hour live lectures covering roughly the same material as Lectures 1-3 of Concepts of Quantum Transport.

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.