You must login before you can run this tool.

## Small Molecules in Intense Lasers via Time-Dependent Density Functional Theory

Simulate the behavior of a hydrogen molecule when illuminated by an intense laser field.

#### Category

#### Published on

#### Abstract

#### Powered by

Powered by Octopus

GUI Interface powered by Rappture, developed by Michael J. McLennan, Purdue University (2005)#### Credits

Developed by Marcela Meza from University of Texas at El Paso, while doing research at Purdue University.

Thanks to Derrick Kearney for useful input.

#### Sponsored by

Summer Undergraduate Research Fellowship (SURF)

Network for Computational Nanotechnology (NCN) at nanoHUB.org

#### References

A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, and A. Rubio, octopus: a tool for the application of time-dependent density functional theory, Phys. Stat. Sol. B 243 2465-2488 (2006) PSSB

M.A.L. Marques, Alberto Castro, George F. Bertsch, and Angel Rubio, octopus: a first-principles tool for excited electron-ion dynamics, Comput. Phys. Commun. 151 60-78 (2003) Science Direct

Time-dependent density functional theory, M.A.L. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E.K.U. Gross (Eds.), Lecture Notes in Physics, Vol. 706, Springer, Berlin, (2006), ISBN: 978-3-540-35422-2

#### Cite this work

Researchers should cite this work as follows:

#### Tags

- nanoelectronics
- Time-Dependent Density Functional Theory
- density functional theory
- nanoelectronics
- density functional theory
- Time-Dependent Density Functional Theory
- nanoelectronics
- density functional theory
- Time-Dependent Density Functional Theory