
"Ab Initio" Theory of Novel Micro and Nanolasers
19 May 2008  Online Presentations  Contributor(s): A. Douglas Stone
While the laser is one of the most important inventions of the past century and one of the most interesting and controllable nonlinear systems in physics, there is surprisingly little predictive...
http://nanohub.org/resources/4401

ABINIT
13 May 2004  Tools  Contributor(s): Amritanshu Palaria, Xufeng Wang, Benjamin P Haley, Matteo Mannino, Gerhard Klimeck
Run the community code ABINIT for electronic structure calculations under density functional theory through a convenient graphical user interface
http://nanohub.org/resources/ABINIT

ABINIT: FirstTime User Guide
09 Jun 2009  Teaching Materials  Contributor(s): Benjamin P Haley
This firsttime user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We...
http://nanohub.org/resources/6874

BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation
04 Jun 2008  Online Presentations  Contributor(s): Jayathi Murthy
This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...
http://nanohub.org/resources/4717

Calculating Resonances Using a Complex Absorbing Potential
13 Mar 2008  Online Presentations  Contributor(s): Robin Santra
The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a...
http://nanohub.org/resources/4143

CNDO/INDO
09 Oct 2007  Tools  Contributor(s): Baudilio Tejerina, Jeff Reimers
Semiempirical Molecular Orbital calculations.
http://nanohub.org/resources/CNDO

Computational Chemistry: An Introduction to Molecular Dynamic Simulations
08 Dec 2006  Teaching Materials  Contributor(s): Shalayna Lair
This module gives a brief overview of computational chemistry, a branch of chemistry concerned with theoretically determining properties of molecules. The fundamentals of how to conduct a...
http://nanohub.org/resources/2088

Computational Mathematics: Role, Impact, Challenges
20 Dec 2007  Online Presentations  Contributor(s): Juan C. Meza
This presentation was one of 13 presentations in the oneday forum,
"Excellence in Computer Simulation," which brought together a broad
set of experts to reflect on the future of...
http://nanohub.org/resources/3701

Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing
13 Feb 2008  Teaching Materials  Contributor(s): Jeffrey C Grossman, Elif Ertekin
In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and nonderivative methods are discussed, as well as the...
http://nanohub.org/resources/4035

Dynamics of Quantum Fluids: Path integral and Semiclassical Methods
21 May 2008  Online Presentations  Contributor(s): Nancy Makri
The interplay of manybody nonlinear interactions and quantum mechanical effects such as zeropoint motion or identical particle exchange symmetries lead to intriguing phenomena in lowtemperature...
http://nanohub.org/resources/4584

Dynamics on the Nanoscale: Timedomain ab initio studies of quantum dots, carbon nanotubes and moleculesemiconductor interfaces
31 Jan 2008  Online Presentations  Contributor(s): Oleg Prezhdo
Device miniaturization requires an understanding of the dynamical response of materials on the nanometer scale. A great deal of experimental and theoretical work has been devoted to characterizing...
http://nanohub.org/resources/3951

Excellence in Computer Simulation: Computational Materials
20 Dec 2007  Online Presentations  Contributor(s): Eric Schwegler
This presentation was one of 13 presentations in the oneday forum,
"Excellence in Computer Simulation," which brought together a broad
set of experts to reflect on the future of...
http://nanohub.org/resources/3721

Exploring Physical and Chemical control of molecular conductance: A computational study
31 Jan 2008  Online Presentations  Contributor(s): Barry D. Dunietz
http://nanohub.org/resources/3945

Finite Size Scaling and Quantum Criticality
02 Jan 2008  Online Presentations  Contributor(s): Sabre Kais
In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...
http://nanohub.org/resources/3526

Finite Size Scaling and Quantum Criticality
09 May 2007  Online Presentations  Contributor(s): Sabre Kais
The study of quantum phase transitions, which are driven by quantum
fluctuations as a consequence of Heisenberg's uncertainty principle,
continues to be of increasing interest in the fields...
http://nanohub.org/resources/2663

IMA 2013 UQ: DFTbased Thermal Properties: Three Levels of Error Management
02 Apr 2014  Online Presentations  Contributor(s): Kurt Lejaeghere
It is often computationally expensive to predict finitetemperature properties of a crystal from densityfunctional theory (DFT). The temperaturedependent thermal expansion coefficient α, for...
http://nanohub.org/resources/20311

Largescale first principles configuration interaction calculations of optical absorption in boron clusters
07 Mar 2012  Papers  Contributor(s): Ravindra L Shinde
We have performed systematic largescale allelectron correlated calculations on boron clusters
Bn (n=2–5), to study their linear optical absorption spectra. Several possible isomers of each...
http://nanohub.org/resources/13404

Lecture 4: The abinitio Wigner Monte Carlo Method
18 Nov 2014  Online Presentations  Contributor(s): Jean Michel D Sellier
In this lecture, Dr. Sellier discusses the abinitio Wigner Monte Carlo method for the simulation of strongly correlated systems.
http://nanohub.org/resources/21701

Matdcal
30 Jan 2008  Tools  Contributor(s): Kirk H. Bevan
Nonequilibrium Green's Function Density Functional Theory Simulator
http://nanohub.org/resources/Matdcal

MCW07 Electronic Level Alignment at MetalMolecule Contacts with a GW Approach
05 Sep 2007  Online Presentations  Contributor(s): Jeffrey B. Neaton
Most recent theoretical studies of electron transport in singlemolecule junctions rely on a Landauer approach, simplified to treat electronelectron interactions at a meanfield level within...
http://nanohub.org/resources/3094