Support

Support Options

Submit a Support Ticket

 

Resources: All

Finding a resource

Use the sorting or filtering options to sort results and/or narrow down the list of resources.

Use the 'Search' to find specific resources by title or description.

Search for Courses
  1. Computational Nanoscience, Lecture 12: In-Class Simulation of Ising Model

    28 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    This is a two part lecture in which we discuss the spin-spin correlation function for the the Ising model, correlation lengths, and critical slowing down. An in-class simulation of the 2D Ising Model is performed using the tool "Berkeley Computational Nanoscience Class Tools". We look at domain...

  2. Computational Nanoscience, Lecture 11: Phase Transitions and the Ising Model

    27 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    In this lecture, we present an introduction to simulations of phase transitions in materials. The use of Monte Carlo methods to model phase transitions is described, and the Ising Model is given as an example for modeling the ferromagnetic-paramagnetic transition. Some of the subtleties of...

  3. MSE 640 Lecture 4: Laue Diffraction and the Reciprocal Lattice

    05 Mar 2008 | Online Presentations | Contributor(s): Eric Stach

  4. Computational Nanoscience, Lecture 10: Brief Review, Kinetic Monte Carlo, and Random Numbers

    25 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    We conclude our discussion of Monte Carlo methods with a brief review of the concepts covered in the three previous lectures. Then, the Kinetic Monte Carlo method is introduced, including discussions of Transition State Theory and basic KMC algorithms. A simulation of vacancy-mediated diffusion...

  5. Computational Nanoscience, Lecture 18: Density Functional Theory and some Solid Modeling

    21 Mar 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    We continue our discussion of Density Functional Theory, and describe the most-often used approaches to describing the exchange-correlation in the system (LDA, GGA, and hybrid functionals). We discuss as well the strengths and weaknesses of the LDA and present some examples of its use. Finally,...

  6. Computational Nanoscience, Lecture 17: Tight-Binding, and Moving Towards Density Functional Theory

    21 Mar 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    The purpose of this lecture is to illustrate the application of the Tight-Binding method to a simple system and then to introduce the concept of Density Functional Theory. The motivation to mapping from a wavefunction to a density-based description of atomic systems is provided, and the...

  7. Quantum and Semi-classical Electrostatics Simulation of SOI Trigates

    19 Feb 2008 | Tools | Contributor(s): Hyung-Seok Hahm, Andres Godoy

    Generate quantum/semi-classical electrostatic simulation results for a simple Trigate structure

  8. What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?

    18 Feb 2008 | Online Presentations | Contributor(s): Joerg Appenzeller

    Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be ignored – the common approach applied to predict properties of bulk-type three-dimensional (3D) materials....

  9. Computational Nanoscience, Homework Assignment 3: Molecular Dynamics Simulation of Carbon Nanotubes

    14 Feb 2008 | Teaching Materials | Contributor(s): Elif Ertekin, Jeffrey C Grossman

    The purpose of this assignment is to perform molecular dynamics simulations to calculate various properties of carbon nanotubes using LAMMPS and Tersoff potentials.This assignment is to be completed following lectures 5 and 6 using the "LAMMPS" program in the Berkeley Computational Nanoscience...

  10. Computational Nanoscience, Lecture 1: Introduction to Computational Nanoscience

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we present a historical overview of computational science. We describe modeling and simulation as forms of "theoretical experiments" and "experimental theory". We also discuss nanoscience: "what makes nano nano?", as well as public perceptions of nanoscience and the "grey goo"...

  11. Computational Nanoscience, Lecture 7: Monte Carlo Simulation Part I

    15 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    The purpose of this lecture is to introduce Monte Carlo methods as a form of stochastic simulation. Some introductory examples of Monte Carlo methods are given, and a basic introduction to relevant concepts in statistical mechanics is presented. Students will be introduced to the Metropolis...

  12. Computational Nanoscience, Lecture 5: A Day of In-Class Simulation: MD of Carbon Nanostructures

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture we carry out simulations in-class, with guidance from the instructors. We use the LAMMPS tool (within the nanoHUB simulation toolkit for this course). Examples include calculating the energy per atom of different fullerenes and nantubes, computing the Young's modulus of a...

  13. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

  14. MSE 582 Lecture 11: Overview of High-Resolution TEM & Scanning TEM

    14 Feb 2008 | Online Presentations | Contributor(s): Eric Stach

  15. nanoMATERIALS SeqQuest DFT

    04 Feb 2008 | Tools | Contributor(s): Ravi Pramod Kumar Vedula, Greg Bechtol, Benjamin P Haley, Alejandro Strachan

    DFT calculations of materials

  16. Molecular Structure Tracer

    05 Feb 2008 | Tools | Contributor(s): Baudilio Tejerina

    This tool provides a high quality display of molecular structures.

  17. Illinois Tools: Effect of Doping on Semiconductors

    01 Feb 2008 | Teaching Materials | Contributor(s): Umberto Ravaioli, Nahil Sobh

    This Java applet allows students to visualize the effects of doping on carrier concentration in bulk silicon. It utilizes the non-degenerate Maxwell statistics to explore the effects of doping and temperature on carrier concentration and the energy band diagram.Developed in conjunction with Kent...

  18. Computational Nanoscience, Lecture 2: Introduction to Molecular Dynamics

    30 Jan 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we present and introduction to classical molecular dynamics. Approaches to integrating the equations of motion (Verlet and other) are discussed, along with practical considerations such as choice of timestep. A brief discussion of interatomic potentials (the pair potential and...

  19. Semiconductor Device Education Material

    28 Jan 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    This page has moved to "a Wiki page format"When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are built from...

  20. Carbon nanotube based NEMS with cantilever structure

    28 Jan 2008 | Tools | Contributor(s): Pradeep Kumar Gudla, Aswin Kannan, Zhi Tang, Narayan Aluru

    Simulates pull-in behavior of Carbon nanotube based NEMS with cantilever boundary conditions, with and without Vander Waal's effect

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.