Support

Support Options

Submit a Support Ticket

 

Resources: Courses

Select a tag (or keyword) from the list below to browse through available resources in that category.

Tag

Resources

Info

  • Select a resource to see details.

View more ›

What is this? About NCN Supported

Top Rated

  1. ECE 656: Electronic Transport in Semiconductors (Fall 2009)

    26 Aug 2009 | Courses | Contributor(s): Mark Lundstrom

    This course develops a basic understanding of the theory of charge carrier transport in semiconductors and semiconductor devices and an ability to apply it to the anslysis of experiments and devices.

  2. ECE 659 Quantum Transport: Atom to Transistor

    27 Jan 2009 | Courses | Contributor(s): Supriyo Datta

    Spring 2009This is a newly produced version of the course that wasformerly available.We would greatly appreciate your feedback regarding the new format and contents.Traditionally atomistic approaches have been used to model materials in terms of average parameters like the mobility or the...

  3. ECE 612: Nanoscale Transistors (Fall 2008)

    27 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NT Fall 2008This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into the development...

  4. MSE 640 Transmission Electron Microscopy and Crystalline Imperfections

    25 Feb 2008 | Courses | Contributor(s): Eric Stach

  5. Overview of Computational Nanoscience: a UC Berkeley Course

    01 Feb 2008 | Courses | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    This course will provide students with the fundamentals of computational problem-solving techniques that are used to understand and predict properties of nanoscale systems. Emphasis will be placed on how to use simulations effectively, intelligently, and cohesively to predict properties that...

  6. BME 695N: Engineering Nanomedical Systems (Fall 2007)

    03 Aug 2007 | Courses | Contributor(s): James Leary

    This course will cover the basic concepts of design of integrated nanomedical systems for diagnostics and therapeutics. Topics to be covered include: why nanomedical approaches are needed, cell targeting strategies, choice of core nanomaterials, technologies for testing composition and structure...

  7. Illinois MATSE 280: Introduction to Engineering Materials

    18 Aug 2008 | Courses | Contributor(s): Duane Douglas Johnson

    This course introduces you to the materials science and engineering of metals, ceramics, polymers, and electronic materials. Topics include: bonding, crystallography, imperfections, phase diagrams, properties and processing of materials. Case studies are used when appropriate to exemplify the...

  8. MSE 376 Nanomaterials

    24 Oct 2006 | Courses | Contributor(s): Mark Hersam

    "Nanomaterials," is an interdisciplinary introduction to processing, structure, and properties of materials at the nanometer length scale. The course will cover recent breakthroughs and assess the impact of this burgeoning field. Specific nanofabrication topics include epitaxy, beam...

  9. Fundamentals of Nanoelectronics (Fall 2004)

    01 Sep 2004 | Courses | Contributor(s): Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now availableand we would greatly appreciate your feedback regarding the new format and contents.Welcome to the ECE 453 lectures.The development of "nanotechnology" has made it possible to engineer material and devices on a length scale as small as...

  10. CQT: Concepts of Quantum Transport

    30 Nov 2006 | Courses | Contributor(s): Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations onNanoelectronics and the Meaning of Resistance.How does the resistance of a conductor change as we shrink its length all the way down to a few atoms? This is a question that has intrigued...

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.