Support

Support Options

Submit a Support Ticket

 

Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Resources (21-40 of 112)

  1. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    07 Jul 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

    http://nanohub.org/resources/8594

  2. Ripples and Warping of Graphene: A Theoretical Study

    08 Jun 2010 | Online Presentations | Contributor(s): Umesh V. Waghmare

    We use first-principles density functional theory based analysis to understand formation of ripples in graphene and related 2-D materials. For an infinite graphene, we show that ripples are linked...

    http://nanohub.org/resources/9010

  3. Nanoelectronic Modeling Lecture 25b: NEMO1D - Hole Bandstructure in Quantum Wells and Hole Transport in RTDs

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Heterostructures such as resonant tunneling diodes, quantum well photodetectors and lasers, and cascade lasers break the symmetry of the crystalline lattice. Such break in lattice symmetry...

    http://nanohub.org/resources/8595

  4. Nanoelectronic Modeling Lecture 26: NEMO1D -

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that...

    http://nanohub.org/resources/8596

  5. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Exercises: Barrier Structures Uses: Piece-Wise Constant Potential Barrier Tool Resonant Tunneling Diodes Uses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation •...

    http://nanohub.org/resources/8259

  6. Nanoelectronic Modeling Lecture 14: Open 1D Systems - Formation of Bandstructure

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Dragica Vasileska

    The infinite periodic structure Kroenig Penney model is often used to introduce students to the concept of bandstructure formation. It is analytically solvable for linear potentials and shows...

    http://nanohub.org/resources/8197

  7. Nanoelectronic Modeling Lecture 12: Open 1D Systems - Transmission through Double Barrier Structures - Resonant Tunneling

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Dragica Vasileska

    This presentation shows that double barrier structures can show unity transmission for energies BELOW the barrier height, resulting in resonant tunneling. The resonance can be associated with a...

    http://nanohub.org/resources/8195

  8. Nanoelectronic Modeling Lecture 08: Introduction to Bandstructure Engineering II

    25 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation provides a brief overview of the concepts of bandstructure engineering and its potential applications to light detectors, light emitters, and electron transport devices. ...

    http://nanohub.org/resources/8094

  9. Nanoelectronic Modeling Lecture 07: Introduction to Bandstructure Engineering I

    25 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation serves as a reminder about basic quantum mechanical principles without any real math. The presentation reviews critical properties of classical systems that can be described as...

    http://nanohub.org/resources/8093

  10. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | Online Presentations | Contributor(s): Andrei Kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors...

    http://nanohub.org/resources/5738

  11. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction and Objectives Theory Experimental approach Results Discussion Summary Lecture notes are available for this lecture. Network for Computational...

    http://nanohub.org/resources/7401

  12. ECE 656 Lecture 4: Density of States - Density of Modes

    14 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states Example: graphene Density of modes Example: graphene Summary

    http://nanohub.org/resources/7349

  13. ME 597 Lecture 1: Introduction to Basic Quantum Mechanics

    01 Sep 2009 | Online Presentations | Contributor(s): Ron Reifenberger

    Note: This lecture has been revised since its original presentation. Topics: Introduction to Basic Quantum Mechanics Energy States in Periodic Crystals Course is dual listed as...

    http://nanohub.org/resources/7321

  14. ECE 656 Lecture 2: Sums in k-space/Integrals in Energy Space

    01 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states in k-space Example Working in energy space Discussion Summary

    http://nanohub.org/resources/7296

  15. ECE 656 Lecture 1: Bandstructure Review

    26 Aug 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Bandstructure in bulk semiconductors Quantum confinement Summary Section 1.2, Lundstrom, Fundamentals of Carrier Transport

    http://nanohub.org/resources/7287

  16. Comparison of PCPBT Lab and Periodic Potential Lab

    10 Aug 2009 | Online Presentations | Contributor(s): Abhijeet Paul, Samarth Agarwal, Gerhard Klimeck, Junzhe Geng

    This small presentation provides information about the comparison performed for quantum wells made of GaAs and InAs in two different tools. This has been done to benchmark the results from...

    http://nanohub.org/resources/7201

  17. ECE 606 Lecture 10: Additional Information

    16 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Potential, field, and charge E-k diagram vs. band-diagram Basic concepts of donors and acceptors Conclusion R. F. Pierret, "Advanced Semiconductor Fundamentals", Modular Series on...

    http://nanohub.org/resources/5801

  18. ECE 606 Lecture 13a: Fermi Level Differences for Metals and Semiconductors

    16 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Short chalkboard lecture on Fermi level and band diagram differences for metals and semiconductors.

    http://nanohub.org/resources/6288

  19. ECE 606 Lecture 5: Energy Bands

    04 Feb 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Schrodinger equation in periodic U(x) Bloch theorem Band structure Properties of electronic bands Conclusions R. F. Pierret, "Advanced Semiconductor Fundamentals", Modular Series...

    http://nanohub.org/resources/5758

  20. ECE 495N Lecture 21: Graphene Bandstructures

    03 Nov 2008 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/5710

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.