Support

Support Options

Submit a Support Ticket

 

Resources: Teaching Materials

Select a tag (or keyword) from the list below to browse through available resources in that category.

Tag

Resources

Info

  • Select a resource to see details.

View more ›

What is this? About NCN Supported

Explore Resources

Top Rated

The following are top-rated resources of this type.

  1. Crystal Directions and Miller Indices

    08 Jun 2010 | Teaching Materials | Contributor(s): David K. Ferry, Dragica Vasileska, Gerhard Klimeck

    Miller indices are a notation system in crystallography for planes and directions in crystal lattices. In particular, a family of lattice planes is determined by three integers, l, m, and n, the Miller indices. They are written (lmn) and denote planes orthogonal to a direction (l,m,n) in the basis …

  2. Solar Cells Numerical Solution

    08 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This is an MS Thesis of Balaji Padmanabhan, a student of Prof. Vasileska. It describes numerical solution details for the 3D drift-diffusion equations as applied to modeling 1D-3D solar cells.

  3. Basics of Quantum Mechanics

    01 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    Classical vs. Quantum physics, particle-wave duality, postulates of quantum mechanics

  4. Physical and Analytical Description of the Operation of a PN Diode

    01 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    A detailed physical and analytical description of the operation of PN diodes is given. vasileska.faculty.asu.edu NSF

  5. Drift-Diffusion Modeling and Numerical Implementation Details

    01 Jun 2010 | Teaching Materials | Contributor(s): Dragica Vasileska

    This tutorial describes the constitutive equations for the drift-diffusion model and implementation details such as discretization and numerical solution of the algebraic equations that result from the finite difference discretization of the Poisson and the continuity …

  6. Illinois ECE 440: Diffusion and Energy Band Diagram Homework

    28 Jan 2010 | Teaching Materials | Contributor(s): Mohamed Mohamed

    This homework covers Diffusion of Carriers, Built-in Fields and Metal semiconductor junctions.

  7. From Semi-Classical to Quantum Transport Modeling: Quantum Corrections to Semiclassical Approaches

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions …

  8. From Semi-Classical to Quantum Transport Modeling: Drift-Diffusion and Hydrodynamic Modeling

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions …

  9. Theory of PN Diodes

    23 Jun 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of slides is intended to explain the operation of a PN diode to students.

  10. Band Structure Lab: First-Time User Guide

    15 Jun 2009 | Teaching Materials | Contributor(s): Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck

    This document provides useful information about Band Structure Lab. First-time users will find basic ideas about the physics behind the tool such as band formation, the Hamiltonian description, and other aspects. Additionally, we provide explanations of the input settings and the results of the …

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.