Support

Support Options

Submit a Support Ticket

 

Tags: ABACUS

Description

ABACUS is a collection of tools for the teaching fundamental concepts of semiconductor devices. These concepts typically include lattices, crystal structure, bandstructure, band models, carrier distributions, drift, diffusion, pn junctions, solar cells, light-emitting diodes (LED), bipolar junction transistors (BJT), metal-oxide semiconductor capacitors (MOScap), and multi-acronym-device field effect transistors (madFETs).

ABACUS is the key element in the Tool-Powered Curriculum on Semiconductor Device Education.

Resources (1-20 of 88)

  1. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

    http://nanohub.org/resources/6815

  2. Crystal Viewer Demonstration: Bravais Lattices

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated.

    http://nanohub.org/resources/6818

  3. Crystal Viewer Demonstration: Bravais Lattices 2

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the exploration of several crystal structures using the Crystal Viewer tool. Several powerful features of this tool are demonstrated

    http://nanohub.org/resources/6821

  4. Crystal Viewer Demonstration: Various Crystal Systems

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the use of the Crystal Viewer Tool to visualize several crystal systems, including Si, GaAs, C60 Buckyball, and a carbon nanotube. Crystal systems are rotated in 3D, zoomed in...

    http://nanohub.org/resources/6824

  5. MOSCap Demonstration: MOS Capacitor Simulation

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation of a MOS capacitor using the MOSCAP tool. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6827

  6. MOSFet Demonstration: MOSFET Device Simulation and Analysis

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a MOSFET device using the MOSFet tool. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6830

  7. Periodic Potential Lab Demonstration: Standard Kroenig-Penney Model

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation of a 1D square well using the Periodic Potential Lab. The calculated output includes plots of the allowed energybands, a table of the band edges and band gaps,...

    http://nanohub.org/resources/6839

  8. Piece-Wise Constant Potential Barriers Tool Demonstration: Bandstructure Formation with Finite Superlattices

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a systems with a series of potential barriers. Several powerful analytic features of Piece-wise Constant Potential Barrier Tool (PCPBT) are...

    http://nanohub.org/resources/6836

  9. PN Junction Lab Demonstration: Asymmetric PN Junctions

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a several PN junctions using PN Junction Lab, which is powered by PADRE. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6842

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.