Support

Support Options

Submit a Support Ticket

 

Tags: algorithms

Description

Whether you're simulating the electronic structure of a carbon nanotube or the strain within an automobile part, the calculations usually boil down to a simple matrix equation, Ax = f. The faster you can fill the matrix A with the coefficients for your partial differential equation (PDE), and the faster you can solve for the vector x given a forcing function f, the faster you have your overall solution. Things get interesting when the matrix A is too large to fit in the memory available on one machine, or when the coefficients in A cause the matrix to be ill-conditioned.

Many different algorithms have been developed to map a PDE onto a matrix, to pre-condition the matrix to a better form, and to solve the matrix with blinding speed. Different algorithms usually exploit some property of the matrix, such as symmetry, to reduce either memory requirements or solution speed or both.

Learn more about algorithms from the many resources on this site, listed below.

Resources (1-20 of 90)

  1. Computing Research Institute Seminars

    04 Jan 2007 | Series

    CRI sponsors a regular seminar series that features local, national and international speakers who are recognized in their fields. CRI seminars cover topics in computational science, computational...

    http://nanohub.org/resources/2166

  2. Integrated Imaging Seminar Series

    30 Apr 2013 | Series | Contributor(s): Charles Addison Bouman

    Integrated imaging seminar series is jointly sponsored by the Birck Nanotechnology Center and ECE. Integrated Imaging is defined as a cross-disciplinary field combining sensor science, information...

    http://nanohub.org/resources/17591

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.