Tags: ab initio

Description

A calculation that relies on basic and established laws of nature without additional assumptions or special models. Also see 1st principles.

All Categories (1-20 of 73)

  1. "Ab Initio" Theory of Novel Micro and Nanolasers

    19 May 2008 | | Contributor(s):: A. Douglas Stone

    While the laser is one of the most important inventions of the past century and one of the most interesting and controllable non-linear systems in physics, there is surprisingly little predictive theory of lasing properties. Predicting lasing thresholds and output power far above threshold in the...

  2. how to compute the potential relief of DWNT

    Q&A|Closed | Responses: 0

    which tool is to be used if i want to compute the potential relief of an double wall nanotube? whats the difference between molecular dynamics simulation and ab initio calculation.

    https://nanohub.org/answers/question/671

  3. ab initio Model for Mobility and Seebeck coefficient using Boltzmann Transport (aMoBT) equation

    11 Jun 2015 | | Contributor(s):: Alireza Faghaninia, Joel Ager (editor), Cynthia S Lo (editor)

    ab initio electronic transport model to calculate low-field electrical mobility and Seebeck coefficient of semiconductors in Boltzmann transport framework.

  4. ab initio simulations with ORCA

    28 Jul 2015 | | Contributor(s):: nicolas onofrio, Alejandro Strachan

    ab initio and density functional theory calculations dedicated to molecular systems

  5. ABINIT

    13 May 2004 | | Contributor(s):: Amritanshu Palaria, Xufeng Wang, Benjamin P Haley, Matteo Mannino, Gerhard Klimeck

    Run the community code ABINIT for electronic structure calculations under density functional theory through a convenient graphical user interface

  6. ABINIT: First-Time User Guide

    09 Jun 2009 | | Contributor(s):: Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We discuss the default simulation (what happens if you don't change any inputs, and just hit...

  7. Ali lashani zand

    https://nanohub.org/members/352618

  8. Austine Francisco Fernando

    https://nanohub.org/members/293181

  9. Baudilio Tejerina

    Since November 2004, Baudilio Tejerina manages the computer facilities of the Theory Group in the Department of Chemistry at Northwestern University. After receiving his PhD in Physical Chemistry...

    https://nanohub.org/members/8744

  10. Bikash Sharma

    BIKASH SHARMA__Member__: IEEE__Life Member__: System Society of India; Indian Physical Society __ADDRESS FOR CORRESPONDENCE__Associate ProfessorDept. of Electronics & Communication Engg.Sikkim...

    https://nanohub.org/members/69395

  11. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | | Contributor(s):: Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  12. Calculating Resonances Using a Complex Absorbing Potential

    13 Mar 2008 | | Contributor(s):: Robin Santra

    The Siegert (or Gamow) wave function associated with a resonance state is exponentially divergent at large distances from the scattering target. A complex absorbing potential (CAP) provides a computationally simple and efficient technique for calculating the complex Siegert energy of a resonance...

  13. CHEM 870 Lecture 11: Summary of Ab-initio Computational Chemistry

    17 Dec 2021 | | Contributor(s):: Nicole Adelstein

  14. CHEM 870 Tutorial 01a: Getting to know nanoHUB and Ab-initio Calculations

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    The goal of these activities is for you to get comfortable with running electronic structure calculations. We will be using the ORCA GUI housed on nanoHUB to start. ORCA can be run from the command line too.

  15. CHEM 870 Tutorial 01b: Getting to know nanoHUB and Ab-initio Calculations - Tasks 4 & 5

    14 Feb 2022 | | Contributor(s):: Nicole Adelstein

  16. CHEM 870 Tutorial 2: Exploring nanoHUB – Ionization Energies and Missing Correlation

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    The goal of these activities is to explore more capabilities of nanoHUB, including calculating the ionization energy. In addition, you will learn to estimate the missing correlation energy in ab-initio Hartree-Fock calculations. See background information in slides from Lecture 6: Open Shell,...

  17. CHEM 870 Tutorial 3: Gaussian, Charge Density and Spin Density

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    There are many goals of this tutorial: To learn to run Gaussian, one of the most ubiquitous computational chemistry software packages in the world. To create text input files and submit simulations from the command line (like an old-school computational researcher), rather than relying on...

  18. CHEM 870 Tutorial 4: Basis Sets, Geometry Optimization, and Configuration Interaction

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    The main goal of these activities is to see the effect of the choice of basis set has on molecular geometry and bond strength (the dissociation energy). Including configuration interaction (or coupled-clusters) also improves a basis set, so is also explored in these activities.

  19. CHEM 870 Tutorial 5: Normal Modes and IR Spectroscopy

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    The main goal of these activities is to calculate the infrared absorbance spectra of N2, O2, and CO2. CO2 is a green house gas, while the diatomics make up the majority of gases in our atmosphere. Much of this tutorial is taken from material and spectra (“Figure 2”) by Tom Shattuck at...

  20. CHEM 870 Tutorial 6a: Binding Energy, DFT, and CO2 Capture I

    20 Dec 2021 | | Contributor(s):: Nicole Adelstein

    The main goal of these activities is to calculate the binding energy of CO2 to linker molecules in metal organic frameworks (MOFs). CO2 is a greenhouse gas. One necessary component of combating climate change is removing CO2 from the atmosphere. We will use density functional theory (DFT)...