Support

Support Options

Submit a Support Ticket

 

Tags: ab initio

Resources (1-20 of 37)

  1. "Ab Initio" Theory of Novel Micro and Nanolasers

    19 May 2008 | Online Presentations | Contributor(s): A. Douglas Stone

    While the laser is one of the most important inventions of the past century and one of the most interesting and controllable non-linear systems in physics, there is surprisingly little predictive...

    http://nanohub.org/resources/4401

  2. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | Online Presentations | Contributor(s): Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/4717

  3. Calculating Resonances Using a Complex Absorbing Potential

    13 Mar 2008 | Online Presentations | Contributor(s): Robin Santra

    The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a...

    http://nanohub.org/resources/4143

  4. Computational Mathematics: Role, Impact, Challenges

    20 Dec 2007 | Online Presentations | Contributor(s): Juan C. Meza

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3701

  5. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | Online Presentations | Contributor(s): Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature...

    http://nanohub.org/resources/4584

  6. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...

    http://nanohub.org/resources/3951

  7. Excellence in Computer Simulation: Computational Materials

    20 Dec 2007 | Online Presentations | Contributor(s): Eric Schwegler

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3721

  8. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | Online Presentations | Contributor(s): Barry D. Dunietz

    http://nanohub.org/resources/3945

  9. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...

    http://nanohub.org/resources/3526

  10. Finite Size Scaling and Quantum Criticality

    09 May 2007 | Online Presentations | Contributor(s): Sabre Kais

    The study of quantum phase transitions, which are driven by quantum fluctuations as a consequence of Heisenberg's uncertainty principle, continues to be of increasing interest in the fields...

    http://nanohub.org/resources/2663

  11. IMA 2013 UQ: DFT-based Thermal Properties: Three Levels of Error Management

    02 Apr 2014 | Online Presentations | Contributor(s): Kurt Lejaeghere

    It is often computationally expensive to predict finite-temperature properties of a crystal from density-functional theory (DFT). The temperature-dependent thermal expansion coefficient α, for...

    http://nanohub.org/resources/20311

  12. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | Online Presentations | Contributor(s): Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within...

    http://nanohub.org/resources/3094

  13. MCW07 Modeling Charging-based Switching in Molecular Transport Junctions

    23 Aug 2007 | Online Presentations | Contributor(s): Sina Yeganeh, Misha Galperin, Mark A. Ratner

    We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is...

    http://nanohub.org/resources/3076

  14. MSE 597G Lecture 6: Interatomic potentials III

    12 Nov 2008 | Online Presentations | Contributor(s): Alejandro Strachan

    Reactive force fields, Parameterization of interatomic potentials

    http://nanohub.org/resources/5778

  15. OPV: Large Scale Ab Initio Simulation for Charge Transport in Disordered Organic Systems

    31 Jan 2011 | Online Presentations | Contributor(s): Lin-Wang Wang

    This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both...

    http://nanohub.org/resources/10500

  16. OPV: Time Domain Ab Initio Studies of Organic-Inorganic Composites for Solar Cells

    31 Jan 2011 | Online Presentations | Contributor(s): Oleg Prezhdo

    This presentation was part of the "Organic Photovoltaics: Experiment and Theory" workshop at the 2010 Users' Meeting of the Molecular Foundry and the National Center for Electron Microscopy, both...

    http://nanohub.org/resources/10507

  17. Perspectives on Computational Quantum Chemistry

    20 Dec 2007 | Online Presentations | Contributor(s): Martin P. Head-Gordon

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3726

  18. Renormalization Group Theories of Strongly Interacting Electronic Structure

    20 Apr 2007 | Online Presentations | Contributor(s): Garnet Chan, NCN SLC@Northwestern

    Our work is in the area of the electronic structure and dynamics of complex processes. We engage in developing new and more powerful theoretical techniques which enable us to describe strong...

    http://nanohub.org/resources/2616

  19. Ripples and Warping of Graphene: A Theoretical Study

    08 Jun 2010 | Online Presentations | Contributor(s): Umesh V. Waghmare

    We use first-principles density functional theory based analysis to understand formation of ripples in graphene and related 2-D materials. For an infinite graphene, we show that ripples are linked...

    http://nanohub.org/resources/9010

  20. The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

    http://nanohub.org/resources/21701

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.