Support

Support Options

Submit a Support Ticket

 

Tags: ab initio

Resources (1-20 of 37)

  1. "Ab Initio" Theory of Novel Micro and Nanolasers

    19 May 2008 | Online Presentations | Contributor(s): A. Douglas Stone

    While the laser is one of the most important inventions of the past century and one of the most interesting and controllable non-linear systems in physics, there is surprisingly little predictive...

    http://nanohub.org/resources/4401

  2. ABINIT

    13 May 2004 | Tools | Contributor(s): Amritanshu Palaria, Xufeng Wang, Benjamin P Haley, Matteo Mannino, Gerhard Klimeck

    Run the community code ABINIT for electronic structure calculations under density functional theory through a convenient graphical user interface

    http://nanohub.org/resources/ABINIT

  3. ABINIT: First-Time User Guide

    09 Jun 2009 | Teaching Materials | Contributor(s): Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We...

    http://nanohub.org/resources/6874

  4. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | Online Presentations | Contributor(s): Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/4717

  5. Calculating Resonances Using a Complex Absorbing Potential

    13 Mar 2008 | Online Presentations | Contributor(s): Robin Santra

    The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a...

    http://nanohub.org/resources/4143

  6. CNDO/INDO

    09 Oct 2007 | Tools | Contributor(s): Baudilio Tejerina, Jeff Reimers

    Semi-empirical Molecular Orbital calculations.

    http://nanohub.org/resources/CNDO

  7. Computational Chemistry: An Introduction to Molecular Dynamic Simulations

    08 Dec 2006 | Teaching Materials | Contributor(s): Shalayna Lair

    This module gives a brief overview of computational chemistry, a branch of chemistry concerned with theoretically determining properties of molecules. The fundamentals of how to conduct a...

    http://nanohub.org/resources/2088

  8. Computational Mathematics: Role, Impact, Challenges

    20 Dec 2007 | Online Presentations | Contributor(s): Juan C. Meza

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3701

  9. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    13 Feb 2008 | Teaching Materials | Contributor(s): Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the...

    http://nanohub.org/resources/4035

  10. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | Online Presentations | Contributor(s): Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature...

    http://nanohub.org/resources/4584

  11. Dynamics on the Nanoscale: Time-domain ab initio studies of quantum dots, carbon nanotubes and molecule-semiconductor interfaces

    31 Jan 2008 | Online Presentations | Contributor(s): Oleg Prezhdo

    Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...

    http://nanohub.org/resources/3951

  12. Excellence in Computer Simulation: Computational Materials

    20 Dec 2007 | Online Presentations | Contributor(s): Eric Schwegler

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3721

  13. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | Online Presentations | Contributor(s): Barry D. Dunietz

    http://nanohub.org/resources/3945

  14. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...

    http://nanohub.org/resources/3526

  15. Finite Size Scaling and Quantum Criticality

    09 May 2007 | Online Presentations | Contributor(s): Sabre Kais

    The study of quantum phase transitions, which are driven by quantum fluctuations as a consequence of Heisenberg's uncertainty principle, continues to be of increasing interest in the fields...

    http://nanohub.org/resources/2663

  16. IMA 2013 UQ: DFT-based Thermal Properties: Three Levels of Error Management

    02 Apr 2014 | Online Presentations | Contributor(s): Kurt Lejaeghere

    It is often computationally expensive to predict finite-temperature properties of a crystal from density-functional theory (DFT). The temperature-dependent thermal expansion coefficient α, for...

    http://nanohub.org/resources/20311

  17. Large-scale first principles configuration interaction calculations of optical absorption in boron clusters

    07 Mar 2012 | Papers | Contributor(s): Ravindra L Shinde

    We have performed systematic large-scale all-electron correlated calculations on boron clusters Bn (n=2–5), to study their linear optical absorption spectra. Several possible isomers of each...

    http://nanohub.org/resources/13404

  18. Lecture 4: The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | Online Presentations | Contributor(s): Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

    http://nanohub.org/resources/21701

  19. Matdcal

    30 Jan 2008 | Tools | Contributor(s): Kirk H. Bevan

    Non-equilibrium Green's Function Density Functional Theory Simulator

    http://nanohub.org/resources/Matdcal

  20. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | Online Presentations | Contributor(s): Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within...

    http://nanohub.org/resources/3094

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.