
Homework for PN Junctions: Depletion Approximation (ECE 606)
09 Jan 2006  Teaching Materials  Contributor(s): Muhammad A. Alam
This homework assignment is part of ECE 606 "Solid State Devices" (Purdue University). It contains 5 problems which lead students through a comparison of the depletion approximation and an exact solution of PN junction diodes.Students compute the exact solution by using the PN Junction Lab...

NanoScale Device Simulations Using PROPHETLab Exercise 1
08 Feb 2006  Teaching Materials  Contributor(s): Yang Liu
Companion exercises for "NanoScale Device Simulations Using PROPHET".

NanoScale Device Simulations Using PROPHETLab Exercise 2
08 Feb 2006  Teaching Materials  Contributor(s): Yang Liu
Companion exercises for "NanoScale Device Simulations Using PROPHET".

REBO Nanofluidics Exercise
10 May 2006  Teaching Materials  Contributor(s): Susan Sinnott, Hetal Patel
Nanofluidics exercise showing the variation of energy and positionof methane and butane molecules flowing through an opened carbonnanotube as the system temperature and the length of the nanotubeare varied.

XRay Photoelectron Spectroscopy (XPS)
14 Dec 2006  Teaching Materials  Contributor(s): David Echevarria Torres
The XPS (XRay Photoelectron Spectroscopy) it is also known as ESCA (Electron Spectroscopy for Chemical Analysis). This technique is based on the theory of the photoelectric effect that was developed by Einstein, yet it was Dr. Siegbahn and his research group who developed the XPS technique. The...

Nanotechnology and Visible Light
19 Dec 2006  Teaching Materials  Contributor(s): Raymond Serrano
This submission is an undergraduate project by Raymond Serrano, a chemistry student at UTEP. Raymond has been a nanoHUB student for one year.In addition to being factor of scale, nanoscience is also defined by the changes in the physical and chemical properties the nanoparticles. This...

Computational Nanoscience, Homework Assignment 1: Averages and Statistical Uncertainty
30 Jan 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
The purpose of this assignment is to explore statistical errors and data correlation.This assignment is to be completed following lectures 1 and 2 using the "Average" program in the Berkeley Computational Nanoscience Toolkit.University of California, Berkeley

Computational Nanoscience, Lecture 2: Introduction to Molecular Dynamics
30 Jan 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture, we present and introduction to classical molecular dynamics. Approaches to integrating the equations of motion (Verlet and other) are discussed, along with practical considerations such as choice of timestep. A brief discussion of interatomic potentials (the pair potential and...

Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing
13 Feb 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and nonderivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

Computational Nanoscience, Lecture 5: A Day of InClass Simulation: MD of Carbon Nanostructures
13 Feb 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture we carry out simulations inclass, with guidance from the instructors. We use the LAMMPS tool (within the nanoHUB simulation toolkit for this course). Examples include calculating the energy per atom of different fullerenes and nantubes, computing the Young's modulus of a nanotube...